1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
//===-- SIPreEmitPeephole.cpp ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass performs the peephole optimizations before code emission.
///
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
using namespace llvm;
#define DEBUG_TYPE "si-pre-emit-peephole"
static unsigned SkipThreshold;
static cl::opt<unsigned, true> SkipThresholdFlag(
"amdgpu-skip-threshold", cl::Hidden,
cl::desc(
"Number of instructions before jumping over divergent control flow"),
cl::location(SkipThreshold), cl::init(12));
namespace {
class SIPreEmitPeephole : public MachineFunctionPass {
private:
const SIInstrInfo *TII = nullptr;
const SIRegisterInfo *TRI = nullptr;
bool optimizeVccBranch(MachineInstr &MI) const;
bool optimizeSetGPR(MachineInstr &First, MachineInstr &MI) const;
bool getBlockDestinations(MachineBasicBlock &SrcMBB,
MachineBasicBlock *&TrueMBB,
MachineBasicBlock *&FalseMBB,
SmallVectorImpl<MachineOperand> &Cond);
bool mustRetainExeczBranch(const MachineBasicBlock &From,
const MachineBasicBlock &To) const;
bool removeExeczBranch(MachineInstr &MI, MachineBasicBlock &SrcMBB);
public:
static char ID;
SIPreEmitPeephole() : MachineFunctionPass(ID) {
initializeSIPreEmitPeepholePass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
};
} // End anonymous namespace.
INITIALIZE_PASS(SIPreEmitPeephole, DEBUG_TYPE,
"SI peephole optimizations", false, false)
char SIPreEmitPeephole::ID = 0;
char &llvm::SIPreEmitPeepholeID = SIPreEmitPeephole::ID;
bool SIPreEmitPeephole::optimizeVccBranch(MachineInstr &MI) const {
// Match:
// sreg = -1 or 0
// vcc = S_AND_B64 exec, sreg or S_ANDN2_B64 exec, sreg
// S_CBRANCH_VCC[N]Z
// =>
// S_CBRANCH_EXEC[N]Z
// We end up with this pattern sometimes after basic block placement.
// It happens while combining a block which assigns -1 or 0 to a saved mask
// and another block which consumes that saved mask and then a branch.
//
// While searching this also performs the following substitution:
// vcc = V_CMP
// vcc = S_AND exec, vcc
// S_CBRANCH_VCC[N]Z
// =>
// vcc = V_CMP
// S_CBRANCH_VCC[N]Z
bool Changed = false;
MachineBasicBlock &MBB = *MI.getParent();
const GCNSubtarget &ST = MBB.getParent()->getSubtarget<GCNSubtarget>();
const bool IsWave32 = ST.isWave32();
const unsigned CondReg = TRI->getVCC();
const unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
const unsigned And = IsWave32 ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64;
const unsigned AndN2 = IsWave32 ? AMDGPU::S_ANDN2_B32 : AMDGPU::S_ANDN2_B64;
const unsigned Mov = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
MachineBasicBlock::reverse_iterator A = MI.getReverseIterator(),
E = MBB.rend();
bool ReadsCond = false;
unsigned Threshold = 5;
for (++A; A != E; ++A) {
if (!--Threshold)
return false;
if (A->modifiesRegister(ExecReg, TRI))
return false;
if (A->modifiesRegister(CondReg, TRI)) {
if (!A->definesRegister(CondReg, TRI) ||
(A->getOpcode() != And && A->getOpcode() != AndN2))
return false;
break;
}
ReadsCond |= A->readsRegister(CondReg, TRI);
}
if (A == E)
return false;
MachineOperand &Op1 = A->getOperand(1);
MachineOperand &Op2 = A->getOperand(2);
if (Op1.getReg() != ExecReg && Op2.isReg() && Op2.getReg() == ExecReg) {
TII->commuteInstruction(*A);
Changed = true;
}
if (Op1.getReg() != ExecReg)
return Changed;
if (Op2.isImm() && !(Op2.getImm() == -1 || Op2.getImm() == 0))
return Changed;
int64_t MaskValue = 0;
Register SReg;
if (Op2.isReg()) {
SReg = Op2.getReg();
auto M = std::next(A);
bool ReadsSreg = false;
bool ModifiesExec = false;
for (; M != E; ++M) {
if (M->definesRegister(SReg, TRI))
break;
if (M->modifiesRegister(SReg, TRI))
return Changed;
ReadsSreg |= M->readsRegister(SReg, TRI);
ModifiesExec |= M->modifiesRegister(ExecReg, TRI);
}
if (M == E)
return Changed;
// If SReg is VCC and SReg definition is a VALU comparison.
// This means S_AND with EXEC is not required.
// Erase the S_AND and return.
