1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
|
//===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Insert wait instructions for memory reads and writes.
///
/// Memory reads and writes are issued asynchronously, so we need to insert
/// S_WAITCNT instructions when we want to access any of their results or
/// overwrite any register that's used asynchronously.
///
/// TODO: This pass currently keeps one timeline per hardware counter. A more
/// finely-grained approach that keeps one timeline per event type could
/// sometimes get away with generating weaker s_waitcnt instructions. For
/// example, when both SMEM and LDS are in flight and we need to wait for
/// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient,
/// but the pass will currently generate a conservative lgkmcnt(0) because
/// multiple event types are in flight.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIMachineFunctionInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/TargetParser/TargetParser.h"
using namespace llvm;
#define DEBUG_TYPE "si-insert-waitcnts"
DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp",
"Force emit s_waitcnt expcnt(0) instrs");
DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm",
"Force emit s_waitcnt lgkmcnt(0) instrs");
DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm",
"Force emit s_waitcnt vmcnt(0) instrs");
static cl::opt<bool> ForceEmitZeroFlag(
"amdgpu-waitcnt-forcezero",
cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"),
cl::init(false), cl::Hidden);
namespace {
// Class of object that encapsulates latest instruction counter score
// associated with the operand. Used for determining whether
// s_waitcnt instruction needs to be emitted.
enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS };
} // namespace
namespace llvm {
template <> struct enum_iteration_traits<InstCounterType> {
static constexpr bool is_iterable = true;
};
} // namespace llvm
namespace {
auto inst_counter_types() { return enum_seq(VM_CNT, NUM_INST_CNTS); }
using RegInterval = std::pair<int, int>;
struct HardwareLimits {
unsigned VmcntMax;
unsigned ExpcntMax;
unsigned LgkmcntMax;
unsigned VscntMax;
};
struct RegisterEncoding {
unsigned VGPR0;
unsigned VGPRL;
unsigned SGPR0;
unsigned SGPRL;
};
enum WaitEventType {
VMEM_ACCESS, // vector-memory read & write
VMEM_READ_ACCESS, // vector-memory read
VMEM_WRITE_ACCESS, // vector-memory write that is not scratch
SCRATCH_WRITE_ACCESS, // vector-memory write that may be scratch
LDS_ACCESS, // lds read & write
GDS_ACCESS, // gds read & write
SQ_MESSAGE, // send message
SMEM_ACCESS, // scalar-memory read & write
EXP_GPR_LOCK, // export holding on its data src
GDS_GPR_LOCK, // GDS holding on its data and addr src
EXP_POS_ACCESS, // write to export position
EXP_PARAM_ACCESS, // write to export parameter
VMW_GPR_LOCK, // vector-memory write holding on its data src
EXP_LDS_ACCESS, // read by ldsdir counting as export
NUM_WAIT_EVENTS,
};
static const unsigned WaitEventMaskForInst[NUM_INST_CNTS] = {
(1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS),
(1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) |
(1 << SQ_MESSAGE),
(1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) |
(1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS) | (1 << EXP_LDS_ACCESS),
(1 << VMEM_WRITE_ACCESS) | (1 << SCRATCH_WRITE_ACCESS)};
// The mapping is:
// 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs
// SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots
// NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
// We reserve a fixed number of VGPR slots in the scoring tables for
// special tokens like SCMEM_LDS (needed for buffer load to LDS).
enum RegisterMapping {
SQ_MAX_PGM_VGPRS = 512, // Maximum programmable VGPRs across all targets.
AGPR_OFFSET = 256, // Maximum programmable ArchVGPRs across all targets.
SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
NUM_EXTRA_VGPRS = 1, // A reserved slot for DS.
EXTRA_VGPR_LDS = 0, // An artificial register to track LDS writes.
NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
};
// Enumerate different types of result-returning VMEM operations. Although
// s_waitcnt orders them all with a single vmcnt counter, in the absence of
// s_waitcnt only instructions of the same VmemType are guaranteed to write
// their results in order -- so there is no need to insert an s_waitcnt between
// two instructions of the same type that write the same vgpr.
enum VmemType {
// BUF instructions and MIMG instructions without a sampler.
VMEM_NOSAMPLER,
// MIMG instructions with a sampler.
VMEM_SAMPLER,
// BVH instructions
VMEM_BVH
};
static bool updateVMCntOnly(const MachineInstr &Inst) {
return SIInstrInfo::isVMEM(Inst) || SIInstrInfo::isFLATGlobal(Inst) ||
SIInstrInfo::isFLATScratch(Inst);
}
VmemType getVmemType(const MachineInstr &Inst) {
assert(updateVMCntOnly(Inst));
if (!SIInstrInfo::isMIMG(Inst))
return VMEM_NOSAMPLER;
const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Inst.getOpcode());
const AMDGPU::MIMGBaseOpcodeInfo *BaseInfo =
AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
return BaseInfo->BVH ? VMEM_BVH
: BaseInfo->Sampler ? VMEM_SAMPLER : VMEM_NOSAMPLER;
}
void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) {
switch (T) {
case VM_CNT:
Wait.VmCnt = std::min(Wait.VmCnt, Count);
break;
case EXP_CNT:
Wait.ExpCnt = std::min(Wait.ExpCnt, Count);
break;
case LGKM_CNT:
Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count);
break;
case VS_CNT:
Wait.VsCnt = std::min(Wait.VsCnt, Count);
break;
default:
llvm_unreachable("bad InstCounterType");
}
}
// This objects maintains the current score brackets of each wait counter, and
// a per-register scoreboard for each wait counter.
//
// We also maintain the latest score for every event type that can change the
// waitcnt in order to know if there are multiple types of events within
// the brackets. When multiple types of event happen in the bracket,
// wait count may get decreased out of order, therefore we need to put in
// "s_waitcnt 0" before use.
class WaitcntBrackets {
public:
WaitcntBrackets(const GCNSubtarget *SubTarget, HardwareLimits Limits,
RegisterEncoding Encoding)
: ST(SubTarget), Limits(Limits), Encoding(Encoding) {}
unsigned getWaitCountMax(InstCounterType T) const {
switch (T) {
case VM_CNT:
return Limits.VmcntMax;
case LGKM_CNT:
return Limits.LgkmcntMax;
case EXP_CNT:
return Limits.ExpcntMax;
case VS_CNT:
return Limits.VscntMax;
default:
break;
}
return 0;
}
unsigned getScoreLB(InstCounterType T) const {
assert(T < NUM_INST_CNTS);
return ScoreLBs[T];
}
unsigned getScoreUB(InstCounterType T) const {
assert(T < NUM_INST_CNTS);
return ScoreUBs[T];
}
unsigned getScoreRange(InstCounterType T) const {
return getScoreUB(T) - getScoreLB(T);
}
// Mapping from event to counter.
InstCounterType eventCounter(WaitEventType E) const {
for (auto T : inst_counter_types()) {
if (WaitEventMaskForInst[T] & (1 << E))
return T;
}
llvm_unreachable("event type has no associated counter");
}
unsigned getRegScore(int GprNo, InstCounterType T) const {
if (GprNo < NUM_ALL_VGPRS) {
return VgprScores[T][GprNo];
}
assert(T == LGKM_CNT);
return SgprScores[GprNo - NUM_ALL_VGPRS];
}
bool merge(const WaitcntBrackets &Other);
RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
const MachineRegisterInfo *MRI,
const SIRegisterInfo *TRI, unsigned OpNo) const;
bool counterOutOfOrder(InstCounterType T) const;
void simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const;
void simplifyWaitcnt(InstCounterType T, unsigned &Count) const;
void determineWait(InstCounterType T, int RegNo, AMDGPU::Waitcnt &Wait) const;
void applyWaitcnt(const AMDGPU::Waitcnt &Wait);
void applyWaitcnt(InstCounterType T, unsigned Count);
void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
const MachineRegisterInfo *MRI, WaitEventType E,
MachineInstr &MI);
unsigned hasPendingEvent() const { return PendingEvents; }
unsigned hasPendingEvent(WaitEventType E) const {
return PendingEvents & (1 << E);
}
unsigned hasPendingEvent(InstCounterType T) const {
unsigned HasPending = PendingEvents & WaitEventMaskForInst[T];
assert((HasPending != 0) == (getScoreRange(T) != 0));
return HasPending;
}
bool hasMixedPendingEvents(InstCounterType T) const {
unsigned Events = hasPendingEvent(T);
// Return true if more than one bit is set in Events.
