1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
//===- SIInsertHardClauses.cpp - Insert Hard Clauses ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Insert s_clause instructions to form hard clauses.
///
/// Clausing load instructions can give cache coherency benefits. Before gfx10,
/// the hardware automatically detected "soft clauses", which were sequences of
/// memory instructions of the same type. In gfx10 this detection was removed,
/// and the s_clause instruction was introduced to explicitly mark "hard
/// clauses".
///
/// It's the scheduler's job to form the clauses by putting similar memory
/// instructions next to each other. Our job is just to insert an s_clause
/// instruction to mark the start of each clause.
///
/// Note that hard clauses are very similar to, but logically distinct from, the
/// groups of instructions that have to be restartable when XNACK is enabled.
/// The rules are slightly different in each case. For example an s_nop
/// instruction breaks a restartable group, but can appear in the middle of a
/// hard clause. (Before gfx10 there wasn't a distinction, and both were called
/// "soft clauses" or just "clauses".)
///
/// The SIFormMemoryClauses pass and GCNHazardRecognizer deal with restartable
/// groups, not hard clauses.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
using namespace llvm;
#define DEBUG_TYPE "si-insert-hard-clauses"
namespace {
// A clause length of 64 instructions could be encoded in the s_clause
// instruction, but the hardware documentation (at least for GFX11) says that
// 63 is the maximum allowed.
constexpr unsigned MaxInstructionsInClause = 63;
enum HardClauseType {
// For GFX10:
// Texture, buffer, global or scratch memory instructions.
HARDCLAUSE_VMEM,
// Flat (not global or scratch) memory instructions.
HARDCLAUSE_FLAT,
// For GFX11:
// Texture memory instructions.
HARDCLAUSE_MIMG_LOAD,
HARDCLAUSE_MIMG_STORE,
HARDCLAUSE_MIMG_ATOMIC,
HARDCLAUSE_MIMG_SAMPLE,
// Buffer, global or scratch memory instructions.
HARDCLAUSE_VMEM_LOAD,
HARDCLAUSE_VMEM_STORE,
HARDCLAUSE_VMEM_ATOMIC,
// Flat (not global or scratch) memory instructions.
HARDCLAUSE_FLAT_LOAD,
HARDCLAUSE_FLAT_STORE,
HARDCLAUSE_FLAT_ATOMIC,
// BVH instructions.
HARDCLAUSE_BVH,
// Common:
// Instructions that access LDS.
HARDCLAUSE_LDS,
// Scalar memory instructions.
HARDCLAUSE_SMEM,
// VALU instructions.
HARDCLAUSE_VALU,
LAST_REAL_HARDCLAUSE_TYPE = HARDCLAUSE_VALU,
// Internal instructions, which are allowed in the middle of a hard clause,
// except for s_waitcnt.
HARDCLAUSE_INTERNAL,
// Meta instructions that do not result in any ISA like KILL.
HARDCLAUSE_IGNORE,
// Instructions that are not allowed in a hard clause: SALU, export, branch,
// message, GDS, s_waitcnt and anything else not mentioned above.
HARDCLAUSE_ILLEGAL,
};
class SIInsertHardClauses : public MachineFunctionPass {
public:
static char ID;
const GCNSubtarget *ST = nullptr;
SIInsertHardClauses() : MachineFunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
HardClauseType getHardClauseType(const MachineInstr &MI) {
if (MI.mayLoad() || (MI.mayStore() && ST->shouldClusterStores())) {
if (ST->getGeneration() == AMDGPUSubtarget::GFX10) {
if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI)) {
if (ST->hasNSAClauseBug()) {
const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
if (Info && Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA)
return HARDCLAUSE_ILLEGAL;
}
return HARDCLAUSE_VMEM;
}
if (SIInstrInfo::isFLAT(MI))
return HARDCLAUSE_FLAT;
} else {
assert(ST->getGeneration() >= AMDGPUSubtarget::GFX11);
if (SIInstrInfo::isMIMG(MI)) {
const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
const AMDGPU::MIMGBaseOpcodeInfo *BaseInfo =
AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
if (BaseInfo->BVH)
return HARDCLAUSE_BVH;
if (BaseInfo->Sampler)
return HARDCLAUSE_MIMG_SAMPLE;
return MI.mayLoad() ? MI.mayStore() ? HARDCLAUSE_MIMG_ATOMIC
: HARDCLAUSE_MIMG_LOAD
: HARDCLAUSE_MIMG_STORE;
}
if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI)) {
return MI.mayLoad() ? MI.mayStore() ? HARDCLAUSE_VMEM_ATOMIC
: HARDCLAUSE_VMEM_LOAD
: HARDCLAUSE_VMEM_STORE;
}
if (SIInstrInfo::isFLAT(MI)) {
return MI.mayLoad() ? MI.mayStore() ? HARDCLAUSE_FLAT_ATOMIC
: HARDCLAUSE_FLAT_LOAD
: HARDCLAUSE_FLAT_STORE;
}
}
// TODO: LDS
if (SIInstrInfo::isSMRD(MI))
return HARDCLAUSE_SMEM;
}
// Don't form VALU clauses. It's not clear what benefit they give, if any.
