1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
|
//===-- SIOptimizeExecMasking.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
#define DEBUG_TYPE "si-optimize-exec-masking"
namespace {
class SIOptimizeExecMasking : public MachineFunctionPass {
MachineFunction *MF = nullptr;
const GCNSubtarget *ST = nullptr;
const SIRegisterInfo *TRI = nullptr;
const SIInstrInfo *TII = nullptr;
const MachineRegisterInfo *MRI = nullptr;
MCRegister Exec;
DenseMap<MachineInstr *, MachineInstr *> SaveExecVCmpMapping;
SmallVector<std::pair<MachineInstr *, MachineInstr *>, 1> OrXors;
Register isCopyFromExec(const MachineInstr &MI) const;
Register isCopyToExec(const MachineInstr &MI) const;
bool removeTerminatorBit(MachineInstr &MI) const;
MachineBasicBlock::reverse_iterator
fixTerminators(MachineBasicBlock &MBB) const;
MachineBasicBlock::reverse_iterator
findExecCopy(MachineBasicBlock &MBB,
MachineBasicBlock::reverse_iterator I) const;
bool isRegisterInUseBetween(MachineInstr &Stop, MachineInstr &Start,
MCRegister Reg, bool UseLiveOuts = false,
bool IgnoreStart = false) const;
bool isRegisterInUseAfter(MachineInstr &Stop, MCRegister Reg) const;
MachineInstr *findInstrBackwards(MachineInstr &Origin,
std::function<bool(MachineInstr *)> Pred,
ArrayRef<MCRegister> NonModifiableRegs,
unsigned MaxInstructions = 20) const;
bool optimizeExecSequence();
void tryRecordVCmpxAndSaveexecSequence(MachineInstr &MI);
bool optimizeVCMPSaveExecSequence(MachineInstr &SaveExecInstr,
MachineInstr &VCmp, MCRegister Exec) const;
void tryRecordOrSaveexecXorSequence(MachineInstr &MI);
bool optimizeOrSaveexecXorSequences();
public:
static char ID;
SIOptimizeExecMasking() : MachineFunctionPass(ID) {
initializeSIOptimizeExecMaskingPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "SI optimize exec mask operations";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // End anonymous namespace.
INITIALIZE_PASS_BEGIN(SIOptimizeExecMasking, DEBUG_TYPE,
"SI optimize exec mask operations", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(SIOptimizeExecMasking, DEBUG_TYPE,
"SI optimize exec mask operations", false, false)
char SIOptimizeExecMasking::ID = 0;
char &llvm::SIOptimizeExecMaskingID = SIOptimizeExecMasking::ID;
/// If \p MI is a copy from exec, return the register copied to.
Register SIOptimizeExecMasking::isCopyFromExec(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
case AMDGPU::COPY:
case AMDGPU::S_MOV_B64:
case AMDGPU::S_MOV_B64_term:
case AMDGPU::S_MOV_B32:
case AMDGPU::S_MOV_B32_term: {
const MachineOperand &Src = MI.getOperand(1);
if (Src.isReg() && Src.getReg() == Exec)
return MI.getOperand(0).getReg();
}
}
return AMDGPU::NoRegister;
}
/// If \p MI is a copy to exec, return the register copied from.
Register SIOptimizeExecMasking::isCopyToExec(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
case AMDGPU::COPY:
case AMDGPU::S_MOV_B64:
case AMDGPU::S_MOV_B32: {
const MachineOperand &Dst = MI.getOperand(0);
if (Dst.isReg() && Dst.getReg() == Exec && MI.getOperand(1).isReg())
return MI.getOperand(1).getReg();
break;
}
case AMDGPU::S_MOV_B64_term:
case AMDGPU::S_MOV_B32_term:
llvm_unreachable("should have been replaced");
}
return Register();
}
/// If \p MI is a logical operation on an exec value,
/// return the register copied to.
