1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
|
//===- SIMemoryLegalizer.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Memory legalizer - implements memory model. More information can be
/// found here:
/// http://llvm.org/docs/AMDGPUUsage.html#memory-model
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUMachineModuleInfo.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/BitmaskEnum.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/TargetParser/TargetParser.h"
using namespace llvm;
using namespace llvm::AMDGPU;
#define DEBUG_TYPE "si-memory-legalizer"
#define PASS_NAME "SI Memory Legalizer"
static cl::opt<bool> AmdgcnSkipCacheInvalidations(
"amdgcn-skip-cache-invalidations", cl::init(false), cl::Hidden,
cl::desc("Use this to skip inserting cache invalidating instructions."));
namespace {
LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
/// Memory operation flags. Can be ORed together.
enum class SIMemOp {
NONE = 0u,
LOAD = 1u << 0,
STORE = 1u << 1,
LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ STORE)
};
/// Position to insert a new instruction relative to an existing
/// instruction.
enum class Position {
BEFORE,
AFTER
};
/// The atomic synchronization scopes supported by the AMDGPU target.
enum class SIAtomicScope {
NONE,
SINGLETHREAD,
WAVEFRONT,
WORKGROUP,
AGENT,
SYSTEM
};
/// The distinct address spaces supported by the AMDGPU target for
/// atomic memory operation. Can be ORed together.
enum class SIAtomicAddrSpace {
NONE = 0u,
GLOBAL = 1u << 0,
LDS = 1u << 1,
SCRATCH = 1u << 2,
GDS = 1u << 3,
OTHER = 1u << 4,
/// The address spaces that can be accessed by a FLAT instruction.
FLAT = GLOBAL | LDS | SCRATCH,
/// The address spaces that support atomic instructions.
ATOMIC = GLOBAL | LDS | SCRATCH | GDS,
/// All address spaces.
ALL = GLOBAL | LDS | SCRATCH | GDS | OTHER,
LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ ALL)
};
class SIMemOpInfo final {
private:
friend class SIMemOpAccess;
AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
SIAtomicScope Scope = SIAtomicScope::SYSTEM;
SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE;
SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE;
bool IsCrossAddressSpaceOrdering = false;
bool IsVolatile = false;
bool IsNonTemporal = false;
SIMemOpInfo(AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent,
SIAtomicScope Scope = SIAtomicScope::SYSTEM,
SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::ATOMIC,
SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::ALL,
bool IsCrossAddressSpaceOrdering = true,
AtomicOrdering FailureOrdering =
AtomicOrdering::SequentiallyConsistent,
bool IsVolatile = false,
bool IsNonTemporal = false)
: Ordering(Ordering), FailureOrdering(FailureOrdering),
Scope(Scope), OrderingAddrSpace(OrderingAddrSpace),
InstrAddrSpace(InstrAddrSpace),
IsCrossAddressSpaceOrdering(IsCrossAddressSpaceOrdering),
IsVolatile(IsVolatile),
IsNonTemporal(IsNonTemporal) {
if (Ordering == AtomicOrdering::NotAtomic) {
assert(Scope == SIAtomicScope::NONE &&
OrderingAddrSpace == SIAtomicAddrSpace::NONE &&
!IsCrossAddressSpaceOrdering &&
FailureOrdering == AtomicOrdering::NotAtomic);
return;
}
assert(Scope != SIAtomicScope::NONE &&
(OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) !=
SIAtomicAddrSpace::NONE &&
(InstrAddrSpace & SIAtomicAddrSpace::ATOMIC) !=
SIAtomicAddrSpace::NONE);
// There is also no cross address space ordering if the ordering
// address space is the same as the instruction address space and
// only contains a single address space.
if ((OrderingAddrSpace == InstrAddrSpace) &&
isPowerOf2_32(uint32_t(InstrAddrSpace)))
this->IsCrossAddressSpaceOrdering = false;
// Limit the scope to the maximum supported by the instruction's address
// spaces.
if ((InstrAddrSpace & ~SIAtomicAddrSpace::SCRATCH) ==
SIAtomicAddrSpace::NONE) {
this->Scope = std::min(Scope, SIAtomicScope::SINGLETHREAD);
} else if ((InstrAddrSpace &
~(SIAtomicAddrSpace::SCRATCH | SIAtomicAddrSpace::LDS)) ==
SIAtomicAddrSpace::NONE) {
this->Scope = std::min(Scope, SIAtomicScope::WORKGROUP);
} else if ((InstrAddrSpace &
~(SIAtomicAddrSpace::SCRATCH | SIAtomicAddrSpace::LDS |
SIAtomicAddrSpace::GDS)) == SIAtomicAddrSpace::NONE) {
this->Scope = std::min(Scope, SIAtomicScope::AGENT);
}
}
public:
/// \returns Atomic synchronization scope of the machine instruction used to
/// create this SIMemOpInfo.
SIAtomicScope getScope() const {
return Scope;
}
/// \returns Ordering constraint of the machine instruction used to
/// create this SIMemOpInfo.
AtomicOrdering getOrdering() const {
return Ordering;
}
/// \returns Failure ordering constraint of the machine instruction used to
/// create this SIMemOpInfo.
AtomicOrdering getFailureOrdering() const {
return FailureOrdering;
}
/// \returns The address spaces be accessed by the machine
/// instruction used to create this SIMemOpInfo.
SIAtomicAddrSpace getInstrAddrSpace() const {
return InstrAddrSpace;
}
/// \returns The address spaces that must be ordered by the machine
/// instruction used to create this SIMemOpInfo.
SIAtomicAddrSpace getOrderingAddrSpace() const {
return OrderingAddrSpace;
}
/// \returns Return true iff memory ordering of operations on
/// different address spaces is required.
bool getIsCrossAddressSpaceOrdering() const {
return IsCrossAddressSpaceOrdering;
}
/// \returns True if memory access of the machine instruction used to
/// create this SIMemOpInfo is volatile, false otherwise.
bool isVolatile() const {
return IsVolatile;
}
/// \returns True if memory access of the machine instruction used to
/// create this SIMemOpInfo is nontemporal, false otherwise.
bool isNonTemporal() const {
return IsNonTemporal;
}
/// \returns True if ordering constraint of the machine instruction used to
/// create this SIMemOpInfo is unordered or higher, false otherwise.
bool isAtomic() const {
return Ordering != AtomicOrdering::NotAtomic;
}
};
class SIMemOpAccess final {
private:
AMDGPUMachineModuleInfo *MMI = nullptr;
/// Reports unsupported message \p Msg for \p MI to LLVM context.
void reportUnsupported(const MachineBasicBlock::iterator &MI,
const char *Msg) const;
/// Inspects the target synchronization scope \p SSID and determines
/// the SI atomic scope it corresponds to, the address spaces it
/// covers, and whether the memory ordering applies between address
/// spaces.
std::optional<std::tuple<SIAtomicScope, SIAtomicAddrSpace, bool>>
toSIAtomicScope(SyncScope::ID SSID, SIAtomicAddrSpace InstrAddrSpace) const;
/// \return Return a bit set of the address spaces accessed by \p AS.
SIAtomicAddrSpace toSIAtomicAddrSpace(unsigned AS) const;
/// \returns Info constructed from \p MI, which has at least machine memory
/// operand.
std::optional<SIMemOpInfo>
constructFromMIWithMMO(const MachineBasicBlock::iterator &MI) const;
public:
/// Construct class to support accessing the machine memory operands
/// of instructions in the machine function \p MF.
SIMemOpAccess(MachineFunction &MF);
/// \returns Load info if \p MI is a load operation, "std::nullopt" otherwise.
std::optional<SIMemOpInfo>
getLoadInfo(const MachineBasicBlock::iterator &MI) const;
/// \returns Store info if \p MI is a store operation, "std::nullopt"
/// otherwise.
std::optional<SIMemOpInfo>
getStoreInfo(const MachineBasicBlock::iterator &MI) const;
/// \returns Atomic fence info if \p MI is an atomic fence operation,
/// "std::nullopt" otherwise.
std::optional<SIMemOpInfo>
getAtomicFenceInfo(const MachineBasicBlock::iterator &MI) const;
/// \returns Atomic cmpxchg/rmw info if \p MI is an atomic cmpxchg or
/// rmw operation, "std::nullopt" otherwise.
std::optional<SIMemOpInfo>
getAtomicCmpxchgOrRmwInfo(const MachineBasicBlock::iterator &MI) const;
};
class SICacheControl {
protected:
/// AMDGPU subtarget info.
const GCNSubtarget &ST;
/// Instruction info.
const SIInstrInfo *TII = nullptr;
IsaVersion IV;
/// Whether to insert cache invalidating instructions.
bool InsertCacheInv;
SICacheControl(const GCNSubtarget &ST);
/// Sets named bit \p BitName to "true" if present in instruction \p MI.