// In practice s_nop is the only internal instruction we're likely to see.
// It's safe to treat the rest as illegal.
if (MI.getOpcode() == AMDGPU::S_NOP)
return HARDCLAUSE_INTERNAL;
if (MI.isMetaInstruction())
return HARDCLAUSE_IGNORE;
return HARDCLAUSE_ILLEGAL;
}
// Track information about a clause as we discover it.
struct ClauseInfo {
// The type of all (non-internal) instructions in the clause.
HardClauseType Type = HARDCLAUSE_ILLEGAL;
// The first (necessarily non-internal) instruction in the clause.
MachineInstr *First = nullptr;
// The last non-internal instruction in the clause.
MachineInstr *Last = nullptr;
// The length of the clause including any internal instructions in the
// middle (but not at the end) of the clause.
unsigned Length = 0;
// Internal instructions at the and of a clause should not be included in
// the clause. Count them in TrailingInternalLength until a new memory
// instruction is added.
unsigned TrailingInternalLength = 0;
// The base operands of *Last.
SmallVector<const MachineOperand *, 4> BaseOps;
};
bool emitClause(const ClauseInfo &CI, const SIInstrInfo *SII) {
if (CI.First == CI.Last)
return false;
assert(CI.Length <= MaxInstructionsInClause && "Hard clause is too long!");
auto &MBB = *CI.First->getParent();
auto ClauseMI =
BuildMI(MBB, *CI.First, DebugLoc(), SII->get(AMDGPU::S_CLAUSE))
.addImm(CI.Length - 1);
finalizeBundle(MBB, ClauseMI->getIterator(),
std::next(CI.Last->getIterator()));
return true;
}
bool runOnMachineFunction(MachineFunction &MF) override {
if (skipFunction(MF.getFunction()))
return false;
ST = &MF.getSubtarget<GCNSubtarget>();
if (!ST->hasHardClauses())
return false;
const SIInstrInfo *SII = ST->getInstrInfo();
const TargetRegisterInfo *TRI = ST->getRegisterInfo();
bool Changed = false;
for (auto &MBB : MF) {
ClauseInfo CI;
for (auto &MI : MBB) {
HardClauseType Type = getHardClauseType(MI);
int64_t Dummy1;
bool Dummy2;
unsigned Dummy3;
SmallVector<const MachineOperand *, 4> BaseOps;
if (Type <= LAST_REAL_HARDCLAUSE_TYPE) {
if (!SII->getMemOperandsWithOffsetWidth(MI, BaseOps, Dummy1, Dummy2,
Dummy3, TRI)) {
// We failed to get the base operands, so we'll never clause this
// instruction with any other, so pretend it's illegal.
Type = HARDCLAUSE_ILLEGAL;
}
}
if (CI.Length == MaxInstructionsInClause ||
(CI.Length && Type != HARDCLAUSE_INTERNAL &&
Type != HARDCLAUSE_IGNORE &&
(Type != CI.Type ||
// Note that we lie to shouldClusterMemOps about the size of the
// cluster. When shouldClusterMemOps is called from the machine
// scheduler it limits the size of the cluster to avoid increasing
// register pressure too much, but this pass runs after register
// allocation so there is no need for that kind of limit.
!SII->shouldClusterMemOps(CI.BaseOps, BaseOps, 2, 2)))) {
// Finish the current clause.
Changed |= emitClause(CI, SII);
CI = ClauseInfo();
}
if (CI.Length) {
// Extend the current clause.
if (Type != HARDCLAUSE_IGNORE) {
if (Type == HARDCLAUSE_INTERNAL) {
++CI.TrailingInternalLength;
} else {
++CI.Length;
CI.Length += CI.TrailingInternalLength;
CI.TrailingInternalLength = 0;
CI.Last = &MI;
CI.BaseOps = std::move(BaseOps);
}
}
} else if (Type <= LAST_REAL_HARDCLAUSE_TYPE) {
// Start a new clause.
CI = ClauseInfo{Type, &MI, &MI, 1, 0, std::move(BaseOps)};
}
}
// Finish the last clause in the basic block if any.
if (CI.Length)
Changed |= emitClause(CI, SII);
}
return Changed;
}
};
} // namespace
char SIInsertHardClauses::ID = 0;
char &llvm::SIInsertHardClausesID = SIInsertHardClauses::ID;
INITIALIZE_PASS(SIInsertHardClauses, DEBUG_TYPE, "SI Insert Hard Clauses",
false, false)
|