return Events & (Events - 1);
}
bool hasPendingFlat() const {
return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
(LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
}
void setPendingFlat() {
LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
}
// Return true if there might be pending writes to the specified vgpr by VMEM
// instructions with types different from V.
bool hasOtherPendingVmemTypes(int GprNo, VmemType V) const {
assert(GprNo < NUM_ALL_VGPRS);
return VgprVmemTypes[GprNo] & ~(1 << V);
}
void clearVgprVmemTypes(int GprNo) {
assert(GprNo < NUM_ALL_VGPRS);
VgprVmemTypes[GprNo] = 0;
}
void print(raw_ostream &);
void dump() { print(dbgs()); }
private:
struct MergeInfo {
unsigned OldLB;
unsigned OtherLB;
unsigned MyShift;
unsigned OtherShift;
};
static bool mergeScore(const MergeInfo &M, unsigned &Score,
unsigned OtherScore);
void setScoreLB(InstCounterType T, unsigned Val) {
assert(T < NUM_INST_CNTS);
ScoreLBs[T] = Val;
}
void setScoreUB(InstCounterType T, unsigned Val) {
assert(T < NUM_INST_CNTS);
ScoreUBs[T] = Val;
if (T != EXP_CNT)
return;
if (getScoreRange(EXP_CNT) > getWaitCountMax(EXP_CNT))
ScoreLBs[EXP_CNT] = ScoreUBs[EXP_CNT] - getWaitCountMax(EXP_CNT);
}
void setRegScore(int GprNo, InstCounterType T, unsigned Val) {
if (GprNo < NUM_ALL_VGPRS) {
VgprUB = std::max(VgprUB, GprNo);
VgprScores[T][GprNo] = Val;
} else {
assert(T == LGKM_CNT);
SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS);
SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
}
}
void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
unsigned OpNo, unsigned Val);
const GCNSubtarget *ST = nullptr;
HardwareLimits Limits = {};
RegisterEncoding Encoding = {};
unsigned ScoreLBs[NUM_INST_CNTS] = {0};
unsigned ScoreUBs[NUM_INST_CNTS] = {0};
unsigned PendingEvents = 0;
// Remember the last flat memory operation.
unsigned LastFlat[NUM_INST_CNTS] = {0};
// wait_cnt scores for every vgpr.
// Keep track of the VgprUB and SgprUB to make merge at join efficient.
int VgprUB = -1;
int SgprUB = -1;
unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}};
// Wait cnt scores for every sgpr, only lgkmcnt is relevant.
unsigned SgprScores[SQ_MAX_PGM_SGPRS] = {0};
// Bitmask of the VmemTypes of VMEM instructions that might have a pending
// write to each vgpr.
unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0};
};
class SIInsertWaitcnts : public MachineFunctionPass {
private:
const GCNSubtarget *ST = nullptr;
const SIInstrInfo *TII = nullptr;
const SIRegisterInfo *TRI = nullptr;
const MachineRegisterInfo *MRI = nullptr;
AMDGPU::IsaVersion IV;
DenseSet<MachineInstr *> TrackedWaitcntSet;
DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses;
DenseMap<MachineBasicBlock *, bool> PreheadersToFlush;
MachineLoopInfo *MLI;
MachinePostDominatorTree *PDT;
struct BlockInfo {
std::unique_ptr<WaitcntBrackets> Incoming;
bool Dirty = true;
};
MapVector<MachineBasicBlock *, BlockInfo> BlockInfos;
// ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0
// because of amdgpu-waitcnt-forcezero flag
bool ForceEmitZeroWaitcnts;
bool ForceEmitWaitcnt[NUM_INST_CNTS];
bool OptNone;
// S_ENDPGM instructions before which we should insert a DEALLOC_VGPRS
// message.
DenseSet<MachineInstr *> ReleaseVGPRInsts;
public:
static char ID;
SIInsertWaitcnts() : MachineFunctionPass(ID) {
(void)ForceExpCounter;
(void)ForceLgkmCounter;
(void)ForceVMCounter;
}
bool shouldFlushVmCnt(MachineLoop *ML, WaitcntBrackets &Brackets);
bool isPreheaderToFlush(MachineBasicBlock &MBB,
WaitcntBrackets &ScoreBrackets);
bool isVMEMOrFlatVMEM(const MachineInstr &MI) const;
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "SI insert wait instructions";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<MachineLoopInfo>();
AU.addRequired<MachinePostDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool isForceEmitWaitcnt() const {
for (auto T : inst_counter_types())
if (ForceEmitWaitcnt[T])
return true;
return false;
}
void setForceEmitWaitcnt() {
// For non-debug builds, ForceEmitWaitcnt has been initialized to false;
// For debug builds, get the debug counter info and adjust if need be
#ifndef NDEBUG
if (DebugCounter::isCounterSet(ForceExpCounter) &&
DebugCounter::shouldExecute(ForceExpCounter)) {
ForceEmitWaitcnt[EXP_CNT] = true;
} else {
ForceEmitWaitcnt[EXP_CNT] = false;
}
if (DebugCounter::isCounterSet(ForceLgkmCounter) &&
DebugCounter::shouldExecute(ForceLgkmCounter)) {
ForceEmitWaitcnt[LGKM_CNT] = true;
} else {
ForceEmitWaitcnt[LGKM_CNT] = false;
}
if (DebugCounter::isCounterSet(ForceVMCounter) &&
DebugCounter::shouldExecute(ForceVMCounter)) {
ForceEmitWaitcnt[VM_CNT] = true;
} else {
ForceEmitWaitcnt[VM_CNT] = false;
}
#endif // NDEBUG
}
// Return the appropriate VMEM_*_ACCESS type for Inst, which must be a VMEM or
// FLAT instruction.
WaitEventType getVmemWaitEventType(const MachineInstr &Inst) const {
assert(SIInstrInfo::isVMEM(Inst) || SIInstrInfo::isFLAT(Inst));
if (!ST->hasVscnt())
return VMEM_ACCESS;
if (Inst.mayStore() && !SIInstrInfo::isAtomicRet(Inst)) {
// FLAT and SCRATCH instructions may access scratch. Other VMEM
// instructions do not.
if (SIInstrInfo::isFLAT(Inst) && mayAccessScratchThroughFlat(Inst))
return SCRATCH_WRITE_ACCESS;
return VMEM_WRITE_ACCESS;
}
return VMEM_READ_ACCESS;
}
bool mayAccessVMEMThroughFlat(const MachineInstr &MI) const;
bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
bool mayAccessScratchThroughFlat(const MachineInstr &MI) const;
bool generateWaitcntInstBefore(MachineInstr &MI,
WaitcntBrackets &ScoreBrackets,
MachineInstr *OldWaitcntInstr,
bool FlushVmCnt);
bool generateWaitcntBlockEnd(MachineBasicBlock &Block,
WaitcntBrackets &ScoreBrackets,
MachineInstr *OldWaitcntInstr);
bool generateWaitcnt(AMDGPU::Waitcnt Wait,
MachineBasicBlock::instr_iterator It,
MachineBasicBlock &Block, WaitcntBrackets &ScoreBrackets,
MachineInstr *OldWaitcntInstr);
void updateEventWaitcntAfter(MachineInstr &Inst,
WaitcntBrackets *ScoreBrackets);
bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block,
WaitcntBrackets &ScoreBrackets);
bool applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets,
MachineInstr &OldWaitcntInstr,
AMDGPU::Waitcnt &Wait,
MachineBasicBlock::instr_iterator It) const;
};
} // end anonymous namespace
RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI,
const SIInstrInfo *TII,
const MachineRegisterInfo *MRI,
const SIRegisterInfo *TRI,
unsigned OpNo) const {
const MachineOperand &Op = MI->getOperand(OpNo);
if (!TRI->isInAllocatableClass(Op.getReg()))
return {-1, -1};
// A use via a PW operand does not need a waitcnt.