/// \returns Returns true if \p MI is modified, false otherwise.
bool enableNamedBit(const MachineBasicBlock::iterator MI,
AMDGPU::CPol::CPol Bit) const;
public:
/// Create a cache control for the subtarget \p ST.
static std::unique_ptr<SICacheControl> create(const GCNSubtarget &ST);
/// Update \p MI memory load instruction to bypass any caches up to
/// the \p Scope memory scope for address spaces \p
/// AddrSpace. Return true iff the instruction was modified.
virtual bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const = 0;
/// Update \p MI memory store instruction to bypass any caches up to
/// the \p Scope memory scope for address spaces \p
/// AddrSpace. Return true iff the instruction was modified.
virtual bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const = 0;
/// Update \p MI memory read-modify-write instruction to bypass any caches up
/// to the \p Scope memory scope for address spaces \p AddrSpace. Return true
/// iff the instruction was modified.
virtual bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const = 0;
/// Update \p MI memory instruction of kind \p Op associated with address
/// spaces \p AddrSpace to indicate it is volatile and/or nontemporal. Return
/// true iff the instruction was modified.
virtual bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI,
SIAtomicAddrSpace AddrSpace,
SIMemOp Op, bool IsVolatile,
bool IsNonTemporal) const = 0;
/// Inserts any necessary instructions at position \p Pos relative
/// to instruction \p MI to ensure memory instructions before \p Pos of kind
/// \p Op associated with address spaces \p AddrSpace have completed. Used
/// between memory instructions to enforce the order they become visible as
/// observed by other memory instructions executing in memory scope \p Scope.
/// \p IsCrossAddrSpaceOrdering indicates if the memory ordering is between
/// address spaces. Returns true iff any instructions inserted.
virtual bool insertWait(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
SIMemOp Op,
bool IsCrossAddrSpaceOrdering,
Position Pos) const = 0;
/// Inserts any necessary instructions at position \p Pos relative to
/// instruction \p MI to ensure any subsequent memory instructions of this
/// thread with address spaces \p AddrSpace will observe the previous memory
/// operations by any thread for memory scopes up to memory scope \p Scope .
/// Returns true iff any instructions inserted.
virtual bool insertAcquire(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
Position Pos) const = 0;
/// Inserts any necessary instructions at position \p Pos relative to
/// instruction \p MI to ensure previous memory instructions by this thread
/// with address spaces \p AddrSpace have completed and can be observed by
/// subsequent memory instructions by any thread executing in memory scope \p
/// Scope. \p IsCrossAddrSpaceOrdering indicates if the memory ordering is
/// between address spaces. Returns true iff any instructions inserted.
virtual bool insertRelease(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
bool IsCrossAddrSpaceOrdering,
Position Pos) const = 0;
/// Virtual destructor to allow derivations to be deleted.
virtual ~SICacheControl() = default;
virtual bool tryForceStoreSC0SC1(const SIMemOpInfo &MOI,
MachineBasicBlock::iterator &MI) const {
return false;
}
};
class SIGfx6CacheControl : public SICacheControl {
protected:
/// Sets GLC bit to "true" if present in \p MI. Returns true if \p MI
/// is modified, false otherwise.
bool enableGLCBit(const MachineBasicBlock::iterator &MI) const {
return enableNamedBit(MI, AMDGPU::CPol::GLC);
}
/// Sets SLC bit to "true" if present in \p MI. Returns true if \p MI
/// is modified, false otherwise.
bool enableSLCBit(const MachineBasicBlock::iterator &MI) const {
return enableNamedBit(MI, AMDGPU::CPol::SLC);
}
public:
SIGfx6CacheControl(const GCNSubtarget &ST) : SICacheControl(ST) {}
bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const override;
bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const override;
bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const override;
bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI,
SIAtomicAddrSpace AddrSpace, SIMemOp Op,
bool IsVolatile,
bool IsNonTemporal) const override;
bool insertWait(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
SIMemOp Op,
bool IsCrossAddrSpaceOrdering,
Position Pos) const override;
bool insertAcquire(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
Position Pos) const override;
bool insertRelease(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
bool IsCrossAddrSpaceOrdering,
Position Pos) const override;
};
class SIGfx7CacheControl : public SIGfx6CacheControl {
public:
SIGfx7CacheControl(const GCNSubtarget &ST) : SIGfx6CacheControl(ST) {}
bool insertAcquire(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
Position Pos) const override;
};
class SIGfx90ACacheControl : public SIGfx7CacheControl {
public:
SIGfx90ACacheControl(const GCNSubtarget &ST) : SIGfx7CacheControl(ST) {}
bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const override;
bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const override;
bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const override;
bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI,
SIAtomicAddrSpace AddrSpace, SIMemOp Op,
bool IsVolatile,
bool IsNonTemporal) const override;
bool insertWait(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
SIMemOp Op,
bool IsCrossAddrSpaceOrdering,
Position Pos) const override;
bool insertAcquire(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
Position Pos) const override;
bool insertRelease(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
bool IsCrossAddrSpaceOrdering,
Position Pos) const override;
};
class SIGfx940CacheControl : public SIGfx90ACacheControl {
protected:
/// Sets SC0 bit to "true" if present in \p MI. Returns true if \p MI
/// is modified, false otherwise.
bool enableSC0Bit(const MachineBasicBlock::iterator &MI) const {
return enableNamedBit(MI, AMDGPU::CPol::SC0);
}
/// Sets SC1 bit to "true" if present in \p MI. Returns true if \p MI
/// is modified, false otherwise.
bool enableSC1Bit(const MachineBasicBlock::iterator &MI) const {
return enableNamedBit(MI, AMDGPU::CPol::SC1);
}
/// Sets NT bit to "true" if present in \p MI. Returns true if \p MI
/// is modified, false otherwise.
bool enableNTBit(const MachineBasicBlock::iterator &MI) const {
return enableNamedBit(MI, AMDGPU::CPol::NT);
}
public:
SIGfx940CacheControl(const GCNSubtarget &ST) : SIGfx90ACacheControl(ST) {};
bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const override;
bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const override;
bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const override;
bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI,
SIAtomicAddrSpace AddrSpace, SIMemOp Op,
bool IsVolatile,
bool IsNonTemporal) const override;
bool insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace, Position Pos) const override;
bool insertRelease(MachineBasicBlock::iterator &MI, SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace, bool IsCrossAddrSpaceOrdering,
Position Pos) const override;
bool tryForceStoreSC0SC1(const SIMemOpInfo &MOI,
MachineBasicBlock::iterator &MI) const override {
bool Changed = false;
if (ST.hasForceStoreSC0SC1() &&
(MOI.getInstrAddrSpace() & (SIAtomicAddrSpace::SCRATCH |
SIAtomicAddrSpace::GLOBAL |
SIAtomicAddrSpace::OTHER)) !=
SIAtomicAddrSpace::NONE) {
Changed |= enableSC0Bit(MI);
Changed |= enableSC1Bit(MI);
}
return Changed;
}
};
class SIGfx10CacheControl : public SIGfx7CacheControl {
protected:
/// Sets DLC bit to "true" if present in \p MI. Returns true if \p MI
/// is modified, false otherwise.
bool enableDLCBit(const MachineBasicBlock::iterator &MI) const {
return enableNamedBit(MI, AMDGPU::CPol::DLC);
}
public:
SIGfx10CacheControl(const GCNSubtarget &ST) : SIGfx7CacheControl(ST) {}
bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const override;
bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI,
SIAtomicAddrSpace AddrSpace, SIMemOp Op,
bool IsVolatile,
bool IsNonTemporal) const override;
bool insertWait(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
SIMemOp Op,
bool IsCrossAddrSpaceOrdering,
Position Pos) const override;
bool insertAcquire(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
Position Pos) const override;
};
class SIGfx11CacheControl : public SIGfx10CacheControl {
public:
SIGfx11CacheControl(const GCNSubtarget &ST) : SIGfx10CacheControl(ST) {}
bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const override;
bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI,
SIAtomicAddrSpace AddrSpace, SIMemOp Op,
bool IsVolatile,
bool IsNonTemporal) const override;
};
class SIMemoryLegalizer final : public MachineFunctionPass {
private:
/// Cache Control.
std::unique_ptr<SICacheControl> CC = nullptr;
/// List of atomic pseudo instructions.
std::list<MachineBasicBlock::iterator> AtomicPseudoMIs;
/// Return true iff instruction \p MI is a atomic instruction that
/// returns a result.
bool isAtomicRet(const MachineInstr &MI) const {
return SIInstrInfo::isAtomicRet(MI);
}
/// Removes all processed atomic pseudo instructions from the current
/// function. Returns true if current function is modified, false otherwise.