static Register isLogicalOpOnExec(const MachineInstr &MI) {
switch (MI.getOpcode()) {
case AMDGPU::S_AND_B64:
case AMDGPU::S_OR_B64:
case AMDGPU::S_XOR_B64:
case AMDGPU::S_ANDN2_B64:
case AMDGPU::S_ORN2_B64:
case AMDGPU::S_NAND_B64:
case AMDGPU::S_NOR_B64:
case AMDGPU::S_XNOR_B64: {
const MachineOperand &Src1 = MI.getOperand(1);
if (Src1.isReg() && Src1.getReg() == AMDGPU::EXEC)
return MI.getOperand(0).getReg();
const MachineOperand &Src2 = MI.getOperand(2);
if (Src2.isReg() && Src2.getReg() == AMDGPU::EXEC)
return MI.getOperand(0).getReg();
break;
}
case AMDGPU::S_AND_B32:
case AMDGPU::S_OR_B32:
case AMDGPU::S_XOR_B32:
case AMDGPU::S_ANDN2_B32:
case AMDGPU::S_ORN2_B32:
case AMDGPU::S_NAND_B32:
case AMDGPU::S_NOR_B32:
case AMDGPU::S_XNOR_B32: {
const MachineOperand &Src1 = MI.getOperand(1);
if (Src1.isReg() && Src1.getReg() == AMDGPU::EXEC_LO)
return MI.getOperand(0).getReg();
const MachineOperand &Src2 = MI.getOperand(2);
if (Src2.isReg() && Src2.getReg() == AMDGPU::EXEC_LO)
return MI.getOperand(0).getReg();
break;
}
}
return AMDGPU::NoRegister;
}
static unsigned getSaveExecOp(unsigned Opc) {
switch (Opc) {
case AMDGPU::S_AND_B64:
return AMDGPU::S_AND_SAVEEXEC_B64;
case AMDGPU::S_OR_B64:
return AMDGPU::S_OR_SAVEEXEC_B64;
case AMDGPU::S_XOR_B64:
return AMDGPU::S_XOR_SAVEEXEC_B64;
case AMDGPU::S_ANDN2_B64:
return AMDGPU::S_ANDN2_SAVEEXEC_B64;
case AMDGPU::S_ORN2_B64:
return AMDGPU::S_ORN2_SAVEEXEC_B64;
case AMDGPU::S_NAND_B64:
return AMDGPU::S_NAND_SAVEEXEC_B64;
case AMDGPU::S_NOR_B64:
return AMDGPU::S_NOR_SAVEEXEC_B64;
case AMDGPU::S_XNOR_B64:
return AMDGPU::S_XNOR_SAVEEXEC_B64;
case AMDGPU::S_AND_B32:
return AMDGPU::S_AND_SAVEEXEC_B32;
case AMDGPU::S_OR_B32:
return AMDGPU::S_OR_SAVEEXEC_B32;
case AMDGPU::S_XOR_B32:
return AMDGPU::S_XOR_SAVEEXEC_B32;
case AMDGPU::S_ANDN2_B32:
return AMDGPU::S_ANDN2_SAVEEXEC_B32;
case AMDGPU::S_ORN2_B32:
return AMDGPU::S_ORN2_SAVEEXEC_B32;
case AMDGPU::S_NAND_B32:
return AMDGPU::S_NAND_SAVEEXEC_B32;
case AMDGPU::S_NOR_B32:
return AMDGPU::S_NOR_SAVEEXEC_B32;
case AMDGPU::S_XNOR_B32:
return AMDGPU::S_XNOR_SAVEEXEC_B32;
default:
return AMDGPU::INSTRUCTION_LIST_END;
}
}
// These are only terminators to get correct spill code placement during
// register allocation, so turn them back into normal instructions.