// Note: isVOPC is used instead of isCompare to catch V_CMP_CLASS
if (A->getOpcode() == And && SReg == CondReg && !ModifiesExec &&
TII->isVOPC(*M)) {
A->eraseFromParent();
return true;
}
if (!M->isMoveImmediate() || !M->getOperand(1).isImm() ||
(M->getOperand(1).getImm() != -1 && M->getOperand(1).getImm() != 0))
return Changed;
MaskValue = M->getOperand(1).getImm();
// First if sreg is only used in the AND instruction fold the immediate
// into the AND.
if (!ReadsSreg && Op2.isKill()) {
A->getOperand(2).ChangeToImmediate(MaskValue);
M->eraseFromParent();
}
} else if (Op2.isImm()) {
MaskValue = Op2.getImm();
} else {
llvm_unreachable("Op2 must be register or immediate");
}
// Invert mask for s_andn2
assert(MaskValue == 0 || MaskValue == -1);
if (A->getOpcode() == AndN2)
MaskValue = ~MaskValue;
if (!ReadsCond && A->registerDefIsDead(AMDGPU::SCC)) {
if (!MI.killsRegister(CondReg, TRI)) {
// Replace AND with MOV
if (MaskValue == 0) {
BuildMI(*A->getParent(), *A, A->getDebugLoc(), TII->get(Mov), CondReg)
.addImm(0);
} else {
BuildMI(*A->getParent(), *A, A->getDebugLoc(), TII->get(Mov), CondReg)
.addReg(ExecReg);
}
}
// Remove AND instruction
A->eraseFromParent();
}
bool IsVCCZ = MI.getOpcode() == AMDGPU::S_CBRANCH_VCCZ;
if (SReg == ExecReg) {
// EXEC is updated directly
if (IsVCCZ) {
MI.eraseFromParent();
return true;
}
MI.setDesc(TII->get(AMDGPU::S_BRANCH));
} else if (IsVCCZ && MaskValue == 0) {
// Will always branch
// Remove all successors shadowed by new unconditional branch
MachineBasicBlock *Parent = MI.getParent();
SmallVector<MachineInstr *, 4> ToRemove;
bool Found = false;
for (MachineInstr &Term : Parent->terminators()) {
if (Found) {
if (Term.isBranch())
ToRemove.push_back(&Term);
} else {
Found = Term.isIdenticalTo(MI);
}
}
assert(Found && "conditional branch is not terminator");
for (auto *BranchMI : ToRemove) {
MachineOperand &Dst = BranchMI->getOperand(0);
assert(Dst.isMBB() && "destination is not basic block");
Parent->removeSuccessor(Dst.getMBB());
BranchMI->eraseFromParent();
}
if (MachineBasicBlock *Succ = Parent->getFallThrough()) {
Parent->removeSuccessor(Succ);
}
// Rewrite to unconditional branch
MI.setDesc(TII->get(AMDGPU::S_BRANCH));
} else if (!IsVCCZ && MaskValue == 0) {
// Will never branch
MachineOperand &Dst = MI.getOperand(0);
assert(Dst.isMBB() && "destination is not basic block");
MI.getParent()->removeSuccessor(Dst.getMBB());
MI.eraseFromParent();
return true;
} else if (MaskValue == -1) {
// Depends only on EXEC
MI.setDesc(
TII->get(IsVCCZ ? AMDGPU::S_CBRANCH_EXECZ : AMDGPU::S_CBRANCH_EXECNZ));
}
MI.removeOperand(MI.findRegisterUseOperandIdx(CondReg, false /*Kill*/, TRI));
MI.addImplicitDefUseOperands(*MBB.getParent());
return true;
}
bool SIPreEmitPeephole::optimizeSetGPR(MachineInstr &First,
MachineInstr &MI) const {
MachineBasicBlock &MBB = *MI.getParent();
const MachineFunction &MF = *MBB.getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
Register IdxReg = Idx->isReg() ? Idx->getReg() : Register();
SmallVector<MachineInstr *, 4> ToRemove;
bool IdxOn = true;
if (!MI.isIdenticalTo(First))
return false;
// Scan back to find an identical S_SET_GPR_IDX_ON
for (MachineBasicBlock::instr_iterator I = std::next(First.getIterator()),
E = MI.getIterator();
I != E; ++I) {
if (I->isBundle())
continue;
switch (I->getOpcode()) {
case AMDGPU::S_SET_GPR_IDX_MODE:
return false;
case AMDGPU::S_SET_GPR_IDX_OFF:
IdxOn = false;
ToRemove.push_back(&*I);
break;
default:
if (I->modifiesRegister(AMDGPU::M0, TRI))
return false;
if (IdxReg && I->modifiesRegister(IdxReg, TRI))
return false;
if (llvm::any_of(I->operands(),
[&MRI, this](const MachineOperand &MO) {
return MO.isReg() &&
TRI->isVectorRegister(MRI, MO.getReg());
})) {
// The only exception allowed here is another indirect vector move
// with the same mode.