bool removeAtomicPseudoMIs();
/// Expands load operation \p MI. Returns true if instructions are
/// added/deleted or \p MI is modified, false otherwise.
bool expandLoad(const SIMemOpInfo &MOI,
MachineBasicBlock::iterator &MI);
/// Expands store operation \p MI. Returns true if instructions are
/// added/deleted or \p MI is modified, false otherwise.
bool expandStore(const SIMemOpInfo &MOI,
MachineBasicBlock::iterator &MI);
/// Expands atomic fence operation \p MI. Returns true if
/// instructions are added/deleted or \p MI is modified, false otherwise.
bool expandAtomicFence(const SIMemOpInfo &MOI,
MachineBasicBlock::iterator &MI);
/// Expands atomic cmpxchg or rmw operation \p MI. Returns true if
/// instructions are added/deleted or \p MI is modified, false otherwise.
bool expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI,
MachineBasicBlock::iterator &MI);
public:
static char ID;
SIMemoryLegalizer() : MachineFunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
StringRef getPassName() const override {
return PASS_NAME;
}
bool runOnMachineFunction(MachineFunction &MF) override;
};
} // end namespace anonymous
void SIMemOpAccess::reportUnsupported(const MachineBasicBlock::iterator &MI,
const char *Msg) const {
const Function &Func = MI->getParent()->getParent()->getFunction();
DiagnosticInfoUnsupported Diag(Func, Msg, MI->getDebugLoc());
Func.getContext().diagnose(Diag);
}
std::optional<std::tuple<SIAtomicScope, SIAtomicAddrSpace, bool>>
SIMemOpAccess::toSIAtomicScope(SyncScope::ID SSID,
SIAtomicAddrSpace InstrAddrSpace) const {
if (SSID == SyncScope::System)
return std::tuple(SIAtomicScope::SYSTEM, SIAtomicAddrSpace::ATOMIC, true);
if (SSID == MMI->getAgentSSID())
return std::tuple(SIAtomicScope::AGENT, SIAtomicAddrSpace::ATOMIC, true);
if (SSID == MMI->getWorkgroupSSID())
return std::tuple(SIAtomicScope::WORKGROUP, SIAtomicAddrSpace::ATOMIC,
true);
if (SSID == MMI->getWavefrontSSID())
return std::tuple(SIAtomicScope::WAVEFRONT, SIAtomicAddrSpace::ATOMIC,
true);
if (SSID == SyncScope::SingleThread)
return std::tuple(SIAtomicScope::SINGLETHREAD, SIAtomicAddrSpace::ATOMIC,
true);
if (SSID == MMI->getSystemOneAddressSpaceSSID())
return std::tuple(SIAtomicScope::SYSTEM,
SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false);
if (SSID == MMI->getAgentOneAddressSpaceSSID())
return std::tuple(SIAtomicScope::AGENT,
SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false);
if (SSID == MMI->getWorkgroupOneAddressSpaceSSID())
return std::tuple(SIAtomicScope::WORKGROUP,
SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false);
if (SSID == MMI->getWavefrontOneAddressSpaceSSID())
return std::tuple(SIAtomicScope::WAVEFRONT,
SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false);
if (SSID == MMI->getSingleThreadOneAddressSpaceSSID())
return std::tuple(SIAtomicScope::SINGLETHREAD,
SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false);
return std::nullopt;
}
SIAtomicAddrSpace SIMemOpAccess::toSIAtomicAddrSpace(unsigned AS) const {
if (AS == AMDGPUAS::FLAT_ADDRESS)
return SIAtomicAddrSpace::FLAT;
if (AS == AMDGPUAS::GLOBAL_ADDRESS)
return SIAtomicAddrSpace::GLOBAL;
if (AS == AMDGPUAS::LOCAL_ADDRESS)
return SIAtomicAddrSpace::LDS;
if (AS == AMDGPUAS::PRIVATE_ADDRESS)
return SIAtomicAddrSpace::SCRATCH;
if (AS == AMDGPUAS::REGION_ADDRESS)
return SIAtomicAddrSpace::GDS;
return SIAtomicAddrSpace::OTHER;
}
SIMemOpAccess::SIMemOpAccess(MachineFunction &MF) {
MMI = &MF.getMMI().getObjFileInfo<AMDGPUMachineModuleInfo>();
}
std::optional<SIMemOpInfo> SIMemOpAccess::constructFromMIWithMMO(
const MachineBasicBlock::iterator &MI) const {
assert(MI->getNumMemOperands() > 0);
SyncScope::ID SSID = SyncScope::SingleThread;
AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE;
bool IsNonTemporal = true;
bool IsVolatile = false;
// Validator should check whether or not MMOs cover the entire set of
// locations accessed by the memory instruction.
for (const auto &MMO : MI->memoperands()) {
IsNonTemporal &= MMO->isNonTemporal();
IsVolatile |= MMO->isVolatile();
InstrAddrSpace |=
toSIAtomicAddrSpace(MMO->getPointerInfo().getAddrSpace());
AtomicOrdering OpOrdering = MMO->getSuccessOrdering();
if (OpOrdering != AtomicOrdering::NotAtomic) {
const auto &IsSyncScopeInclusion =
MMI->isSyncScopeInclusion(SSID, MMO->getSyncScopeID());
if (!IsSyncScopeInclusion) {
reportUnsupported(MI,
"Unsupported non-inclusive atomic synchronization scope");
return std::nullopt;
}
SSID = *IsSyncScopeInclusion ? SSID : MMO->getSyncScopeID();
Ordering = getMergedAtomicOrdering(Ordering, OpOrdering);
assert(MMO->getFailureOrdering() != AtomicOrdering::Release &&
MMO->getFailureOrdering() != AtomicOrdering::AcquireRelease);
FailureOrdering =
getMergedAtomicOrdering(FailureOrdering, MMO->getFailureOrdering());
}
}
SIAtomicScope Scope = SIAtomicScope::NONE;
SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE;
bool IsCrossAddressSpaceOrdering = false;
if (Ordering != AtomicOrdering::NotAtomic) {
auto ScopeOrNone = toSIAtomicScope(SSID, InstrAddrSpace);
if (!ScopeOrNone) {
reportUnsupported(MI, "Unsupported atomic synchronization scope");
return std::nullopt;
}
std::tie(Scope, OrderingAddrSpace, IsCrossAddressSpaceOrdering) =
*ScopeOrNone;
if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) ||
((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace) ||
((InstrAddrSpace & SIAtomicAddrSpace::ATOMIC) == SIAtomicAddrSpace::NONE)) {
reportUnsupported(MI, "Unsupported atomic address space");
return std::nullopt;
}
}
return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, InstrAddrSpace,
IsCrossAddressSpaceOrdering, FailureOrdering, IsVolatile,
IsNonTemporal);
}
std::optional<SIMemOpInfo>
SIMemOpAccess::getLoadInfo(const MachineBasicBlock::iterator &MI) const {
assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic);
if (!(MI->mayLoad() && !MI->mayStore()))
return std::nullopt;
// Be conservative if there are no memory operands.
if (MI->getNumMemOperands() == 0)
return SIMemOpInfo();
return constructFromMIWithMMO(MI);
}
std::optional<SIMemOpInfo>
SIMemOpAccess::getStoreInfo(const MachineBasicBlock::iterator &MI) const {
assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic);
if (!(!MI->mayLoad() && MI->mayStore()))
return std::nullopt;
// Be conservative if there are no memory operands.
if (MI->getNumMemOperands() == 0)
return SIMemOpInfo();
return constructFromMIWithMMO(MI);
}
std::optional<SIMemOpInfo>
SIMemOpAccess::getAtomicFenceInfo(const MachineBasicBlock::iterator &MI) const {
assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic);
if (MI->getOpcode() != AMDGPU::ATOMIC_FENCE)
return std::nullopt;
AtomicOrdering Ordering =
static_cast<AtomicOrdering>(MI->getOperand(0).getImm());
SyncScope::ID SSID = static_cast<SyncScope::ID>(MI->getOperand(1).getImm());
auto ScopeOrNone = toSIAtomicScope(SSID, SIAtomicAddrSpace::ATOMIC);
if (!ScopeOrNone) {
reportUnsupported(MI, "Unsupported atomic synchronization scope");
return std::nullopt;
}
SIAtomicScope Scope = SIAtomicScope::NONE;
SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE;
bool IsCrossAddressSpaceOrdering = false;
std::tie(Scope, OrderingAddrSpace, IsCrossAddressSpaceOrdering) =
*ScopeOrNone;
if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) ||
((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace)) {
reportUnsupported(MI, "Unsupported atomic address space");
return std::nullopt;
}
return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, SIAtomicAddrSpace::ATOMIC,
IsCrossAddressSpaceOrdering, AtomicOrdering::NotAtomic);
}
std::optional<SIMemOpInfo> SIMemOpAccess::getAtomicCmpxchgOrRmwInfo(
const MachineBasicBlock::iterator &MI) const {
assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic);
if (!(MI->mayLoad() && MI->mayStore()))
return std::nullopt;
// Be conservative if there are no memory operands.