// A partial write is not a WAW.
assert(!Op.getSubReg() || !Op.isUndef());
RegInterval Result;
unsigned Reg = TRI->getEncodingValue(AMDGPU::getMCReg(Op.getReg(), *ST));
if (TRI->isVectorRegister(*MRI, Op.getReg())) {
assert(Reg >= Encoding.VGPR0 && Reg <= Encoding.VGPRL);
Result.first = Reg - Encoding.VGPR0;
if (TRI->isAGPR(*MRI, Op.getReg()))
Result.first += AGPR_OFFSET;
assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
} else if (TRI->isSGPRReg(*MRI, Op.getReg())) {
assert(Reg >= Encoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
Result.first = Reg - Encoding.SGPR0 + NUM_ALL_VGPRS;
assert(Result.first >= NUM_ALL_VGPRS &&
Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
}
// TODO: Handle TTMP
// else if (TRI->isTTMP(*MRI, Reg.getReg())) ...
else
return {-1, -1};
const TargetRegisterClass *RC = TII->getOpRegClass(*MI, OpNo);
unsigned Size = TRI->getRegSizeInBits(*RC);
Result.second = Result.first + ((Size + 16) / 32);
return Result;
}
void WaitcntBrackets::setExpScore(const MachineInstr *MI,
const SIInstrInfo *TII,
const SIRegisterInfo *TRI,
const MachineRegisterInfo *MRI, unsigned OpNo,
unsigned Val) {
RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo);
assert(TRI->isVectorRegister(*MRI, MI->getOperand(OpNo).getReg()));
for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
setRegScore(RegNo, EXP_CNT, Val);
}
}
// MUBUF and FLAT LDS DMA operations need a wait on vmcnt before LDS written
// can be accessed. A load from LDS to VMEM does not need a wait.
static bool mayWriteLDSThroughDMA(const MachineInstr &MI) {
return SIInstrInfo::isVALU(MI) &&
(SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI)) &&
MI.getOpcode() != AMDGPU::BUFFER_STORE_LDS_DWORD;
}
void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
const SIRegisterInfo *TRI,
const MachineRegisterInfo *MRI,
WaitEventType E, MachineInstr &Inst) {
InstCounterType T = eventCounter(E);
unsigned CurrScore = getScoreUB(T) + 1;
if (CurrScore == 0)
report_fatal_error("InsertWaitcnt score wraparound");
// PendingEvents and ScoreUB need to be update regardless if this event
// changes the score of a register or not.
// Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
PendingEvents |= 1 << E;
setScoreUB(T, CurrScore);
if (T == EXP_CNT) {
// Put score on the source vgprs. If this is a store, just use those
// specific register(s).
if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
int AddrOpIdx =
AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr);
// All GDS operations must protect their address register (same as
// export.)
if (AddrOpIdx != -1) {
setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore);
}
if (Inst.mayStore()) {
if (AMDGPU::hasNamedOperand(Inst.getOpcode(), AMDGPU::OpName::data0)) {
setExpScore(
&Inst, TII, TRI, MRI,
AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
CurrScore);
}
if (AMDGPU::hasNamedOperand(Inst.getOpcode(), AMDGPU::OpName::data1)) {
setExpScore(&Inst, TII, TRI, MRI,
AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
AMDGPU::OpName::data1),
CurrScore);
}
} else if (SIInstrInfo::isAtomicRet(Inst) &&
Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
Inst.getOpcode() != AMDGPU::DS_APPEND &&
Inst.getOpcode() != AMDGPU::DS_CONSUME &&
Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
const MachineOperand &Op = Inst.getOperand(I);
if (Op.isReg() && !Op.isDef() &&
TRI->isVectorRegister(*MRI, Op.getReg())) {
setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
}
}
}
} else if (TII->isFLAT(Inst)) {
if (Inst.mayStore()) {
setExpScore(
&Inst, TII, TRI, MRI,
AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
CurrScore);
} else if (SIInstrInfo::isAtomicRet(Inst)) {
setExpScore(
&Inst, TII, TRI, MRI,
AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
CurrScore);
}
} else if (TII->isMIMG(Inst)) {
if (Inst.mayStore()) {
setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
} else if (SIInstrInfo::isAtomicRet(Inst)) {
setExpScore(
&Inst, TII, TRI, MRI,
AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
CurrScore);
}
} else if (TII->isMTBUF(Inst)) {
if (Inst.mayStore()) {
setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
}
} else if (TII->isMUBUF(Inst)) {
if (Inst.mayStore()) {
setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
} else if (SIInstrInfo::isAtomicRet(Inst)) {
setExpScore(
&Inst, TII, TRI, MRI,
AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
CurrScore);
}
} else if (TII->isLDSDIR(Inst)) {
// LDSDIR instructions attach the score to the destination.
setExpScore(
&Inst, TII, TRI, MRI,
AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdst),
CurrScore);
} else {
if (TII->isEXP(Inst)) {
// For export the destination registers are really temps that
// can be used as the actual source after export patching, so
// we need to treat them like sources and set the EXP_CNT
// score.
for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
MachineOperand &DefMO = Inst.getOperand(I);
if (DefMO.isReg() && DefMO.isDef() &&
TRI->isVGPR(*MRI, DefMO.getReg())) {
setRegScore(
TRI->getEncodingValue(AMDGPU::getMCReg(DefMO.getReg(), *ST)),
EXP_CNT, CurrScore);
}
}
}
for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
MachineOperand &MO = Inst.getOperand(I);
if (MO.isReg() && !MO.isDef() &&
TRI->isVectorRegister(*MRI, MO.getReg())) {
setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
}
}
}
#if 0 // TODO: check if this is handled by MUBUF code above.
} else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
unsigned OpNo;//TODO: find the OpNo for this operand;
RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo);
for (int RegNo = Interval.first; RegNo < Interval.second;
++RegNo) {
setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
}
#endif
} else {
// Match the score to the destination registers.
for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
auto &Op = Inst.getOperand(I);
if (!Op.isReg() || !Op.isDef())
continue;
RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I);
if (T == VM_CNT) {
if (Interval.first >= NUM_ALL_VGPRS)
continue;
if (updateVMCntOnly(Inst)) {
VmemType V = getVmemType(Inst);
for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo)
VgprVmemTypes[RegNo] |= 1 << V;
}
}
for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
setRegScore(RegNo, T, CurrScore);
}
}
if (Inst.mayStore() && (TII->isDS(Inst) || mayWriteLDSThroughDMA(Inst))) {
setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
}
}
}
void WaitcntBrackets::print(raw_ostream &OS) {
OS << '\n';
for (auto T : inst_counter_types()) {
unsigned SR = getScoreRange(T);
switch (T) {
case VM_CNT:
OS << " VM_CNT(" << SR << "): ";
break;
case LGKM_CNT:
OS << " LGKM_CNT(" << SR << "): ";
break;
case EXP_CNT:
OS << " EXP_CNT(" << SR << "): ";
break;
case VS_CNT:
OS << " VS_CNT(" << SR << "): ";
break;
default:
OS << " UNKNOWN(" << SR << "): ";
break;
}
if (SR != 0) {
// Print vgpr scores.
unsigned LB = getScoreLB(T);
for (int J = 0; J <= VgprUB; J++) {
unsigned RegScore = getRegScore(J, T);
if (RegScore <= LB)
continue;
unsigned RelScore = RegScore - LB - 1;
if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
OS << RelScore << ":v" << J << " ";
} else {
OS << RelScore << ":ds ";
}
}
// Also need to print sgpr scores for lgkm_cnt.
if (T == LGKM_CNT) {
for (int J = 0; J <= SgprUB; J++) {
unsigned RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
if (RegScore <= LB)
continue;
unsigned RelScore = RegScore - LB - 1;
OS << RelScore << ":s" << J << " ";
}
}
}
OS << '\n';
}
OS << '\n';
}
/// Simplify the waitcnt, in the sense of removing redundant counts, and return
/// whether a waitcnt instruction is needed at all.
void WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const {
simplifyWaitcnt(VM_CNT, Wait.VmCnt);
simplifyWaitcnt(EXP_CNT, Wait.ExpCnt);
simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
simplifyWaitcnt(VS_CNT, Wait.VsCnt);
}
void WaitcntBrackets::simplifyWaitcnt(InstCounterType T,
unsigned &Count) const {
// The number of outstanding events for this type, T, can be calculated
// as (UB - LB). If the current Count is greater than or equal to the number
// of outstanding events, then the wait for this counter is redundant.
if (Count >= getScoreRange(T))
Count = ~0u;
}
void WaitcntBrackets::determineWait(InstCounterType T, int RegNo,
AMDGPU::Waitcnt &Wait) const {
unsigned ScoreToWait = getRegScore(RegNo, T);
// If the score of src_operand falls within the bracket, we need an
// s_waitcnt instruction.
const unsigned LB = getScoreLB(T);
const unsigned UB = getScoreUB(T);
if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
if ((T == VM_CNT || T == LGKM_CNT) &&
hasPendingFlat() &&
!ST->hasFlatLgkmVMemCountInOrder()) {
// If there is a pending FLAT operation, and this is a VMem or LGKM
// waitcnt and the target can report early completion, then we need
// to force a waitcnt 0.
addWait(Wait, T, 0);
} else if (counterOutOfOrder(T)) {
// Counter can get decremented out-of-order when there
// are multiple types event in the bracket. Also emit an s_wait counter
// with a conservative value of 0 for the counter.
addWait(Wait, T, 0);
} else {
// If a counter has been maxed out avoid overflow by waiting for
// MAX(CounterType) - 1 instead.
unsigned NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1);
addWait(Wait, T, NeededWait);
}
}
}
void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) {
applyWaitcnt(VM_CNT, Wait.VmCnt);
applyWaitcnt(EXP_CNT, Wait.ExpCnt);
applyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
applyWaitcnt(VS_CNT, Wait.VsCnt);
}
void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) {
const unsigned UB = getScoreUB(T);
if (Count >= UB)
return;
if (Count != 0) {
if (counterOutOfOrder(T))
return;
setScoreLB(T, std::max(getScoreLB(T), UB - Count));
} else {
setScoreLB(T, UB);
PendingEvents &= ~WaitEventMaskForInst[T];
}
}
// Where there are multiple types of event in the bracket of a counter,
// the decrement may go out of order.
bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const {
// Scalar memory read always can go out of order.
if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS))
return true;
return hasMixedPendingEvents(T);
}
INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
false)
char SIInsertWaitcnts::ID = 0;
char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;
FunctionPass *llvm::createSIInsertWaitcntsPass() {
return new SIInsertWaitcnts();
}
static bool updateOperandIfDifferent(MachineInstr &MI, uint16_t OpName,
unsigned NewEnc) {
int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OpName);
assert(OpIdx >= 0);
MachineOperand &MO = MI.getOperand(OpIdx);
if (NewEnc == MO.getImm())
return false;
MO.setImm(NewEnc);
return true;
}
/// Combine consecutive waitcnt instructions that precede \p It and follow
/// \p OldWaitcntInstr and apply any extra wait from waitcnt that were added
/// by previous passes. Currently this pass conservatively assumes that these
/// preexisting waitcnt are required for correctness.
bool SIInsertWaitcnts::applyPreexistingWaitcnt(
WaitcntBrackets &ScoreBrackets, MachineInstr &OldWaitcntInstr,
AMDGPU::Waitcnt &Wait, MachineBasicBlock::instr_iterator It) const {
bool Modified = false;
MachineInstr *WaitcntInstr = nullptr;
MachineInstr *WaitcntVsCntInstr = nullptr;
for (auto &II :
make_early_inc_range(make_range(OldWaitcntInstr.getIterator(), It))) {
if (II.isMetaInstruction())
continue;
if (II.getOpcode() == AMDGPU::S_WAITCNT) {
// Conservatively update required wait if this waitcnt was added in an
// earlier pass. In this case it will not exist in the tracked waitcnt
// set.
if (!TrackedWaitcntSet.count(&II)) {
unsigned IEnc = II.getOperand(0).getImm();
AMDGPU::Waitcnt OldWait = AMDGPU::decodeWaitcnt(IV, IEnc);
Wait = Wait.combined(OldWait);
}
// Merge consecutive waitcnt of the same type by erasing multiples.
if (!WaitcntInstr) {
WaitcntInstr = &II;
} else {
II.eraseFromParent();
Modified = true;
}
} else {
assert(II.getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
assert(II.getOperand(0).getReg() == AMDGPU::SGPR_NULL);
if (!TrackedWaitcntSet.count(&II)) {
unsigned OldVSCnt =
TII->getNamedOperand(II, AMDGPU::OpName::simm16)->getImm();
Wait.VsCnt = std::min(Wait.VsCnt, OldVSCnt);
}
if (!WaitcntVsCntInstr) {
WaitcntVsCntInstr = &II;
} else {
II.eraseFromParent();
Modified = true;
}
}
}
// Updated encoding of merged waitcnt with the required wait.
if (WaitcntInstr) {
if (Wait.hasWaitExceptVsCnt()) {
Modified |=
updateOperandIfDifferent(*WaitcntInstr, AMDGPU::OpName::simm16,
AMDGPU::encodeWaitcnt(IV, Wait));
ScoreBrackets.applyWaitcnt(Wait);
Wait.VmCnt = ~0u;
Wait.LgkmCnt = ~0u;
Wait.ExpCnt = ~0u;
LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end()
? dbgs() << "applyPreexistingWaitcnt\n"
<< "New Instr at block end: " << *WaitcntInstr
<< '\n'
: dbgs() << "applyPreexistingWaitcnt\n"
<< "Old Instr: " << *It
<< "New Instr: " << *WaitcntInstr << '\n');
} else {
WaitcntInstr->eraseFromParent();
Modified = true;
}
}
if (WaitcntVsCntInstr) {
if (Wait.hasWaitVsCnt()) {
assert(ST->hasVscnt());
Modified |= updateOperandIfDifferent(*WaitcntVsCntInstr,
AMDGPU::OpName::simm16, Wait.VsCnt);
ScoreBrackets.applyWaitcnt(Wait);
Wait.VsCnt = ~0u;
LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end()
? dbgs() << "applyPreexistingWaitcnt\n"
<< "New Instr at block end: "
<< *WaitcntVsCntInstr << '\n'
: dbgs() << "applyPreexistingWaitcnt\n"
<< "Old Instr: " << *It
<< "New Instr: " << *WaitcntVsCntInstr << '\n');
} else {
WaitcntVsCntInstr->eraseFromParent();
Modified = true;
}
}
return Modified;
}
static bool readsVCCZ(const MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
!MI.getOperand(1).isUndef();
}
/// \returns true if the callee inserts an s_waitcnt 0 on function entry.
static bool callWaitsOnFunctionEntry(const MachineInstr &MI) {
// Currently all conventions wait, but this may not always be the case.
//
// TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make
// senses to omit the wait and do it in the caller.
return true;
}
/// \returns true if the callee is expected to wait for any outstanding waits
/// before returning.
static bool callWaitsOnFunctionReturn(const MachineInstr &MI) {
return true;
}
/// Generate s_waitcnt instruction to be placed before cur_Inst.
/// Instructions of a given type are returned in order,
/// but instructions of different types can complete out of order.
/// We rely on this in-order completion
/// and simply assign a score to the memory access instructions.
/// We keep track of the active "score bracket" to determine
/// if an access of a memory read requires an s_waitcnt
/// and if so what the value of each counter is.
/// The "score bracket" is bound by the lower bound and upper bound
/// scores (*_score_LB and *_score_ub respectively).
/// If FlushVmCnt is true, that means that we want to generate a s_waitcnt to
/// flush the vmcnt counter here.
bool SIInsertWaitcnts::generateWaitcntInstBefore(MachineInstr &MI,
WaitcntBrackets &ScoreBrackets,
MachineInstr *OldWaitcntInstr,
bool FlushVmCnt) {
setForceEmitWaitcnt();
if (MI.isMetaInstruction())
return false;
AMDGPU::Waitcnt Wait;
// FIXME: This should have already been handled by the memory legalizer.