if (!IdxOn || !(I->getOpcode() == AMDGPU::V_MOV_B32_indirect_write ||
I->getOpcode() == AMDGPU::V_MOV_B32_indirect_read))
return false;
}
}
}
MI.eraseFromBundle();
for (MachineInstr *RI : ToRemove)
RI->eraseFromBundle();
return true;
}
bool SIPreEmitPeephole::getBlockDestinations(
MachineBasicBlock &SrcMBB, MachineBasicBlock *&TrueMBB,
MachineBasicBlock *&FalseMBB, SmallVectorImpl<MachineOperand> &Cond) {
if (TII->analyzeBranch(SrcMBB, TrueMBB, FalseMBB, Cond))
return false;
if (!FalseMBB)
FalseMBB = SrcMBB.getNextNode();
return true;
}
bool SIPreEmitPeephole::mustRetainExeczBranch(
const MachineBasicBlock &From, const MachineBasicBlock &To) const {
unsigned NumInstr = 0;
const MachineFunction *MF = From.getParent();
for (MachineFunction::const_iterator MBBI(&From), ToI(&To), End = MF->end();
MBBI != End && MBBI != ToI; ++MBBI) {
const MachineBasicBlock &MBB = *MBBI;
for (const MachineInstr &MI : MBB) {
// When a uniform loop is inside non-uniform control flow, the branch
// leaving the loop might never be taken when EXEC = 0.
// Hence we should retain cbranch out of the loop lest it become infinite.
if (MI.isConditionalBranch())
return true;
if (TII->hasUnwantedEffectsWhenEXECEmpty(MI))
return true;
// These instructions are potentially expensive even if EXEC = 0.
if (TII->isSMRD(MI) || TII->isVMEM(MI) || TII->isFLAT(MI) ||
TII->isDS(MI) || MI.getOpcode() == AMDGPU::S_WAITCNT)
return true;
++NumInstr;
if (NumInstr >= SkipThreshold)
return true;
}
}
return false;
}
// Returns true if the skip branch instruction is removed.
bool SIPreEmitPeephole::removeExeczBranch(MachineInstr &MI,
MachineBasicBlock &SrcMBB) {
MachineBasicBlock *TrueMBB = nullptr;
MachineBasicBlock *FalseMBB = nullptr;
SmallVector<MachineOperand, 1> Cond;
if (!getBlockDestinations(SrcMBB, TrueMBB, FalseMBB, Cond))
return false;
// Consider only the forward branches.
if ((SrcMBB.getNumber() >= TrueMBB->getNumber()) ||
mustRetainExeczBranch(*FalseMBB, *TrueMBB))
return false;
LLVM_DEBUG(dbgs() << "Removing the execz branch: " << MI);
MI.eraseFromParent();
SrcMBB.removeSuccessor(TrueMBB);
return true;
}
bool SIPreEmitPeephole::runOnMachineFunction(MachineFunction &MF) {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
TII = ST.getInstrInfo();
TRI = &TII->getRegisterInfo();
bool Changed = false;
MF.RenumberBlocks();
for (MachineBasicBlock &MBB : MF) {
MachineBasicBlock::iterator TermI = MBB.getFirstTerminator();
// Check first terminator for branches to optimize
if (TermI != MBB.end()) {
MachineInstr &MI = *TermI;
switch (MI.getOpcode()) {
case AMDGPU::S_CBRANCH_VCCZ:
case AMDGPU::S_CBRANCH_VCCNZ:
Changed |= optimizeVccBranch(MI);
break;
case AMDGPU::S_CBRANCH_EXECZ:
Changed |= removeExeczBranch(MI, MBB);
break;
}
}
if (!ST.hasVGPRIndexMode())
continue;
MachineInstr *SetGPRMI = nullptr;
const unsigned Threshold = 20;
unsigned Count = 0;
// Scan the block for two S_SET_GPR_IDX_ON instructions to see if a
// second is not needed. Do expensive checks in the optimizeSetGPR()
// and limit the distance to 20 instructions for compile time purposes.
// Note: this needs to work on bundles as S_SET_GPR_IDX* instructions
// may be bundled with the instructions they modify.
for (auto &MI :
make_early_inc_range(make_range(MBB.instr_begin(), MBB.instr_end()))) {
if (Count == Threshold)
SetGPRMI = nullptr;
else
++Count;
if (MI.getOpcode() != AMDGPU::S_SET_GPR_IDX_ON)
continue;
Count = 0;
if (!SetGPRMI) {
SetGPRMI = &MI;
continue;
}
if (optimizeSetGPR(*SetGPRMI, MI))
Changed = true;
else
SetGPRMI = &MI;
}
}
return Changed;
}
|