if (MI->getNumMemOperands() == 0)
return SIMemOpInfo();
return constructFromMIWithMMO(MI);
}
SICacheControl::SICacheControl(const GCNSubtarget &ST) : ST(ST) {
TII = ST.getInstrInfo();
IV = getIsaVersion(ST.getCPU());
InsertCacheInv = !AmdgcnSkipCacheInvalidations;
}
bool SICacheControl::enableNamedBit(const MachineBasicBlock::iterator MI,
AMDGPU::CPol::CPol Bit) const {
MachineOperand *CPol = TII->getNamedOperand(*MI, AMDGPU::OpName::cpol);
if (!CPol)
return false;
CPol->setImm(CPol->getImm() | Bit);
return true;
}
/* static */
std::unique_ptr<SICacheControl> SICacheControl::create(const GCNSubtarget &ST) {
GCNSubtarget::Generation Generation = ST.getGeneration();
if (ST.hasGFX940Insts())
return std::make_unique<SIGfx940CacheControl>(ST);
if (ST.hasGFX90AInsts())
return std::make_unique<SIGfx90ACacheControl>(ST);
if (Generation <= AMDGPUSubtarget::SOUTHERN_ISLANDS)
return std::make_unique<SIGfx6CacheControl>(ST);
if (Generation < AMDGPUSubtarget::GFX10)
return std::make_unique<SIGfx7CacheControl>(ST);
if (Generation < AMDGPUSubtarget::GFX11)
return std::make_unique<SIGfx10CacheControl>(ST);
return std::make_unique<SIGfx11CacheControl>(ST);
}
bool SIGfx6CacheControl::enableLoadCacheBypass(
const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const {
assert(MI->mayLoad() && !MI->mayStore());
bool Changed = false;
if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
case SIAtomicScope::AGENT:
// Set L1 cache policy to MISS_EVICT.
// Note: there is no L2 cache bypass policy at the ISA level.
Changed |= enableGLCBit(MI);
break;
case SIAtomicScope::WORKGROUP:
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// No cache to bypass.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
/// The scratch address space does not need the global memory caches
/// to be bypassed as all memory operations by the same thread are
/// sequentially consistent, and no other thread can access scratch
/// memory.
/// Other address spaces do not have a cache.
return Changed;
}
bool SIGfx6CacheControl::enableStoreCacheBypass(
const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const {
assert(!MI->mayLoad() && MI->mayStore());
bool Changed = false;
/// The L1 cache is write through so does not need to be bypassed. There is no
/// bypass control for the L2 cache at the isa level.
return Changed;
}
bool SIGfx6CacheControl::enableRMWCacheBypass(
const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const {
assert(MI->mayLoad() && MI->mayStore());
bool Changed = false;
/// Do not set GLC for RMW atomic operations as L0/L1 cache is automatically
/// bypassed, and the GLC bit is instead used to indicate if they are
/// return or no-return.
/// Note: there is no L2 cache coherent bypass control at the ISA level.
return Changed;
}
bool SIGfx6CacheControl::enableVolatileAndOrNonTemporal(
MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op,
bool IsVolatile, bool IsNonTemporal) const {
// Only handle load and store, not atomic read-modify-write insructions. The
// latter use glc to indicate if the atomic returns a result and so must not
// be used for cache control.
assert(MI->mayLoad() ^ MI->mayStore());
// Only update load and store, not LLVM IR atomic read-modify-write
// instructions. The latter are always marked as volatile so cannot sensibly
// handle it as do not want to pessimize all atomics. Also they do not support
// the nontemporal attribute.
assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE);
bool Changed = false;
if (IsVolatile) {
// Set L1 cache policy to be MISS_EVICT for load instructions
// and MISS_LRU for store instructions.
// Note: there is no L2 cache bypass policy at the ISA level.
if (Op == SIMemOp::LOAD)
Changed |= enableGLCBit(MI);
// Ensure operation has completed at system scope to cause all volatile
// operations to be visible outside the program in a global order. Do not
// request cross address space as only the global address space can be
// observable outside the program, so no need to cause a waitcnt for LDS
// address space operations.
Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false,
Position::AFTER);
return Changed;
}
if (IsNonTemporal) {
// Setting both GLC and SLC configures L1 cache policy to MISS_EVICT
// for both loads and stores, and the L2 cache policy to STREAM.
Changed |= enableGLCBit(MI);
Changed |= enableSLCBit(MI);
return Changed;
}
return Changed;
}
bool SIGfx6CacheControl::insertWait(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
SIMemOp Op,
bool IsCrossAddrSpaceOrdering,
Position Pos) const {
bool Changed = false;
MachineBasicBlock &MBB = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
if (Pos == Position::AFTER)
++MI;
bool VMCnt = false;
bool LGKMCnt = false;
if ((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH)) !=
SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
case SIAtomicScope::AGENT:
VMCnt |= true;
break;
case SIAtomicScope::WORKGROUP:
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// The L1 cache keeps all memory operations in order for
// wavefronts in the same work-group.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
case SIAtomicScope::AGENT:
case SIAtomicScope::WORKGROUP:
// If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is
// not needed as LDS operations for all waves are executed in a total
// global ordering as observed by all waves. Required if also
// synchronizing with global/GDS memory as LDS operations could be
// reordered with respect to later global/GDS memory operations of the
// same wave.
LGKMCnt |= IsCrossAddrSpaceOrdering;
break;
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// The LDS keeps all memory operations in order for
// the same wavefront.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
case SIAtomicScope::AGENT:
// If no cross address space ordering then an GDS "S_WAITCNT lgkmcnt(0)"
// is not needed as GDS operations for all waves are executed in a total
// global ordering as observed by all waves. Required if also
// synchronizing with global/LDS memory as GDS operations could be
// reordered with respect to later global/LDS memory operations of the
// same wave.
LGKMCnt |= IsCrossAddrSpaceOrdering;
break;
case SIAtomicScope::WORKGROUP:
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// The GDS keeps all memory operations in order for
// the same work-group.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
if (VMCnt || LGKMCnt) {
unsigned WaitCntImmediate =
AMDGPU::encodeWaitcnt(IV,
VMCnt ? 0 : getVmcntBitMask(IV),
getExpcntBitMask(IV),
LGKMCnt ? 0 : getLgkmcntBitMask(IV));
BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(WaitCntImmediate);
Changed = true;
}
if (Pos == Position::AFTER)
--MI;
return Changed;
}
bool SIGfx6CacheControl::insertAcquire(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
Position Pos) const {
if (!InsertCacheInv)
return false;
bool Changed = false;
MachineBasicBlock &MBB = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
if (Pos == Position::AFTER)
++MI;
if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
case SIAtomicScope::AGENT:
BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBINVL1));
Changed = true;
break;
case SIAtomicScope::WORKGROUP:
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// No cache to invalidate.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
/// The scratch address space does not need the global memory cache
/// to be flushed as all memory operations by the same thread are
/// sequentially consistent, and no other thread can access scratch
/// memory.
/// Other address spaces do not have a cache.
if (Pos == Position::AFTER)
--MI;
return Changed;
}
bool SIGfx6CacheControl::insertRelease(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
bool IsCrossAddrSpaceOrdering,
Position Pos) const {
return insertWait(MI, Scope, AddrSpace, SIMemOp::LOAD | SIMemOp::STORE,
IsCrossAddrSpaceOrdering, Pos);
}
bool SIGfx7CacheControl::insertAcquire(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
Position Pos) const {
if (!InsertCacheInv)
return false;
bool Changed = false;
MachineBasicBlock &MBB = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
const GCNSubtarget &STM = MBB.getParent()->getSubtarget<GCNSubtarget>();
const unsigned InvalidateL1 = STM.isAmdPalOS() || STM.isMesa3DOS()
? AMDGPU::BUFFER_WBINVL1
: AMDGPU::BUFFER_WBINVL1_VOL;
if (Pos == Position::AFTER)
++MI;
if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
case SIAtomicScope::AGENT:
BuildMI(MBB, MI, DL, TII->get(InvalidateL1));
Changed = true;
break;
case SIAtomicScope::WORKGROUP:
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// No cache to invalidate.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
/// The scratch address space does not need the global memory cache
/// to be flushed as all memory operations by the same thread are
/// sequentially consistent, and no other thread can access scratch
/// memory.