// Removing this currently doesn't affect any lit tests, but we need to
// verify that nothing was relying on this. The number of buffer invalidates
// being handled here should not be expanded.
if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL ||
MI.getOpcode() == AMDGPU::BUFFER_GL0_INV ||
MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) {
Wait.VmCnt = 0;
}
// All waits must be resolved at call return.
// NOTE: this could be improved with knowledge of all call sites or
// with knowledge of the called routines.
if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
MI.getOpcode() == AMDGPU::SI_RETURN ||
MI.getOpcode() == AMDGPU::S_SETPC_B64_return ||
(MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) {
Wait = Wait.combined(AMDGPU::Waitcnt::allZeroExceptVsCnt());
}
// Identify S_ENDPGM instructions which may have to wait for outstanding VMEM
// stores. In this case it can be useful to send a message to explicitly
// release all VGPRs before the stores have completed, but it is only safe to
// do this if there are no outstanding scratch stores.
else if (MI.getOpcode() == AMDGPU::S_ENDPGM ||
MI.getOpcode() == AMDGPU::S_ENDPGM_SAVED) {
if (ST->getGeneration() >= AMDGPUSubtarget::GFX11 && !OptNone &&
ScoreBrackets.getScoreRange(VS_CNT) != 0 &&
!ScoreBrackets.hasPendingEvent(SCRATCH_WRITE_ACCESS))
ReleaseVGPRInsts.insert(&MI);
}
// Resolve vm waits before gs-done.
else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
ST->hasLegacyGeometry() &&
((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_PreGFX11_) ==
AMDGPU::SendMsg::ID_GS_DONE_PreGFX11)) {
Wait.VmCnt = 0;
}
#if 0 // TODO: the following blocks of logic when we have fence.
else if (MI.getOpcode() == SC_FENCE) {
const unsigned int group_size =
context->shader_info->GetMaxThreadGroupSize();
// group_size == 0 means thread group size is unknown at compile time
const bool group_is_multi_wave =
(group_size == 0 || group_size > target_info->GetWaveFrontSize());
const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();
for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
SCRegType src_type = Inst->GetSrcType(i);
switch (src_type) {
case SCMEM_LDS:
if (group_is_multi_wave ||
context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
ScoreBrackets->getScoreUB(LGKM_CNT));
// LDS may have to wait for VM_CNT after buffer load to LDS
if (target_info->HasBufferLoadToLDS()) {
EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
ScoreBrackets->getScoreUB(VM_CNT));
}
}
break;
case SCMEM_GDS:
if (group_is_multi_wave || fence_is_global) {
EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
ScoreBrackets->getScoreUB(EXP_CNT));
EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
ScoreBrackets->getScoreUB(LGKM_CNT));
}
break;
case SCMEM_UAV:
case SCMEM_TFBUF:
case SCMEM_RING:
case SCMEM_SCATTER:
if (group_is_multi_wave || fence_is_global) {
EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
ScoreBrackets->getScoreUB(EXP_CNT));
EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
ScoreBrackets->getScoreUB(VM_CNT));
}
break;
case SCMEM_SCRATCH:
default:
break;
}
}
}
#endif
// Export & GDS instructions do not read the EXEC mask until after the export
// is granted (which can occur well after the instruction is issued).
// The shader program must flush all EXP operations on the export-count
// before overwriting the EXEC mask.
else {
if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
// Export and GDS are tracked individually, either may trigger a waitcnt
// for EXEC.
if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) ||
ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) ||
ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) ||
ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) {
Wait.ExpCnt = 0;
}
}
if (MI.isCall() && callWaitsOnFunctionEntry(MI)) {
// The function is going to insert a wait on everything in its prolog.
// This still needs to be careful if the call target is a load (e.g. a GOT
// load). We also need to check WAW dependency with saved PC.
Wait = AMDGPU::Waitcnt();
int CallAddrOpIdx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
if (MI.getOperand(CallAddrOpIdx).isReg()) {
RegInterval CallAddrOpInterval =
ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, CallAddrOpIdx);
for (int RegNo = CallAddrOpInterval.first;
RegNo < CallAddrOpInterval.second; ++RegNo)
ScoreBrackets.determineWait(LGKM_CNT, RegNo, Wait);
int RtnAddrOpIdx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst);
if (RtnAddrOpIdx != -1) {
RegInterval RtnAddrOpInterval =
ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, RtnAddrOpIdx);
for (int RegNo = RtnAddrOpInterval.first;
RegNo < RtnAddrOpInterval.second; ++RegNo)
ScoreBrackets.determineWait(LGKM_CNT, RegNo, Wait);
}
}
} else {
// FIXME: Should not be relying on memoperands.
// Look at the source operands of every instruction to see if
// any of them results from a previous memory operation that affects
// its current usage. If so, an s_waitcnt instruction needs to be
// emitted.
// If the source operand was defined by a load, add the s_waitcnt
// instruction.
//
// Two cases are handled for destination operands:
// 1) If the destination operand was defined by a load, add the s_waitcnt
// instruction to guarantee the right WAW order.
// 2) If a destination operand that was used by a recent export/store ins,
// add s_waitcnt on exp_cnt to guarantee the WAR order.
for (const MachineMemOperand *Memop : MI.memoperands()) {
const Value *Ptr = Memop->getValue();
if (Memop->isStore() && SLoadAddresses.count(Ptr)) {
addWait(Wait, LGKM_CNT, 0);
if (PDT->dominates(MI.getParent(), SLoadAddresses.find(Ptr)->second))
SLoadAddresses.erase(Ptr);
}
unsigned AS = Memop->getAddrSpace();
if (AS != AMDGPUAS::LOCAL_ADDRESS && AS != AMDGPUAS::FLAT_ADDRESS)
continue;
// No need to wait before load from VMEM to LDS.
if (mayWriteLDSThroughDMA(MI))
continue;
unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
// VM_CNT is only relevant to vgpr or LDS.
ScoreBrackets.determineWait(VM_CNT, RegNo, Wait);
if (Memop->isStore()) {
ScoreBrackets.determineWait(EXP_CNT, RegNo, Wait);
}
}
// Loop over use and def operands.
for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
MachineOperand &Op = MI.getOperand(I);
if (!Op.isReg())
continue;
// If the instruction does not read tied source, skip the operand.
if (Op.isTied() && Op.isUse() && TII->doesNotReadTiedSource(MI))
continue;
RegInterval Interval =
ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I);
const bool IsVGPR = TRI->isVectorRegister(*MRI, Op.getReg());
for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
if (IsVGPR) {
// RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the
// previous write and this write are the same type of VMEM
// instruction, in which case they're guaranteed to write their
// results in order anyway.
if (Op.isUse() || !updateVMCntOnly(MI) ||
ScoreBrackets.hasOtherPendingVmemTypes(RegNo,
getVmemType(MI))) {
ScoreBrackets.determineWait(VM_CNT, RegNo, Wait);
ScoreBrackets.clearVgprVmemTypes(RegNo);
}
if (Op.isDef() || ScoreBrackets.hasPendingEvent(EXP_LDS_ACCESS)) {
ScoreBrackets.determineWait(EXP_CNT, RegNo, Wait);
}
}
ScoreBrackets.determineWait(LGKM_CNT, RegNo, Wait);
}
}
}
}
// The subtarget may have an implicit S_WAITCNT 0 before barriers. If it does
// not, we need to ensure the subtarget is capable of backing off barrier
// instructions in case there are any outstanding memory operations that may
// cause an exception. Otherwise, insert an explicit S_WAITCNT 0 here.
if (MI.getOpcode() == AMDGPU::S_BARRIER &&
!ST->hasAutoWaitcntBeforeBarrier() && !ST->supportsBackOffBarrier()) {
Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt()));
}
// TODO: Remove this work-around, enable the assert for Bug 457939
// after fixing the scheduler. Also, the Shader Compiler code is
// independent of target.
if (readsVCCZ(MI) && ST->hasReadVCCZBug()) {
if (ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
Wait.LgkmCnt = 0;
}
}
// Verify that the wait is actually needed.