bool SIOptimizeExecMasking::removeTerminatorBit(MachineInstr &MI) const {
switch (MI.getOpcode()) {
case AMDGPU::S_MOV_B32_term: {
bool RegSrc = MI.getOperand(1).isReg();
MI.setDesc(TII->get(RegSrc ? AMDGPU::COPY : AMDGPU::S_MOV_B32));
return true;
}
case AMDGPU::S_MOV_B64_term: {
bool RegSrc = MI.getOperand(1).isReg();
MI.setDesc(TII->get(RegSrc ? AMDGPU::COPY : AMDGPU::S_MOV_B64));
return true;
}
case AMDGPU::S_XOR_B64_term: {
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(TII->get(AMDGPU::S_XOR_B64));
return true;
}
case AMDGPU::S_XOR_B32_term: {
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(TII->get(AMDGPU::S_XOR_B32));
return true;
}
case AMDGPU::S_OR_B64_term: {
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(TII->get(AMDGPU::S_OR_B64));
return true;
}
case AMDGPU::S_OR_B32_term: {
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(TII->get(AMDGPU::S_OR_B32));
return true;
}
case AMDGPU::S_ANDN2_B64_term: {
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(TII->get(AMDGPU::S_ANDN2_B64));
return true;
}
case AMDGPU::S_ANDN2_B32_term: {
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(TII->get(AMDGPU::S_ANDN2_B32));
return true;
}
case AMDGPU::S_AND_B64_term: {
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(TII->get(AMDGPU::S_AND_B64));
return true;
}
case AMDGPU::S_AND_B32_term: {
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(TII->get(AMDGPU::S_AND_B32));
return true;
}
default:
return false;
}
}
// Turn all pseudoterminators in the block into their equivalent non-terminator
// instructions. Returns the reverse iterator to the first non-terminator
// instruction in the block.
MachineBasicBlock::reverse_iterator
SIOptimizeExecMasking::fixTerminators(MachineBasicBlock &MBB) const {
MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
bool Seen = false;
MachineBasicBlock::reverse_iterator FirstNonTerm = I;
for (; I != E; ++I) {
if (!I->isTerminator())
return Seen ? FirstNonTerm : I;
if (removeTerminatorBit(*I)) {
if (!Seen) {
FirstNonTerm = I;
Seen = true;
}
}
}
return FirstNonTerm;
}
MachineBasicBlock::reverse_iterator SIOptimizeExecMasking::findExecCopy(
MachineBasicBlock &MBB, MachineBasicBlock::reverse_iterator I) const {
const unsigned InstLimit = 25;
auto E = MBB.rend();
for (unsigned N = 0; N <= InstLimit && I != E; ++I, ++N) {
Register CopyFromExec = isCopyFromExec(*I);
if (CopyFromExec.isValid())
return I;
}
return E;
}
// XXX - Seems LivePhysRegs doesn't work correctly since it will incorrectly
// report the register as unavailable because a super-register with a lane mask
// is unavailable.
static bool isLiveOut(const MachineBasicBlock &MBB, unsigned Reg) {
for (MachineBasicBlock *Succ : MBB.successors()) {
if (Succ->isLiveIn(Reg))
return true;
}
return false;
}
// Backwards-iterate from Origin (for n=MaxInstructions iterations) until either
// the beginning of the BB is reached or Pred evaluates to true - which can be
// an arbitrary condition based on the current MachineInstr, for instance an
// target instruction. Breaks prematurely by returning nullptr if one of the
// registers given in NonModifiableRegs is modified by the current instruction.
MachineInstr *SIOptimizeExecMasking::findInstrBackwards(
MachineInstr &Origin, std::function<bool(MachineInstr *)> Pred,
ArrayRef<MCRegister> NonModifiableRegs, unsigned MaxInstructions) const {
MachineBasicBlock::reverse_iterator A = Origin.getReverseIterator(),
E = Origin.getParent()->rend();
unsigned CurrentIteration = 0;
for (++A; CurrentIteration < MaxInstructions && A != E; ++A) {
if (A->isDebugInstr())
continue;
if (Pred(&*A))
return &*A;
for (MCRegister Reg : NonModifiableRegs) {
if (A->modifiesRegister(Reg, TRI))
return nullptr;
}
++CurrentIteration;
}
return nullptr;
}
// Determine if a register Reg is not re-defined and still in use
// in the range (Stop..Start].
// It does so by backwards calculating liveness from the end of the BB until
// either Stop or the beginning of the BB is reached.