/// Other address spaces do not have a cache.
if (Pos == Position::AFTER)
--MI;
return Changed;
}
bool SIGfx90ACacheControl::enableLoadCacheBypass(
const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const {
assert(MI->mayLoad() && !MI->mayStore());
bool Changed = false;
if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
case SIAtomicScope::AGENT:
// Set the L1 cache policy to MISS_LRU.
// Note: there is no L2 cache bypass policy at the ISA level.
Changed |= enableGLCBit(MI);
break;
case SIAtomicScope::WORKGROUP:
// In threadgroup split mode the waves of a work-group can be executing on
// different CUs. Therefore need to bypass the L1 which is per CU.
// Otherwise in non-threadgroup split mode all waves of a work-group are
// on the same CU, and so the L1 does not need to be bypassed.
if (ST.isTgSplitEnabled())
Changed |= enableGLCBit(MI);
break;
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// No cache to bypass.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
/// The scratch address space does not need the global memory caches
/// to be bypassed as all memory operations by the same thread are
/// sequentially consistent, and no other thread can access scratch
/// memory.
/// Other address spaces do not have a cache.
return Changed;
}
bool SIGfx90ACacheControl::enableStoreCacheBypass(
const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const {
assert(!MI->mayLoad() && MI->mayStore());
bool Changed = false;
if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
case SIAtomicScope::AGENT:
/// Do not set glc for store atomic operations as they implicitly write
/// through the L1 cache.
break;
case SIAtomicScope::WORKGROUP:
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// No cache to bypass. Store atomics implicitly write through the L1
// cache.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
/// The scratch address space does not need the global memory caches
/// to be bypassed as all memory operations by the same thread are
/// sequentially consistent, and no other thread can access scratch
/// memory.
/// Other address spaces do not have a cache.
return Changed;
}
bool SIGfx90ACacheControl::enableRMWCacheBypass(
const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const {
assert(MI->mayLoad() && MI->mayStore());
bool Changed = false;
if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
case SIAtomicScope::AGENT:
/// Do not set glc for RMW atomic operations as they implicitly bypass
/// the L1 cache, and the glc bit is instead used to indicate if they are
/// return or no-return.
break;
case SIAtomicScope::WORKGROUP:
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// No cache to bypass. RMW atomics implicitly bypass the L1 cache.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
return Changed;
}
bool SIGfx90ACacheControl::enableVolatileAndOrNonTemporal(
MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op,
bool IsVolatile, bool IsNonTemporal) const {
// Only handle load and store, not atomic read-modify-write insructions. The
// latter use glc to indicate if the atomic returns a result and so must not
// be used for cache control.
assert(MI->mayLoad() ^ MI->mayStore());
// Only update load and store, not LLVM IR atomic read-modify-write
// instructions. The latter are always marked as volatile so cannot sensibly
// handle it as do not want to pessimize all atomics. Also they do not support
// the nontemporal attribute.
assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE);
bool Changed = false;
if (IsVolatile) {
// Set L1 cache policy to be MISS_EVICT for load instructions
// and MISS_LRU for store instructions.
// Note: there is no L2 cache bypass policy at the ISA level.
if (Op == SIMemOp::LOAD)
Changed |= enableGLCBit(MI);
// Ensure operation has completed at system scope to cause all volatile
// operations to be visible outside the program in a global order. Do not
// request cross address space as only the global address space can be
// observable outside the program, so no need to cause a waitcnt for LDS
// address space operations.
Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false,
Position::AFTER);
return Changed;
}
if (IsNonTemporal) {
// Setting both GLC and SLC configures L1 cache policy to MISS_EVICT
// for both loads and stores, and the L2 cache policy to STREAM.
Changed |= enableGLCBit(MI);
Changed |= enableSLCBit(MI);
return Changed;
}
return Changed;
}
bool SIGfx90ACacheControl::insertWait(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
SIMemOp Op,
bool IsCrossAddrSpaceOrdering,
Position Pos) const {
if (ST.isTgSplitEnabled()) {
// In threadgroup split mode the waves of a work-group can be executing on
// different CUs. Therefore need to wait for global or GDS memory operations
// to complete to ensure they are visible to waves in the other CUs.
// Otherwise in non-threadgroup split mode all waves of a work-group are on
// the same CU, so no need to wait for global memory as all waves in the
// work-group access the same the L1, nor wait for GDS as access are ordered
// on a CU.
if (((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH |
SIAtomicAddrSpace::GDS)) != SIAtomicAddrSpace::NONE) &&
(Scope == SIAtomicScope::WORKGROUP)) {
// Same as GFX7 using agent scope.
Scope = SIAtomicScope::AGENT;
}
// In threadgroup split mode LDS cannot be allocated so no need to wait for
// LDS memory operations.
AddrSpace &= ~SIAtomicAddrSpace::LDS;
}
return SIGfx7CacheControl::insertWait(MI, Scope, AddrSpace, Op,
IsCrossAddrSpaceOrdering, Pos);
}
bool SIGfx90ACacheControl::insertAcquire(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
Position Pos) const {
if (!InsertCacheInv)
return false;
bool Changed = false;
MachineBasicBlock &MBB = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
if (Pos == Position::AFTER)
++MI;
if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
// Ensures that following loads will not see stale remote VMEM data or
// stale local VMEM data with MTYPE NC. Local VMEM data with MTYPE RW and
// CC will never be stale due to the local memory probes.
BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INVL2));
// Inserting a "S_WAITCNT vmcnt(0)" after is not required because the
// hardware does not reorder memory operations by the same wave with
// respect to a preceding "BUFFER_INVL2". The invalidate is guaranteed to
// remove any cache lines of earlier writes by the same wave and ensures
// later reads by the same wave will refetch the cache lines.
Changed = true;
break;
case SIAtomicScope::AGENT:
// Same as GFX7.
break;
case SIAtomicScope::WORKGROUP:
// In threadgroup split mode the waves of a work-group can be executing on
// different CUs. Therefore need to invalidate the L1 which is per CU.
// Otherwise in non-threadgroup split mode all waves of a work-group are
// on the same CU, and so the L1 does not need to be invalidated.
if (ST.isTgSplitEnabled()) {
// Same as GFX7 using agent scope.
Scope = SIAtomicScope::AGENT;
}
break;
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// Same as GFX7.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
/// The scratch address space does not need the global memory cache
/// to be flushed as all memory operations by the same thread are
/// sequentially consistent, and no other thread can access scratch
/// memory.
/// Other address spaces do not have a cache.
if (Pos == Position::AFTER)
--MI;
Changed |= SIGfx7CacheControl::insertAcquire(MI, Scope, AddrSpace, Pos);
return Changed;
}
bool SIGfx90ACacheControl::insertRelease(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
bool IsCrossAddrSpaceOrdering,
Position Pos) const {
bool Changed = false;
MachineBasicBlock &MBB = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
if (Pos == Position::AFTER)
++MI;
if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
// Inserting a "S_WAITCNT vmcnt(0)" before is not required because the
// hardware does not reorder memory operations by the same wave with
// respect to a following "BUFFER_WBL2". The "BUFFER_WBL2" is guaranteed
// to initiate writeback of any dirty cache lines of earlier writes by the
// same wave. A "S_WAITCNT vmcnt(0)" is needed after to ensure the
// writeback has completed.
BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBL2))
// Set SC bits to indicate system scope.
.addImm(AMDGPU::CPol::SC0 | AMDGPU::CPol::SC1);
// Followed by same as GFX7, which will ensure the necessary "S_WAITCNT
// vmcnt(0)" needed by the "BUFFER_WBL2".
Changed = true;
break;
case SIAtomicScope::AGENT:
case SIAtomicScope::WORKGROUP:
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// Same as GFX7.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
if (Pos == Position::AFTER)
--MI;
Changed |=
SIGfx7CacheControl::insertRelease(MI, Scope, AddrSpace,
IsCrossAddrSpaceOrdering, Pos);
return Changed;
}
bool SIGfx940CacheControl::enableLoadCacheBypass(
const MachineBasicBlock::iterator &MI, SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const {
assert(MI->mayLoad() && !MI->mayStore());
bool Changed = false;
if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
// Set SC bits to indicate system scope.
Changed |= enableSC0Bit(MI);
Changed |= enableSC1Bit(MI);
break;
case SIAtomicScope::AGENT:
// Set SC bits to indicate agent scope.
Changed |= enableSC1Bit(MI);
break;
case SIAtomicScope::WORKGROUP:
// In threadgroup split mode the waves of a work-group can be executing on
// different CUs. Therefore need to bypass the L1 which is per CU.
// Otherwise in non-threadgroup split mode all waves of a work-group are
// on the same CU, and so the L1 does not need to be bypassed. Setting SC
// bits to indicate work-group scope will do this automatically.