ScoreBrackets.simplifyWaitcnt(Wait);
if (ForceEmitZeroWaitcnts)
Wait = AMDGPU::Waitcnt::allZeroExceptVsCnt();
if (ForceEmitWaitcnt[VM_CNT])
Wait.VmCnt = 0;
if (ForceEmitWaitcnt[EXP_CNT])
Wait.ExpCnt = 0;
if (ForceEmitWaitcnt[LGKM_CNT])
Wait.LgkmCnt = 0;
if (FlushVmCnt) {
if (ScoreBrackets.hasPendingEvent(VM_CNT))
Wait.VmCnt = 0;
}
return generateWaitcnt(Wait, MI.getIterator(), *MI.getParent(), ScoreBrackets,
OldWaitcntInstr);
}
// Add a waitcnt to flush the vmcnt counter at the end of the given block if
// needed.
bool SIInsertWaitcnts::generateWaitcntBlockEnd(MachineBasicBlock &Block,
WaitcntBrackets &ScoreBrackets,
MachineInstr *OldWaitcntInstr) {
AMDGPU::Waitcnt Wait;
if (!ScoreBrackets.hasPendingEvent(VM_CNT))
return false;
Wait.VmCnt = 0;
return generateWaitcnt(Wait, Block.instr_end(), Block, ScoreBrackets,
OldWaitcntInstr);
}
bool SIInsertWaitcnts::generateWaitcnt(AMDGPU::Waitcnt Wait,
MachineBasicBlock::instr_iterator It,
MachineBasicBlock &Block,
WaitcntBrackets &ScoreBrackets,
MachineInstr *OldWaitcntInstr) {
bool Modified = false;
const DebugLoc &DL = Block.findDebugLoc(It);
if (OldWaitcntInstr)
// Try to merge the required wait with preexisting waitcnt instructions.
// Also erase redundant waitcnt.
Modified =
applyPreexistingWaitcnt(ScoreBrackets, *OldWaitcntInstr, Wait, It);
else
ScoreBrackets.applyWaitcnt(Wait);
// ExpCnt can be merged into VINTERP.
if (Wait.ExpCnt != ~0u && It != Block.instr_end() &&
SIInstrInfo::isVINTERP(*It)) {
MachineOperand *WaitExp =
TII->getNamedOperand(*It, AMDGPU::OpName::waitexp);
if (Wait.ExpCnt < WaitExp->getImm()) {
WaitExp->setImm(Wait.ExpCnt);
Modified = true;
}
Wait.ExpCnt = ~0u;
LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
<< "Update Instr: " << *It);
}
// Build new waitcnt instructions unless no wait is needed or the old waitcnt
// instruction was modified to handle the required wait.
if (Wait.hasWaitExceptVsCnt()) {
unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait);
auto SWaitInst =
BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(Enc);
TrackedWaitcntSet.insert(SWaitInst);
Modified = true;
LLVM_DEBUG(dbgs() << "generateWaitcnt\n";
if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It;
dbgs() << "New Instr: " << *SWaitInst << '\n');
}
if (Wait.hasWaitVsCnt()) {
assert(ST->hasVscnt());
auto SWaitInst = BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAITCNT_VSCNT))
.addReg(AMDGPU::SGPR_NULL, RegState::Undef)
.addImm(Wait.VsCnt);
TrackedWaitcntSet.insert(SWaitInst);
Modified = true;
LLVM_DEBUG(dbgs() << "generateWaitcnt\n";
if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It;
dbgs() << "New Instr: " << *SWaitInst << '\n');
}
return Modified;
}
// This is a flat memory operation. Check to see if it has memory tokens other
// than LDS. Other address spaces supported by flat memory operations involve
// global memory.
bool SIInsertWaitcnts::mayAccessVMEMThroughFlat(const MachineInstr &MI) const {
assert(TII->isFLAT(MI));
// All flat instructions use the VMEM counter.
assert(TII->usesVM_CNT(MI));
// If there are no memory operands then conservatively assume the flat
// operation may access VMEM.
if (MI.memoperands_empty())
return true;
// See if any memory operand specifies an address space that involves VMEM.
// Flat operations only supported FLAT, LOCAL (LDS), or address spaces
// involving VMEM such as GLOBAL, CONSTANT, PRIVATE (SCRATCH), etc. The REGION
// (GDS) address space is not supported by flat operations. Therefore, simply
// return true unless only the LDS address space is found.
for (const MachineMemOperand *Memop : MI.memoperands()) {
unsigned AS = Memop->getAddrSpace();
assert(AS != AMDGPUAS::REGION_ADDRESS);
if (AS != AMDGPUAS::LOCAL_ADDRESS)
return true;
}
return false;
}
// This is a flat memory operation. Check to see if it has memory tokens for
// either LDS or FLAT.
bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
assert(TII->isFLAT(MI));
// Flat instruction such as SCRATCH and GLOBAL do not use the lgkm counter.
if (!TII->usesLGKM_CNT(MI))
return false;
// If in tgsplit mode then there can be no use of LDS.
if (ST->isTgSplitEnabled())
return false;
// If there are no memory operands then conservatively assume the flat
// operation may access LDS.
if (MI.memoperands_empty())
return true;
// See if any memory operand specifies an address space that involves LDS.
for (const MachineMemOperand *Memop : MI.memoperands()) {
unsigned AS = Memop->getAddrSpace();
if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS)
return true;
}
return false;
}
// This is a flat memory operation. Check to see if it has memory tokens for
// either scratch or FLAT.
bool SIInsertWaitcnts::mayAccessScratchThroughFlat(
const MachineInstr &MI) const {
assert(TII->isFLAT(MI));
// SCRATCH instructions always access scratch.
if (TII->isFLATScratch(MI))
return true;
// GLOBAL instructions never access scratch.
if (TII->isFLATGlobal(MI))
return false;
// If there are no memory operands then conservatively assume the flat
// operation may access scratch.
if (MI.memoperands_empty())
return true;
// See if any memory operand specifies an address space that involves scratch.
return any_of(MI.memoperands(), [](const MachineMemOperand *Memop) {
unsigned AS = Memop->getAddrSpace();
return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
});
}
void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst,
WaitcntBrackets *ScoreBrackets) {
// Now look at the instruction opcode. If it is a memory access
// instruction, update the upper-bound of the appropriate counter's
// bracket and the destination operand scores.
// TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
if (TII->isAlwaysGDS(Inst.getOpcode()) ||
TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
} else {
ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
}
} else if (TII->isFLAT(Inst)) {
assert(Inst.mayLoadOrStore());
int FlatASCount = 0;
if (mayAccessVMEMThroughFlat(Inst)) {
++FlatASCount;
ScoreBrackets->updateByEvent(TII, TRI, MRI, getVmemWaitEventType(Inst),
Inst);
}
if (mayAccessLDSThroughFlat(Inst)) {
++FlatASCount;
ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
}
// A Flat memory operation must access at least one address space.
assert(FlatASCount);
// This is a flat memory operation that access both VMEM and LDS, so note it
// - it will require that both the VM and LGKM be flushed to zero if it is
// pending when a VM or LGKM dependency occurs.
if (FlatASCount > 1)
ScoreBrackets->setPendingFlat();
} else if (SIInstrInfo::isVMEM(Inst) &&
!llvm::AMDGPU::getMUBUFIsBufferInv(Inst.getOpcode())) {
ScoreBrackets->updateByEvent(TII, TRI, MRI, getVmemWaitEventType(Inst),
Inst);
if (ST->vmemWriteNeedsExpWaitcnt() &&
(Inst.mayStore() || SIInstrInfo::isAtomicRet(Inst))) {
ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
}
} else if (TII->isSMRD(Inst)) {
ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
} else if (Inst.isCall()) {
if (callWaitsOnFunctionReturn(Inst)) {
// Act as a wait on everything
ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZeroExceptVsCnt());
} else {
// May need to way wait for anything.
ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt());
}
} else if (SIInstrInfo::isLDSDIR(Inst)) {
ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_LDS_ACCESS, Inst);
} else if (TII->isVINTERP(Inst)) {
int64_t Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::waitexp)->getImm();
ScoreBrackets->applyWaitcnt(EXP_CNT, Imm);
} else if (SIInstrInfo::isEXP(Inst)) {
unsigned Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
if (Imm >= AMDGPU::Exp::ET_PARAM0 && Imm <= AMDGPU::Exp::ET_PARAM31)
ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
else if (Imm >= AMDGPU::Exp::ET_POS0 && Imm <= AMDGPU::Exp::ET_POS_LAST)
ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
else
ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
} else {
switch (Inst.getOpcode()) {
case AMDGPU::S_SENDMSG:
case AMDGPU::S_SENDMSG_RTN_B32:
case AMDGPU::S_SENDMSG_RTN_B64:
case AMDGPU::S_SENDMSGHALT:
ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
break;
case AMDGPU::S_MEMTIME:
case AMDGPU::S_MEMREALTIME:
ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
break;
}
}
}
bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score,
unsigned OtherScore) {
unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift;
unsigned OtherShifted =
OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift;
Score = std::max(MyShifted, OtherShifted);
return OtherShifted > MyShifted;
}
/// Merge the pending events and associater score brackets of \p Other into
/// this brackets status.
///
/// Returns whether the merge resulted in a change that requires tighter waits
/// (i.e. the merged brackets strictly dominate the original brackets).
bool WaitcntBrackets::merge(const WaitcntBrackets &Other) {
bool StrictDom = false;
VgprUB = std::max(VgprUB, Other.VgprUB);
SgprUB = std::max(SgprUB, Other.SgprUB);
for (auto T : inst_counter_types()) {
// Merge event flags for this counter
const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T];
const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T];
if (OtherEvents & ~OldEvents)
StrictDom = true;
PendingEvents |= OtherEvents;
// Merge scores for this counter
const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T];
const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T];
const unsigned NewUB = ScoreLBs[T] + std::max(MyPending, OtherPending);
if (NewUB < ScoreLBs[T])
report_fatal_error("waitcnt score overflow");
MergeInfo M;
M.OldLB = ScoreLBs[T];
M.OtherLB = Other.ScoreLBs[T];
M.MyShift = NewUB - ScoreUBs[T];
M.OtherShift = NewUB - Other.ScoreUBs[T];
ScoreUBs[T] = NewUB;
StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]);
for (int J = 0; J <= VgprUB; J++)
StrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]);
if (T == LGKM_CNT) {
for (int J = 0; J <= SgprUB; J++)
StrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]);
}
}
for (int J = 0; J <= VgprUB; J++) {
unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J];
StrictDom |= NewVmemTypes != VgprVmemTypes[J];
VgprVmemTypes[J] = NewVmemTypes;
}
return StrictDom;
}
static bool isWaitInstr(MachineInstr &Inst) {
return Inst.getOpcode() == AMDGPU::S_WAITCNT ||
(Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
Inst.getOperand(0).isReg() &&
Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL);
}
// Generate s_waitcnt instructions where needed.
bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
MachineBasicBlock &Block,
WaitcntBrackets &ScoreBrackets) {
bool Modified = false;
LLVM_DEBUG({
dbgs() << "*** Block" << Block.getNumber() << " ***";
ScoreBrackets.dump();
});
// Track the correctness of vccz through this basic block. There are two
// reasons why it might be incorrect; see ST->hasReadVCCZBug() and
// ST->partialVCCWritesUpdateVCCZ().
bool VCCZCorrect = true;
if (ST->hasReadVCCZBug()) {
// vccz could be incorrect at a basic block boundary if a predecessor wrote
// to vcc and then issued an smem load.
VCCZCorrect = false;
} else if (!ST->partialVCCWritesUpdateVCCZ()) {
// vccz could be incorrect at a basic block boundary if a predecessor wrote
// to vcc_lo or vcc_hi.
VCCZCorrect = false;
}
// Walk over the instructions.
MachineInstr *OldWaitcntInstr = nullptr;
for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(),
E = Block.instr_end();
Iter != E;) {
MachineInstr &Inst = *Iter;
// Track pre-existing waitcnts that were added in earlier iterations or by
// the memory legalizer.
if (isWaitInstr(Inst)) {
if (!OldWaitcntInstr)
OldWaitcntInstr = &Inst;
++Iter;
continue;
}
bool FlushVmCnt = Block.getFirstTerminator() == Inst &&
isPreheaderToFlush(Block, ScoreBrackets);
// Generate an s_waitcnt instruction to be placed before Inst, if needed.
Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr,
FlushVmCnt);
OldWaitcntInstr = nullptr;
// Restore vccz if it's not known to be correct already.
bool RestoreVCCZ = !VCCZCorrect && readsVCCZ(Inst);
// Don't examine operands unless we need to track vccz correctness.
if (ST->hasReadVCCZBug() || !ST->partialVCCWritesUpdateVCCZ()) {
if (Inst.definesRegister(AMDGPU::VCC_LO) ||
Inst.definesRegister(AMDGPU::VCC_HI)) {
// Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz.
if (!ST->partialVCCWritesUpdateVCCZ())
VCCZCorrect = false;
} else if (Inst.definesRegister(AMDGPU::VCC)) {
// There is a hardware bug on CI/SI where SMRD instruction may corrupt
// vccz bit, so when we detect that an instruction may read from a
// corrupt vccz bit, we need to:
// 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD
// operations to complete.
// 2. Restore the correct value of vccz by writing the current value
// of vcc back to vcc.
if (ST->hasReadVCCZBug() &&
ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
// Writes to vcc while there's an outstanding smem read may get
// clobbered as soon as any read completes.
VCCZCorrect = false;
} else {
// Writes to vcc will fix any incorrect value in vccz.
VCCZCorrect = true;
}
}
}
if (TII->isSMRD(Inst)) {
for (const MachineMemOperand *Memop : Inst.memoperands()) {
// No need to handle invariant loads when avoiding WAR conflicts, as
// there cannot be a vector store to the same memory location.
if (!Memop->isInvariant()) {
const Value *Ptr = Memop->getValue();
SLoadAddresses.insert(std::pair(Ptr, Inst.getParent()));
}
}
if (ST->hasReadVCCZBug()) {
// This smem read could complete and clobber vccz at any time.
VCCZCorrect = false;
}
}
updateEventWaitcntAfter(Inst, &ScoreBrackets);
#if 0 // TODO: implement resource type check controlled by options with ub = LB.
// If this instruction generates a S_SETVSKIP because it is an
// indexed resource, and we are on Tahiti, then it will also force
// an S_WAITCNT vmcnt(0)
if (RequireCheckResourceType(Inst, context)) {
// Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
ScoreBrackets->setScoreLB(VM_CNT,
ScoreBrackets->getScoreUB(VM_CNT));
}
#endif
LLVM_DEBUG({
Inst.print(dbgs());
ScoreBrackets.dump();
});
// TODO: Remove this work-around after fixing the scheduler and enable the
// assert above.
if (RestoreVCCZ) {
// Restore the vccz bit. Any time a value is written to vcc, the vcc
// bit is updated, so we can restore the bit by reading the value of
// vcc and then writing it back to the register.
BuildMI(Block, Inst, Inst.getDebugLoc(),
TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64),
TRI->getVCC())
.addReg(TRI->getVCC());
VCCZCorrect = true;
Modified = true;
}
++Iter;
}
if (Block.getFirstTerminator() == Block.end() &&
isPreheaderToFlush(Block, ScoreBrackets))
Modified |= generateWaitcntBlockEnd(Block, ScoreBrackets, OldWaitcntInstr);
return Modified;
}
// Return true if the given machine basic block is a preheader of a loop in
// which we want to flush the vmcnt counter, and false otherwise.
bool SIInsertWaitcnts::isPreheaderToFlush(MachineBasicBlock &MBB,
WaitcntBrackets &ScoreBrackets) {
if (PreheadersToFlush.count(&MBB))
return PreheadersToFlush[&MBB];
auto UpdateCache = [&](bool val) {
PreheadersToFlush[&MBB] = val;
return val;
};
MachineBasicBlock *Succ = MBB.getSingleSuccessor();
if (!Succ)
return UpdateCache(false);
MachineLoop *Loop = MLI->getLoopFor(Succ);
if (!Loop)
return UpdateCache(false);
if (Loop->getLoopPreheader() == &MBB && shouldFlushVmCnt(Loop, ScoreBrackets))
return UpdateCache(true);
return UpdateCache(false);
}
bool SIInsertWaitcnts::isVMEMOrFlatVMEM(const MachineInstr &MI) const {
return SIInstrInfo::isVMEM(MI) ||
(SIInstrInfo::isFLAT(MI) && mayAccessVMEMThroughFlat(MI));
}
// Return true if it is better to flush the vmcnt counter in the preheader of
// the given loop. We currently decide to flush in two situations:
// 1. The loop contains vmem store(s), no vmem load and at least one use of a
// vgpr containing a value that is loaded outside of the loop. (Only on
// targets with no vscnt counter).