// After liveness is calculated, we can determine if Reg is still in use and not
// defined inbetween the instructions.
bool SIOptimizeExecMasking::isRegisterInUseBetween(MachineInstr &Stop,
MachineInstr &Start,
MCRegister Reg,
bool UseLiveOuts,
bool IgnoreStart) const {
LivePhysRegs LR(*TRI);
if (UseLiveOuts)
LR.addLiveOuts(*Stop.getParent());
MachineBasicBlock::reverse_iterator A(Start);
if (IgnoreStart)
++A;
for (; A != Stop.getParent()->rend() && A != Stop; ++A) {
LR.stepBackward(*A);
}
return !LR.available(*MRI, Reg);
}
// Determine if a register Reg is not re-defined and still in use
// in the range (Stop..BB.end].
bool SIOptimizeExecMasking::isRegisterInUseAfter(MachineInstr &Stop,
MCRegister Reg) const {
return isRegisterInUseBetween(Stop, *Stop.getParent()->rbegin(), Reg, true);
}
// Optimize sequences emitted for control flow lowering. They are originally
// emitted as the separate operations because spill code may need to be
// inserted for the saved copy of exec.
//
// x = copy exec
// z = s_<op>_b64 x, y
// exec = copy z
// =>
// x = s_<op>_saveexec_b64 y
//
bool SIOptimizeExecMasking::optimizeExecSequence() {
bool Changed = false;
for (MachineBasicBlock &MBB : *MF) {
MachineBasicBlock::reverse_iterator I = fixTerminators(MBB);
MachineBasicBlock::reverse_iterator E = MBB.rend();
if (I == E)
continue;
// It's possible to see other terminator copies after the exec copy. This
// can happen if control flow pseudos had their outputs used by phis.
Register CopyToExec;
unsigned SearchCount = 0;
const unsigned SearchLimit = 5;
while (I != E && SearchCount++ < SearchLimit) {
CopyToExec = isCopyToExec(*I);
if (CopyToExec)
break;
++I;
}
if (!CopyToExec)
continue;
// Scan backwards to find the def.
auto *CopyToExecInst = &*I;
auto CopyFromExecInst = findExecCopy(MBB, I);
if (CopyFromExecInst == E) {
auto PrepareExecInst = std::next(I);
if (PrepareExecInst == E)
continue;
// Fold exec = COPY (S_AND_B64 reg, exec) -> exec = S_AND_B64 reg, exec
if (CopyToExecInst->getOperand(1).isKill() &&
isLogicalOpOnExec(*PrepareExecInst) == CopyToExec) {
LLVM_DEBUG(dbgs() << "Fold exec copy: " << *PrepareExecInst);
PrepareExecInst->getOperand(0).setReg(Exec);
LLVM_DEBUG(dbgs() << "into: " << *PrepareExecInst << '\n');
CopyToExecInst->eraseFromParent();
Changed = true;
}
continue;
}
if (isLiveOut(MBB, CopyToExec)) {
// The copied register is live out and has a second use in another block.
LLVM_DEBUG(dbgs() << "Exec copy source register is live out\n");
continue;
}
Register CopyFromExec = CopyFromExecInst->getOperand(0).getReg();
MachineInstr *SaveExecInst = nullptr;
SmallVector<MachineInstr *, 4> OtherUseInsts;
for (MachineBasicBlock::iterator
J = std::next(CopyFromExecInst->getIterator()),
JE = I->getIterator();
J != JE; ++J) {
if (SaveExecInst && J->readsRegister(Exec, TRI)) {
LLVM_DEBUG(dbgs() << "exec read prevents saveexec: " << *J << '\n');
// Make sure this is inserted after any VALU ops that may have been
// scheduled in between.