Changed |= enableSC0Bit(MI);
break;
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// Leave SC bits unset to indicate wavefront scope.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
/// The scratch address space does not need the global memory caches
/// to be bypassed as all memory operations by the same thread are
/// sequentially consistent, and no other thread can access scratch
/// memory.
/// Other address spaces do not have a cache.
return Changed;
}
bool SIGfx940CacheControl::enableStoreCacheBypass(
const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const {
assert(!MI->mayLoad() && MI->mayStore());
bool Changed = false;
if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
// Set SC bits to indicate system scope.
Changed |= enableSC0Bit(MI);
Changed |= enableSC1Bit(MI);
break;
case SIAtomicScope::AGENT:
// Set SC bits to indicate agent scope.
Changed |= enableSC1Bit(MI);
break;
case SIAtomicScope::WORKGROUP:
// Set SC bits to indicate workgroup scope.
Changed |= enableSC0Bit(MI);
break;
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// Leave SC bits unset to indicate wavefront scope.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
/// The scratch address space does not need the global memory caches
/// to be bypassed as all memory operations by the same thread are
/// sequentially consistent, and no other thread can access scratch
/// memory.
/// Other address spaces do not have a cache.
return Changed;
}
bool SIGfx940CacheControl::enableRMWCacheBypass(
const MachineBasicBlock::iterator &MI, SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const {
assert(MI->mayLoad() && MI->mayStore());
bool Changed = false;
if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
// Set SC1 bit to indicate system scope.
Changed |= enableSC1Bit(MI);
break;
case SIAtomicScope::AGENT:
case SIAtomicScope::WORKGROUP:
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// RMW atomic operations implicitly bypass the L1 cache and only use SC1
// to indicate system or agent scope. The SC0 bit is used to indicate if
// they are return or no-return. Leave SC1 bit unset to indicate agent
// scope.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
return Changed;
}
bool SIGfx940CacheControl::enableVolatileAndOrNonTemporal(
MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op,
bool IsVolatile, bool IsNonTemporal) const {
// Only handle load and store, not atomic read-modify-write insructions. The
// latter use glc to indicate if the atomic returns a result and so must not
// be used for cache control.
assert(MI->mayLoad() ^ MI->mayStore());
// Only update load and store, not LLVM IR atomic read-modify-write
// instructions. The latter are always marked as volatile so cannot sensibly
// handle it as do not want to pessimize all atomics. Also they do not support
// the nontemporal attribute.
assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE);
bool Changed = false;
if (IsVolatile) {
// Set SC bits to indicate system scope.
Changed |= enableSC0Bit(MI);
Changed |= enableSC1Bit(MI);
// Ensure operation has completed at system scope to cause all volatile
// operations to be visible outside the program in a global order. Do not
// request cross address space as only the global address space can be
// observable outside the program, so no need to cause a waitcnt for LDS
// address space operations.
Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false,
Position::AFTER);
return Changed;
}
if (IsNonTemporal) {
Changed |= enableNTBit(MI);
return Changed;
}
return Changed;
}
bool SIGfx940CacheControl::insertAcquire(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
Position Pos) const {
if (!InsertCacheInv)
return false;
bool Changed = false;
MachineBasicBlock &MBB = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
if (Pos == Position::AFTER)
++MI;
if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
// Ensures that following loads will not see stale remote VMEM data or
// stale local VMEM data with MTYPE NC. Local VMEM data with MTYPE RW and
// CC will never be stale due to the local memory probes.
BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INV))
// Set SC bits to indicate system scope.
.addImm(AMDGPU::CPol::SC0 | AMDGPU::CPol::SC1);
// Inserting a "S_WAITCNT vmcnt(0)" after is not required because the
// hardware does not reorder memory operations by the same wave with
// respect to a preceding "BUFFER_INV". The invalidate is guaranteed to
// remove any cache lines of earlier writes by the same wave and ensures
// later reads by the same wave will refetch the cache lines.
Changed = true;
break;
case SIAtomicScope::AGENT:
// Ensures that following loads will not see stale remote date or local
// MTYPE NC global data. Local MTYPE RW and CC memory will never be stale
// due to the memory probes.
BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INV))
// Set SC bits to indicate agent scope.
.addImm(AMDGPU::CPol::SC1);
// Inserting "S_WAITCNT vmcnt(0)" is not required because the hardware
// does not reorder memory operations with respect to preceeding buffer
// invalidate. The invalidate is guaranteed to remove any cache lines of
// earlier writes and ensures later writes will refetch the cache lines.
Changed = true;
break;
case SIAtomicScope::WORKGROUP:
// In threadgroup split mode the waves of a work-group can be executing on
// different CUs. Therefore need to invalidate the L1 which is per CU.
// Otherwise in non-threadgroup split mode all waves of a work-group are
// on the same CU, and so the L1 does not need to be invalidated.
if (ST.isTgSplitEnabled()) {
// Ensures L1 is invalidated if in threadgroup split mode. In
// non-threadgroup split mode it is a NOP, but no point generating it in
// that case if know not in that mode.
BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INV))
// Set SC bits to indicate work-group scope.
.addImm(AMDGPU::CPol::SC0);
// Inserting "S_WAITCNT vmcnt(0)" is not required because the hardware
// does not reorder memory operations with respect to preceeding buffer
// invalidate. The invalidate is guaranteed to remove any cache lines of
// earlier writes and ensures later writes will refetch the cache lines.
Changed = true;
}
break;
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// Could generate "BUFFER_INV" but it would do nothing as there are no
// caches to invalidate.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
/// The scratch address space does not need the global memory cache
/// to be flushed as all memory operations by the same thread are
/// sequentially consistent, and no other thread can access scratch
/// memory.
/// Other address spaces do not have a cache.
if (Pos == Position::AFTER)
--MI;
return Changed;
}
bool SIGfx940CacheControl::insertRelease(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
bool IsCrossAddrSpaceOrdering,
Position Pos) const {
bool Changed = false;
MachineBasicBlock &MBB = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
if (Pos == Position::AFTER)
++MI;
if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
// Inserting a "S_WAITCNT vmcnt(0)" before is not required because the
// hardware does not reorder memory operations by the same wave with
// respect to a following "BUFFER_WBL2". The "BUFFER_WBL2" is guaranteed
// to initiate writeback of any dirty cache lines of earlier writes by the
// same wave. A "S_WAITCNT vmcnt(0)" is needed after to ensure the
// writeback has completed.
BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBL2))
// Set SC bits to indicate system scope.
.addImm(AMDGPU::CPol::SC0 | AMDGPU::CPol::SC1);
// Since AddrSpace contains SIAtomicAddrSpace::GLOBAL and Scope is
// SIAtomicScope::SYSTEM, the following insertWait will generate the
// required "S_WAITCNT vmcnt(0)" needed by the "BUFFER_WBL2".
Changed = true;
break;
case SIAtomicScope::AGENT:
BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBL2))
// Set SC bits to indicate agent scope.
.addImm(AMDGPU::CPol::SC1);
// Since AddrSpace contains SIAtomicAddrSpace::GLOBAL and Scope is
// SIAtomicScope::AGENT, the following insertWait will generate the
// required "S_WAITCNT vmcnt(0)".
Changed = true;
break;
case SIAtomicScope::WORKGROUP:
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// Do not generate "BUFFER_WBL2" as there are no caches it would
// writeback, and would require an otherwise unnecessary
// "S_WAITCNT vmcnt(0)".
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
if (Pos == Position::AFTER)
--MI;
// Ensure the necessary S_WAITCNT needed by any "BUFFER_WBL2" as well as other
// S_WAITCNT needed.
Changed |= insertWait(MI, Scope, AddrSpace, SIMemOp::LOAD | SIMemOp::STORE,
IsCrossAddrSpaceOrdering, Pos);
return Changed;
}
bool SIGfx10CacheControl::enableLoadCacheBypass(
const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const {
assert(MI->mayLoad() && !MI->mayStore());
bool Changed = false;
if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
case SIAtomicScope::AGENT:
// Set the L0 and L1 cache policies to MISS_EVICT.
// Note: there is no L2 cache coherent bypass control at the ISA level.
Changed |= enableGLCBit(MI);
Changed |= enableDLCBit(MI);
break;
case SIAtomicScope::WORKGROUP:
// In WGP mode the waves of a work-group can be executing on either CU of
// the WGP. Therefore need to bypass the L0 which is per CU. Otherwise in
// CU mode all waves of a work-group are on the same CU, and so the L0
// does not need to be bypassed.
if (!ST.isCuModeEnabled())
Changed |= enableGLCBit(MI);
break;
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// No cache to bypass.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
/// The scratch address space does not need the global memory caches
/// to be bypassed as all memory operations by the same thread are
/// sequentially consistent, and no other thread can access scratch
/// memory.