// 2. The loop contains vmem load(s), but the loaded values are not used in the
// loop, and at least one use of a vgpr containing a value that is loaded
// outside of the loop.
bool SIInsertWaitcnts::shouldFlushVmCnt(MachineLoop *ML,
WaitcntBrackets &Brackets) {
bool HasVMemLoad = false;
bool HasVMemStore = false;
bool UsesVgprLoadedOutside = false;
DenseSet<Register> VgprUse;
DenseSet<Register> VgprDef;
for (MachineBasicBlock *MBB : ML->blocks()) {
for (MachineInstr &MI : *MBB) {
if (isVMEMOrFlatVMEM(MI)) {
if (MI.mayLoad())
HasVMemLoad = true;
if (MI.mayStore())
HasVMemStore = true;
}
for (unsigned I = 0; I < MI.getNumOperands(); I++) {
MachineOperand &Op = MI.getOperand(I);
if (!Op.isReg() || !TRI->isVectorRegister(*MRI, Op.getReg()))
continue;
RegInterval Interval = Brackets.getRegInterval(&MI, TII, MRI, TRI, I);
// Vgpr use
if (Op.isUse()) {
for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
// If we find a register that is loaded inside the loop, 1. and 2.
// are invalidated and we can exit.
if (VgprDef.contains(RegNo))
return false;
VgprUse.insert(RegNo);
// If at least one of Op's registers is in the score brackets, the
// value is likely loaded outside of the loop.
if (Brackets.getRegScore(RegNo, VM_CNT) > Brackets.getScoreLB(VM_CNT)) {
UsesVgprLoadedOutside = true;
break;
}
}
}
// VMem load vgpr def
else if (isVMEMOrFlatVMEM(MI) && MI.mayLoad() && Op.isDef())
for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
// If we find a register that is loaded inside the loop, 1. and 2.
// are invalidated and we can exit.
if (VgprUse.contains(RegNo))
return false;
VgprDef.insert(RegNo);
}
}
}
}
if (!ST->hasVscnt() && HasVMemStore && !HasVMemLoad && UsesVgprLoadedOutside)
return true;
return HasVMemLoad && UsesVgprLoadedOutside;
}
bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
ST = &MF.getSubtarget<GCNSubtarget>();
TII = ST->getInstrInfo();
TRI = &TII->getRegisterInfo();
MRI = &MF.getRegInfo();
IV = AMDGPU::getIsaVersion(ST->getCPU());
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
MLI = &getAnalysis<MachineLoopInfo>();
PDT = &getAnalysis<MachinePostDominatorTree>();
ForceEmitZeroWaitcnts = ForceEmitZeroFlag;
for (auto T : inst_counter_types())
ForceEmitWaitcnt[T] = false;
OptNone = MF.getFunction().hasOptNone() ||
MF.getTarget().getOptLevel() == CodeGenOpt::None;
HardwareLimits Limits = {};
Limits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
Limits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
Limits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
Limits.VscntMax = ST->hasVscnt() ? 63 : 0;
unsigned NumVGPRsMax = ST->getAddressableNumVGPRs();
unsigned NumSGPRsMax = ST->getAddressableNumSGPRs();
assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS);
RegisterEncoding Encoding = {};
Encoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
Encoding.VGPRL = Encoding.VGPR0 + NumVGPRsMax - 1;
Encoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
Encoding.SGPRL = Encoding.SGPR0 + NumSGPRsMax - 1;
TrackedWaitcntSet.clear();
BlockInfos.clear();
bool Modified = false;
if (!MFI->isEntryFunction()) {
// Wait for any outstanding memory operations that the input registers may
// depend on. We can't track them and it's better to do the wait after the
// costly call sequence.
// TODO: Could insert earlier and schedule more liberally with operations
// that only use caller preserved registers.
MachineBasicBlock &EntryBB = MF.front();
MachineBasicBlock::iterator I = EntryBB.begin();
for (MachineBasicBlock::iterator E = EntryBB.end();
I != E && (I->isPHI() || I->isMetaInstruction()); ++I)
;
BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)).addImm(0);
Modified = true;
}
// Keep iterating over the blocks in reverse post order, inserting and
// updating s_waitcnt where needed, until a fix point is reached.
for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF))
BlockInfos.insert({MBB, BlockInfo()});
std::unique_ptr<WaitcntBrackets> Brackets;
bool Repeat;
do {
Repeat = false;
for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE;
++BII) {
MachineBasicBlock *MBB = BII->first;
BlockInfo &BI = BII->second;
if (!BI.Dirty)
continue;
if (BI.Incoming) {
if (!Brackets)
Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming);
else
*Brackets = *BI.Incoming;
} else {
if (!Brackets)
Brackets = std::make_unique<WaitcntBrackets>(ST, Limits, Encoding);
else
*Brackets = WaitcntBrackets(ST, Limits, Encoding);
}
Modified |= insertWaitcntInBlock(MF, *MBB, *Brackets);
BI.Dirty = false;
if (Brackets->hasPendingEvent()) {
BlockInfo *MoveBracketsToSucc = nullptr;
for (MachineBasicBlock *Succ : MBB->successors()) {
auto SuccBII = BlockInfos.find(Succ);
BlockInfo &SuccBI = SuccBII->second;
if (!SuccBI.Incoming) {
SuccBI.Dirty = true;
if (SuccBII <= BII)
Repeat = true;
if (!MoveBracketsToSucc) {
MoveBracketsToSucc = &SuccBI;
} else {
SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets);
}
} else if (SuccBI.Incoming->merge(*Brackets)) {
SuccBI.Dirty = true;
if (SuccBII <= BII)
Repeat = true;
}
}
if (MoveBracketsToSucc)
MoveBracketsToSucc->Incoming = std::move(Brackets);
}
}
} while (Repeat);
if (ST->hasScalarStores()) {
SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
bool HaveScalarStores = false;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (!HaveScalarStores && TII->isScalarStore(MI))
HaveScalarStores = true;
if (MI.getOpcode() == AMDGPU::S_ENDPGM ||
MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
EndPgmBlocks.push_back(&MBB);
}
}
if (HaveScalarStores) {
// If scalar writes are used, the cache must be flushed or else the next
// wave to reuse the same scratch memory can be clobbered.
//
// Insert s_dcache_wb at wave termination points if there were any scalar
// stores, and only if the cache hasn't already been flushed. This could
// be improved by looking across blocks for flushes in postdominating
// blocks from the stores but an explicitly requested flush is probably
// very rare.
for (MachineBasicBlock *MBB : EndPgmBlocks) {
bool SeenDCacheWB = false;
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
I != E; ++I) {
if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
SeenDCacheWB = true;
else if (TII->isScalarStore(*I))
SeenDCacheWB = false;
// FIXME: It would be better to insert this before a waitcnt if any.
if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
!SeenDCacheWB) {
Modified = true;
BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
}
}
}
}
}
// Insert DEALLOC_VGPR messages before previously identified S_ENDPGM
// instructions.
for (MachineInstr *MI : ReleaseVGPRInsts) {
if (ST->requiresNopBeforeDeallocVGPRs()) {
BuildMI(*MI->getParent(), MI, DebugLoc(), TII->get(AMDGPU::S_NOP))
.addImm(0);
}
BuildMI(*MI->getParent(), MI, DebugLoc(), TII->get(AMDGPU::S_SENDMSG))
.addImm(AMDGPU::SendMsg::ID_DEALLOC_VGPRS_GFX11Plus);
Modified = true;
}
ReleaseVGPRInsts.clear();
return Modified;
}
|