SaveExecInst = nullptr;
break;
}
bool ReadsCopyFromExec = J->readsRegister(CopyFromExec, TRI);
if (J->modifiesRegister(CopyToExec, TRI)) {
if (SaveExecInst) {
LLVM_DEBUG(dbgs() << "Multiple instructions modify "
<< printReg(CopyToExec, TRI) << '\n');
SaveExecInst = nullptr;
break;
}
unsigned SaveExecOp = getSaveExecOp(J->getOpcode());
if (SaveExecOp == AMDGPU::INSTRUCTION_LIST_END)
break;
if (ReadsCopyFromExec) {
SaveExecInst = &*J;
LLVM_DEBUG(dbgs() << "Found save exec op: " << *SaveExecInst << '\n');
continue;
} else {
LLVM_DEBUG(dbgs()
<< "Instruction does not read exec copy: " << *J << '\n');
break;
}
} else if (ReadsCopyFromExec && !SaveExecInst) {
// Make sure no other instruction is trying to use this copy, before it
// will be rewritten by the saveexec, i.e. hasOneUse. There may have
// been another use, such as an inserted spill. For example:
//
// %sgpr0_sgpr1 = COPY %exec
// spill %sgpr0_sgpr1
// %sgpr2_sgpr3 = S_AND_B64 %sgpr0_sgpr1
//
LLVM_DEBUG(dbgs() << "Found second use of save inst candidate: " << *J
<< '\n');
break;
}
if (SaveExecInst && J->readsRegister(CopyToExec, TRI)) {
assert(SaveExecInst != &*J);
OtherUseInsts.push_back(&*J);
}
}
if (!SaveExecInst)
continue;
LLVM_DEBUG(dbgs() << "Insert save exec op: " << *SaveExecInst << '\n');
MachineOperand &Src0 = SaveExecInst->getOperand(1);
MachineOperand &Src1 = SaveExecInst->getOperand(2);
MachineOperand *OtherOp = nullptr;
if (Src0.isReg() && Src0.getReg() == CopyFromExec) {
OtherOp = &Src1;
} else if (Src1.isReg() && Src1.getReg() == CopyFromExec) {
if (!SaveExecInst->isCommutable())
break;
OtherOp = &Src0;
} else
llvm_unreachable("unexpected");
CopyFromExecInst->eraseFromParent();
auto InsPt = SaveExecInst->getIterator();
const DebugLoc &DL = SaveExecInst->getDebugLoc();
BuildMI(MBB, InsPt, DL, TII->get(getSaveExecOp(SaveExecInst->getOpcode())),
CopyFromExec)
.addReg(OtherOp->getReg());
SaveExecInst->eraseFromParent();
CopyToExecInst->eraseFromParent();
for (MachineInstr *OtherInst : OtherUseInsts) {
OtherInst->substituteRegister(CopyToExec, Exec, AMDGPU::NoSubRegister,
*TRI);
}
Changed = true;
}
return Changed;
}
// Inserts the optimized s_mov_b32 / v_cmpx sequence based on the
// operands extracted from a v_cmp ..., s_and_saveexec pattern.
bool SIOptimizeExecMasking::optimizeVCMPSaveExecSequence(
MachineInstr &SaveExecInstr, MachineInstr &VCmp, MCRegister Exec) const {
const int NewOpcode = AMDGPU::getVCMPXOpFromVCMP(VCmp.getOpcode());
if (NewOpcode == -1)
return false;
MachineOperand *Src0 = TII->getNamedOperand(VCmp, AMDGPU::OpName::src0);
MachineOperand *Src1 = TII->getNamedOperand(VCmp, AMDGPU::OpName::src1);
Register MoveDest = SaveExecInstr.getOperand(0).getReg();
MachineBasicBlock::instr_iterator InsertPosIt = SaveExecInstr.getIterator();
if (!SaveExecInstr.uses().empty()) {
bool IsSGPR32 = TRI->getRegSizeInBits(MoveDest, *MRI) == 32;
unsigned MovOpcode = IsSGPR32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
BuildMI(*SaveExecInstr.getParent(), InsertPosIt,
SaveExecInstr.getDebugLoc(), TII->get(MovOpcode), MoveDest)
.addReg(Exec);
}
// Omit dst as V_CMPX is implicitly writing to EXEC.
// Add dummy src and clamp modifiers, if needed.
auto Builder = BuildMI(*VCmp.getParent(), std::next(InsertPosIt),
VCmp.getDebugLoc(), TII->get(NewOpcode));
auto TryAddImmediateValueFromNamedOperand =
[&](unsigned OperandName) -> void {
if (auto *Mod = TII->getNamedOperand(VCmp, OperandName))
Builder.addImm(Mod->getImm());
};
TryAddImmediateValueFromNamedOperand(AMDGPU::OpName::src0_modifiers);
Builder.add(*Src0);
TryAddImmediateValueFromNamedOperand(AMDGPU::OpName::src1_modifiers);
Builder.add(*Src1);
TryAddImmediateValueFromNamedOperand(AMDGPU::OpName::clamp);
// The kill flags may no longer be correct.