/// Other address spaces do not have a cache.
return Changed;
}
bool SIGfx10CacheControl::enableVolatileAndOrNonTemporal(
MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op,
bool IsVolatile, bool IsNonTemporal) const {
// Only handle load and store, not atomic read-modify-write insructions. The
// latter use glc to indicate if the atomic returns a result and so must not
// be used for cache control.
assert(MI->mayLoad() ^ MI->mayStore());
// Only update load and store, not LLVM IR atomic read-modify-write
// instructions. The latter are always marked as volatile so cannot sensibly
// handle it as do not want to pessimize all atomics. Also they do not support
// the nontemporal attribute.
assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE);
bool Changed = false;
if (IsVolatile) {
// Set L0 and L1 cache policy to be MISS_EVICT for load instructions
// and MISS_LRU for store instructions.
// Note: there is no L2 cache coherent bypass control at the ISA level.
if (Op == SIMemOp::LOAD) {
Changed |= enableGLCBit(MI);
Changed |= enableDLCBit(MI);
}
// Ensure operation has completed at system scope to cause all volatile
// operations to be visible outside the program in a global order. Do not
// request cross address space as only the global address space can be
// observable outside the program, so no need to cause a waitcnt for LDS
// address space operations.
Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false,
Position::AFTER);
return Changed;
}
if (IsNonTemporal) {
// For loads setting SLC configures L0 and L1 cache policy to HIT_EVICT
// and L2 cache policy to STREAM.
// For stores setting both GLC and SLC configures L0 and L1 cache policy
// to MISS_EVICT and the L2 cache policy to STREAM.
if (Op == SIMemOp::STORE)
Changed |= enableGLCBit(MI);
Changed |= enableSLCBit(MI);
return Changed;
}
return Changed;
}
bool SIGfx10CacheControl::insertWait(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
SIMemOp Op,
bool IsCrossAddrSpaceOrdering,
Position Pos) const {
bool Changed = false;
MachineBasicBlock &MBB = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
if (Pos == Position::AFTER)
++MI;
bool VMCnt = false;
bool VSCnt = false;
bool LGKMCnt = false;
if ((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH)) !=
SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
case SIAtomicScope::AGENT:
if ((Op & SIMemOp::LOAD) != SIMemOp::NONE)
VMCnt |= true;
if ((Op & SIMemOp::STORE) != SIMemOp::NONE)
VSCnt |= true;
break;
case SIAtomicScope::WORKGROUP:
// In WGP mode the waves of a work-group can be executing on either CU of
// the WGP. Therefore need to wait for operations to complete to ensure
// they are visible to waves in the other CU as the L0 is per CU.
// Otherwise in CU mode and all waves of a work-group are on the same CU
// which shares the same L0.
if (!ST.isCuModeEnabled()) {
if ((Op & SIMemOp::LOAD) != SIMemOp::NONE)
VMCnt |= true;
if ((Op & SIMemOp::STORE) != SIMemOp::NONE)
VSCnt |= true;
}
break;
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// The L0 cache keeps all memory operations in order for
// work-items in the same wavefront.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
case SIAtomicScope::AGENT:
case SIAtomicScope::WORKGROUP:
// If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is
// not needed as LDS operations for all waves are executed in a total
// global ordering as observed by all waves. Required if also
// synchronizing with global/GDS memory as LDS operations could be
// reordered with respect to later global/GDS memory operations of the
// same wave.
LGKMCnt |= IsCrossAddrSpaceOrdering;
break;
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// The LDS keeps all memory operations in order for
// the same wavefront.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
case SIAtomicScope::AGENT:
// If no cross address space ordering then an GDS "S_WAITCNT lgkmcnt(0)"
// is not needed as GDS operations for all waves are executed in a total
// global ordering as observed by all waves. Required if also
// synchronizing with global/LDS memory as GDS operations could be
// reordered with respect to later global/LDS memory operations of the
// same wave.
LGKMCnt |= IsCrossAddrSpaceOrdering;
break;
case SIAtomicScope::WORKGROUP:
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// The GDS keeps all memory operations in order for
// the same work-group.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
if (VMCnt || LGKMCnt) {
unsigned WaitCntImmediate =
AMDGPU::encodeWaitcnt(IV,
VMCnt ? 0 : getVmcntBitMask(IV),
getExpcntBitMask(IV),
LGKMCnt ? 0 : getLgkmcntBitMask(IV));
BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(WaitCntImmediate);
Changed = true;
}
if (VSCnt) {
BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT_VSCNT))
.addReg(AMDGPU::SGPR_NULL, RegState::Undef)
.addImm(0);
Changed = true;
}
if (Pos == Position::AFTER)
--MI;
return Changed;
}
bool SIGfx10CacheControl::insertAcquire(MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace,
Position Pos) const {
if (!InsertCacheInv)
return false;
bool Changed = false;
MachineBasicBlock &MBB = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
if (Pos == Position::AFTER)
++MI;
if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
case SIAtomicScope::AGENT:
BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL0_INV));
BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL1_INV));
Changed = true;
break;
case SIAtomicScope::WORKGROUP:
// In WGP mode the waves of a work-group can be executing on either CU of
// the WGP. Therefore need to invalidate the L0 which is per CU. Otherwise
// in CU mode and all waves of a work-group are on the same CU, and so the
// L0 does not need to be invalidated.
if (!ST.isCuModeEnabled()) {
BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL0_INV));
Changed = true;
}
break;
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// No cache to invalidate.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
/// The scratch address space does not need the global memory cache
/// to be flushed as all memory operations by the same thread are
/// sequentially consistent, and no other thread can access scratch
/// memory.
/// Other address spaces do not have a cache.
if (Pos == Position::AFTER)
--MI;
return Changed;
}
bool SIGfx11CacheControl::enableLoadCacheBypass(
const MachineBasicBlock::iterator &MI, SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const {
assert(MI->mayLoad() && !MI->mayStore());
bool Changed = false;
if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
switch (Scope) {
case SIAtomicScope::SYSTEM:
case SIAtomicScope::AGENT:
// Set the L0 and L1 cache policies to MISS_EVICT.
// Note: there is no L2 cache coherent bypass control at the ISA level.
Changed |= enableGLCBit(MI);
break;
case SIAtomicScope::WORKGROUP:
// In WGP mode the waves of a work-group can be executing on either CU of
// the WGP. Therefore need to bypass the L0 which is per CU. Otherwise in
// CU mode all waves of a work-group are on the same CU, and so the L0
// does not need to be bypassed.
if (!ST.isCuModeEnabled())
Changed |= enableGLCBit(MI);
break;
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// No cache to bypass.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
/// The scratch address space does not need the global memory caches
/// to be bypassed as all memory operations by the same thread are
/// sequentially consistent, and no other thread can access scratch
/// memory.
/// Other address spaces do not have a cache.
return Changed;
}
bool SIGfx11CacheControl::enableVolatileAndOrNonTemporal(
MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op,
bool IsVolatile, bool IsNonTemporal) const {
// Only handle load and store, not atomic read-modify-write insructions. The
// latter use glc to indicate if the atomic returns a result and so must not
// be used for cache control.
assert(MI->mayLoad() ^ MI->mayStore());
// Only update load and store, not LLVM IR atomic read-modify-write
// instructions. The latter are always marked as volatile so cannot sensibly
// handle it as do not want to pessimize all atomics. Also they do not support
// the nontemporal attribute.
assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE);
bool Changed = false;
if (IsVolatile) {
// Set L0 and L1 cache policy to be MISS_EVICT for load instructions
// and MISS_LRU for store instructions.
// Note: there is no L2 cache coherent bypass control at the ISA level.
if (Op == SIMemOp::LOAD)
Changed |= enableGLCBit(MI);
// Set MALL NOALLOC for load and store instructions.
Changed |= enableDLCBit(MI);
// Ensure operation has completed at system scope to cause all volatile
// operations to be visible outside the program in a global order. Do not
// request cross address space as only the global address space can be
// observable outside the program, so no need to cause a waitcnt for LDS
// address space operations.
Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false,
Position::AFTER);
return Changed;
}
if (IsNonTemporal) {
// For loads setting SLC configures L0 and L1 cache policy to HIT_EVICT
// and L2 cache policy to STREAM.
// For stores setting both GLC and SLC configures L0 and L1 cache policy
// to MISS_EVICT and the L2 cache policy to STREAM.
if (Op == SIMemOp::STORE)
Changed |= enableGLCBit(MI);
Changed |= enableSLCBit(MI);
// Set MALL NOALLOC for load and store instructions.