if (Src0->isReg())
MRI->clearKillFlags(Src0->getReg());
if (Src1->isReg())
MRI->clearKillFlags(Src1->getReg());
SaveExecInstr.eraseFromParent();
VCmp.eraseFromParent();
return true;
}
// Record (on GFX10.3 and later) occurences of
// v_cmp_* SGPR, IMM, VGPR
// s_and_saveexec_b32 EXEC_SGPR_DEST, SGPR
// to be replaced with
// s_mov_b32 EXEC_SGPR_DEST, exec_lo
// v_cmpx_* IMM, VGPR
// to reduce pipeline stalls.
void SIOptimizeExecMasking::tryRecordVCmpxAndSaveexecSequence(
MachineInstr &MI) {
if (!ST->hasGFX10_3Insts())
return;
const unsigned AndSaveExecOpcode =
ST->isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64;
if (MI.getOpcode() != AndSaveExecOpcode)
return;
Register SaveExecDest = MI.getOperand(0).getReg();
if (!TRI->isSGPRReg(*MRI, SaveExecDest))
return;
MachineOperand *SaveExecSrc0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
if (!SaveExecSrc0->isReg())
return;
// Tries to find a possibility to optimize a v_cmp ..., s_and_saveexec
// sequence by looking at an instance of an s_and_saveexec instruction.
// Returns a pointer to the v_cmp instruction if it is safe to replace the
// sequence (see the conditions in the function body). This is after register
// allocation, so some checks on operand dependencies need to be considered.
MachineInstr *VCmp = nullptr;
// Try to find the last v_cmp instruction that defs the saveexec input
// operand without any write to Exec or the saveexec input operand inbetween.
VCmp = findInstrBackwards(
MI,
[&](MachineInstr *Check) {
return AMDGPU::getVCMPXOpFromVCMP(Check->getOpcode()) != -1 &&
Check->modifiesRegister(SaveExecSrc0->getReg(), TRI);
},
{Exec, SaveExecSrc0->getReg()});
if (!VCmp)
return;
MachineOperand *VCmpDest = TII->getNamedOperand(*VCmp, AMDGPU::OpName::sdst);
assert(VCmpDest && "Should have an sdst operand!");
// Check if any of the v_cmp source operands is written by the saveexec.
MachineOperand *Src0 = TII->getNamedOperand(*VCmp, AMDGPU::OpName::src0);
if (Src0->isReg() && TRI->isSGPRReg(*MRI, Src0->getReg()) &&
MI.modifiesRegister(Src0->getReg(), TRI))
return;
MachineOperand *Src1 = TII->getNamedOperand(*VCmp, AMDGPU::OpName::src1);
if (Src1->isReg() && TRI->isSGPRReg(*MRI, Src1->getReg()) &&
MI.modifiesRegister(Src1->getReg(), TRI))
return;
// Don't do the transformation if the destination operand is included in
// it's MBB Live-outs, meaning it's used in any of its successors, leading
// to incorrect code if the v_cmp and therefore the def of
// the dest operand is removed.
if (isLiveOut(*VCmp->getParent(), VCmpDest->getReg()))
return;
// If the v_cmp target is in use between v_cmp and s_and_saveexec or after the
// s_and_saveexec, skip the optimization.
if (isRegisterInUseBetween(*VCmp, MI, VCmpDest->getReg(), false, true) ||
isRegisterInUseAfter(MI, VCmpDest->getReg()))
return;
// Try to determine if there is a write to any of the VCmp
// operands between the saveexec and the vcmp.
// If yes, additional VGPR spilling might need to be inserted. In this case,
// it's not worth replacing the instruction sequence.
SmallVector<MCRegister, 2> NonDefRegs;
if (Src0->isReg())
NonDefRegs.push_back(Src0->getReg());
if (Src1->isReg())
NonDefRegs.push_back(Src1->getReg());
if (!findInstrBackwards(
MI, [&](MachineInstr *Check) { return Check == VCmp; }, NonDefRegs))
return;
if (VCmp)
SaveExecVCmpMapping[&MI] = VCmp;
}
// Record occurences of
// s_or_saveexec s_o, s_i
// s_xor exec, exec, s_o
// to be replaced with
// s_andn2_saveexec s_o, s_i.
void SIOptimizeExecMasking::tryRecordOrSaveexecXorSequence(MachineInstr &MI) {
const unsigned XorOpcode =
ST->isWave32() ? AMDGPU::S_XOR_B32 : AMDGPU::S_XOR_B64;
if (MI.getOpcode() == XorOpcode && &MI != &MI.getParent()->front()) {
const MachineOperand &XorDst = MI.getOperand(0);
const MachineOperand &XorSrc0 = MI.getOperand(1);
const MachineOperand &XorSrc1 = MI.getOperand(2);
if (XorDst.isReg() && XorDst.getReg() == Exec && XorSrc0.isReg() &&
XorSrc1.isReg() &&
(XorSrc0.getReg() == Exec || XorSrc1.getReg() == Exec)) {
const unsigned OrSaveexecOpcode = ST->isWave32()
? AMDGPU::S_OR_SAVEEXEC_B32
: AMDGPU::S_OR_SAVEEXEC_B64;
// Peek at the previous instruction and check if this is a relevant
// s_or_saveexec instruction.
MachineInstr &PossibleOrSaveexec = *MI.getPrevNode();
if (PossibleOrSaveexec.getOpcode() != OrSaveexecOpcode)
return;
const MachineOperand &OrDst = PossibleOrSaveexec.getOperand(0);
const MachineOperand &OrSrc0 = PossibleOrSaveexec.getOperand(1);
if (OrDst.isReg() && OrSrc0.isReg()) {
if ((XorSrc0.getReg() == Exec && XorSrc1.getReg() == OrDst.getReg()) ||
(XorSrc0.getReg() == OrDst.getReg() && XorSrc1.getReg() == Exec)) {
OrXors.emplace_back(&PossibleOrSaveexec, &MI);
}
}
}
}
}
bool SIOptimizeExecMasking::optimizeOrSaveexecXorSequences() {
if (OrXors.empty()) {
return false;
}
bool Changed = false;
const unsigned Andn2Opcode = ST->isWave32() ? AMDGPU::S_ANDN2_SAVEEXEC_B32
: AMDGPU::S_ANDN2_SAVEEXEC_B64;
for (const auto &Pair : OrXors) {
MachineInstr *Or = nullptr;
MachineInstr *Xor = nullptr;
std::tie(Or, Xor) = Pair;
BuildMI(*Or->getParent(), Or->getIterator(), Or->getDebugLoc(),
TII->get(Andn2Opcode), Or->getOperand(0).getReg())
.addReg(Or->getOperand(1).getReg());
Or->eraseFromParent();
Xor->eraseFromParent();
Changed = true;
}
return Changed;
}
bool SIOptimizeExecMasking::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
this->MF = &MF;
ST = &MF.getSubtarget<GCNSubtarget>();
TRI = ST->getRegisterInfo();
TII = ST->getInstrInfo();
MRI = &MF.getRegInfo();
Exec = TRI->getExec();
bool Changed = optimizeExecSequence();
OrXors.clear();
SaveExecVCmpMapping.clear();
static unsigned SearchWindow = 10;
for (MachineBasicBlock &MBB : MF) {
unsigned SearchCount = 0;
for (auto &MI : llvm::reverse(MBB)) {
if (MI.isDebugInstr())
continue;
if (SearchCount >= SearchWindow) {
break;
}
tryRecordOrSaveexecXorSequence(MI);
tryRecordVCmpxAndSaveexecSequence(MI);
if (MI.modifiesRegister(Exec, TRI)) {
break;
}
++SearchCount;
}
}
Changed |= optimizeOrSaveexecXorSequences();
for (const auto &Entry : SaveExecVCmpMapping) {
MachineInstr *SaveExecInstr = Entry.getFirst();
MachineInstr *VCmpInstr = Entry.getSecond();
Changed |= optimizeVCMPSaveExecSequence(*SaveExecInstr, *VCmpInstr, Exec);
}
return Changed;
}
|