Changed |= enableDLCBit(MI);
return Changed;
}
return Changed;
}
bool SIMemoryLegalizer::removeAtomicPseudoMIs() {
if (AtomicPseudoMIs.empty())
return false;
for (auto &MI : AtomicPseudoMIs)
MI->eraseFromParent();
AtomicPseudoMIs.clear();
return true;
}
bool SIMemoryLegalizer::expandLoad(const SIMemOpInfo &MOI,
MachineBasicBlock::iterator &MI) {
assert(MI->mayLoad() && !MI->mayStore());
bool Changed = false;
if (MOI.isAtomic()) {
if (MOI.getOrdering() == AtomicOrdering::Monotonic ||
MOI.getOrdering() == AtomicOrdering::Acquire ||
MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) {
Changed |= CC->enableLoadCacheBypass(MI, MOI.getScope(),
MOI.getOrderingAddrSpace());
}
if (MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent)
Changed |= CC->insertWait(MI, MOI.getScope(),
MOI.getOrderingAddrSpace(),
SIMemOp::LOAD | SIMemOp::STORE,
MOI.getIsCrossAddressSpaceOrdering(),
Position::BEFORE);
if (MOI.getOrdering() == AtomicOrdering::Acquire ||
MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) {
Changed |= CC->insertWait(MI, MOI.getScope(),
MOI.getInstrAddrSpace(),
SIMemOp::LOAD,
MOI.getIsCrossAddressSpaceOrdering(),
Position::AFTER);
Changed |= CC->insertAcquire(MI, MOI.getScope(),
MOI.getOrderingAddrSpace(),
Position::AFTER);
}
return Changed;
}
// Atomic instructions already bypass caches to the scope specified by the
// SyncScope operand. Only non-atomic volatile and nontemporal instructions
// need additional treatment.
Changed |= CC->enableVolatileAndOrNonTemporal(MI, MOI.getInstrAddrSpace(),
SIMemOp::LOAD, MOI.isVolatile(),
MOI.isNonTemporal());
return Changed;
}
bool SIMemoryLegalizer::expandStore(const SIMemOpInfo &MOI,
MachineBasicBlock::iterator &MI) {
assert(!MI->mayLoad() && MI->mayStore());
bool Changed = false;
if (MOI.isAtomic()) {
if (MOI.getOrdering() == AtomicOrdering::Monotonic ||
MOI.getOrdering() == AtomicOrdering::Release ||
MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) {
Changed |= CC->enableStoreCacheBypass(MI, MOI.getScope(),
MOI.getOrderingAddrSpace());
}
if (MOI.getOrdering() == AtomicOrdering::Release ||
MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent)
Changed |= CC->insertRelease(MI, MOI.getScope(),
MOI.getOrderingAddrSpace(),
MOI.getIsCrossAddressSpaceOrdering(),
Position::BEFORE);
return Changed;
}
// Atomic instructions already bypass caches to the scope specified by the
// SyncScope operand. Only non-atomic volatile and nontemporal instructions
// need additional treatment.
Changed |= CC->enableVolatileAndOrNonTemporal(
MI, MOI.getInstrAddrSpace(), SIMemOp::STORE, MOI.isVolatile(),
MOI.isNonTemporal());
return Changed;
}
bool SIMemoryLegalizer::expandAtomicFence(const SIMemOpInfo &MOI,
MachineBasicBlock::iterator &MI) {
assert(MI->getOpcode() == AMDGPU::ATOMIC_FENCE);
AtomicPseudoMIs.push_back(MI);
bool Changed = false;
if (MOI.isAtomic()) {
if (MOI.getOrdering() == AtomicOrdering::Acquire)
Changed |= CC->insertWait(MI, MOI.getScope(), MOI.getOrderingAddrSpace(),
SIMemOp::LOAD | SIMemOp::STORE,
MOI.getIsCrossAddressSpaceOrdering(),
Position::BEFORE);
if (MOI.getOrdering() == AtomicOrdering::Release ||
MOI.getOrdering() == AtomicOrdering::AcquireRelease ||
MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent)
/// TODO: This relies on a barrier always generating a waitcnt
/// for LDS to ensure it is not reordered with the completion of
/// the proceeding LDS operations. If barrier had a memory
/// ordering and memory scope, then library does not need to
/// generate a fence. Could add support in this file for
/// barrier. SIInsertWaitcnt.cpp could then stop unconditionally
/// adding S_WAITCNT before a S_BARRIER.
Changed |= CC->insertRelease(MI, MOI.getScope(),
MOI.getOrderingAddrSpace(),
MOI.getIsCrossAddressSpaceOrdering(),
Position::BEFORE);
// TODO: If both release and invalidate are happening they could be combined
// to use the single "BUFFER_WBINV*" instruction. This could be done by
// reorganizing this code or as part of optimizing SIInsertWaitcnt pass to
// track cache invalidate and write back instructions.
if (MOI.getOrdering() == AtomicOrdering::Acquire ||
MOI.getOrdering() == AtomicOrdering::AcquireRelease ||
MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent)
Changed |= CC->insertAcquire(MI, MOI.getScope(),
MOI.getOrderingAddrSpace(),
Position::BEFORE);
return Changed;
}
return Changed;
}
bool SIMemoryLegalizer::expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI,
MachineBasicBlock::iterator &MI) {
assert(MI->mayLoad() && MI->mayStore());
bool Changed = false;
if (MOI.isAtomic()) {
if (MOI.getOrdering() == AtomicOrdering::Monotonic ||
MOI.getOrdering() == AtomicOrdering::Acquire ||
MOI.getOrdering() == AtomicOrdering::Release ||
MOI.getOrdering() == AtomicOrdering::AcquireRelease ||
MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) {
Changed |= CC->enableRMWCacheBypass(MI, MOI.getScope(),
MOI.getInstrAddrSpace());
}
if (MOI.getOrdering() == AtomicOrdering::Release ||
MOI.getOrdering() == AtomicOrdering::AcquireRelease ||
MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent ||
MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent)
Changed |= CC->insertRelease(MI, MOI.getScope(),
MOI.getOrderingAddrSpace(),
MOI.getIsCrossAddressSpaceOrdering(),
Position::BEFORE);
if (MOI.getOrdering() == AtomicOrdering::Acquire ||
MOI.getOrdering() == AtomicOrdering::AcquireRelease ||
MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent ||
MOI.getFailureOrdering() == AtomicOrdering::Acquire ||
MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) {
Changed |= CC->insertWait(MI, MOI.getScope(),
MOI.getInstrAddrSpace(),
isAtomicRet(*MI) ? SIMemOp::LOAD :
SIMemOp::STORE,
MOI.getIsCrossAddressSpaceOrdering(),
Position::AFTER);
Changed |= CC->insertAcquire(MI, MOI.getScope(),
MOI.getOrderingAddrSpace(),
Position::AFTER);
}
return Changed;
}
return Changed;
}
bool SIMemoryLegalizer::runOnMachineFunction(MachineFunction &MF) {
bool Changed = false;
SIMemOpAccess MOA(MF);
CC = SICacheControl::create(MF.getSubtarget<GCNSubtarget>());
for (auto &MBB : MF) {
for (auto MI = MBB.begin(); MI != MBB.end(); ++MI) {
// Unbundle instructions after the post-RA scheduler.
if (MI->isBundle() && MI->mayLoadOrStore()) {
MachineBasicBlock::instr_iterator II(MI->getIterator());
for (MachineBasicBlock::instr_iterator I = ++II, E = MBB.instr_end();
I != E && I->isBundledWithPred(); ++I) {
I->unbundleFromPred();
for (MachineOperand &MO : I->operands())
if (MO.isReg())
MO.setIsInternalRead(false);
}
MI->eraseFromParent();
MI = II->getIterator();
}
if (!(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic))
continue;
if (const auto &MOI = MOA.getLoadInfo(MI))
Changed |= expandLoad(*MOI, MI);
else if (const auto &MOI = MOA.getStoreInfo(MI)) {
Changed |= expandStore(*MOI, MI);
Changed |= CC->tryForceStoreSC0SC1(*MOI, MI);
} else if (const auto &MOI = MOA.getAtomicFenceInfo(MI))
Changed |= expandAtomicFence(*MOI, MI);
else if (const auto &MOI = MOA.getAtomicCmpxchgOrRmwInfo(MI))
Changed |= expandAtomicCmpxchgOrRmw(*MOI, MI);
}
}
Changed |= removeAtomicPseudoMIs();
return Changed;
}
INITIALIZE_PASS(SIMemoryLegalizer, DEBUG_TYPE, PASS_NAME, false, false)
char SIMemoryLegalizer::ID = 0;
char &llvm::SIMemoryLegalizerID = SIMemoryLegalizer::ID;
FunctionPass *llvm::createSIMemoryLegalizerPass() {
return new SIMemoryLegalizer();
}
|