1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
|
//===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass adds instructions to enable whole quad mode (strict or non-strict)
/// for pixel shaders, and strict whole wavefront mode for all programs.
///
/// The "strict" prefix indicates that inactive lanes do not take part in
/// control flow, specifically an inactive lane enabled by a strict WQM/WWM will
/// always be enabled irrespective of control flow decisions. Conversely in
/// non-strict WQM inactive lanes may control flow decisions.
///
/// Whole quad mode is required for derivative computations, but it interferes
/// with shader side effects (stores and atomics). It ensures that WQM is
/// enabled when necessary, but disabled around stores and atomics.
///
/// When necessary, this pass creates a function prolog
///
/// S_MOV_B64 LiveMask, EXEC
/// S_WQM_B64 EXEC, EXEC
///
/// to enter WQM at the top of the function and surrounds blocks of Exact
/// instructions by
///
/// S_AND_SAVEEXEC_B64 Tmp, LiveMask
/// ...
/// S_MOV_B64 EXEC, Tmp
///
/// We also compute when a sequence of instructions requires strict whole
/// wavefront mode (StrictWWM) and insert instructions to save and restore it:
///
/// S_OR_SAVEEXEC_B64 Tmp, -1
/// ...
/// S_MOV_B64 EXEC, Tmp
///
/// When a sequence of instructions requires strict whole quad mode (StrictWQM)
/// we use a similar save and restore mechanism and force whole quad mode for
/// those instructions:
///
/// S_MOV_B64 Tmp, EXEC
/// S_WQM_B64 EXEC, EXEC
/// ...
/// S_MOV_B64 EXEC, Tmp
///
/// In order to avoid excessive switching during sequences of Exact
/// instructions, the pass first analyzes which instructions must be run in WQM
/// (aka which instructions produce values that lead to derivative
/// computations).
///
/// Basic blocks are always exited in WQM as long as some successor needs WQM.
///
/// There is room for improvement given better control flow analysis:
///
/// (1) at the top level (outside of control flow statements, and as long as
/// kill hasn't been used), one SGPR can be saved by recovering WQM from
/// the LiveMask (this is implemented for the entry block).
///
/// (2) when entire regions (e.g. if-else blocks or entire loops) only
/// consist of exact and don't-care instructions, the switch only has to
/// be done at the entry and exit points rather than potentially in each
/// block of the region.
///
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "si-wqm"
namespace {
enum {
StateWQM = 0x1,
StateStrictWWM = 0x2,
StateStrictWQM = 0x4,
StateExact = 0x8,
StateStrict = StateStrictWWM | StateStrictWQM,
};
struct PrintState {
public:
int State;
explicit PrintState(int State) : State(State) {}
};
#ifndef NDEBUG
static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) {
static const std::pair<char, const char *> Mapping[] = {
std::pair(StateWQM, "WQM"), std::pair(StateStrictWWM, "StrictWWM"),
std::pair(StateStrictWQM, "StrictWQM"), std::pair(StateExact, "Exact")};
char State = PS.State;
for (auto M : Mapping) {
if (State & M.first) {
OS << M.second;
State &= ~M.first;
if (State)
OS << '|';
}
}
assert(State == 0);
return OS;
}
#endif
struct InstrInfo {
char Needs = 0;
char Disabled = 0;
char OutNeeds = 0;
};
struct BlockInfo {
char Needs = 0;
char InNeeds = 0;
char OutNeeds = 0;
char InitialState = 0;
bool NeedsLowering = false;
};
struct WorkItem {
MachineBasicBlock *MBB = nullptr;
MachineInstr *MI = nullptr;
WorkItem() = default;
WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {}
WorkItem(MachineInstr *MI) : MI(MI) {}
};
class SIWholeQuadMode : public MachineFunctionPass {
private:
const SIInstrInfo *TII;
const SIRegisterInfo *TRI;
const GCNSubtarget *ST;
MachineRegisterInfo *MRI;
LiveIntervals *LIS;
MachineDominatorTree *MDT;
MachinePostDominatorTree *PDT;
unsigned AndOpc;
unsigned AndTermOpc;
unsigned AndN2Opc;
unsigned XorOpc;
unsigned AndSaveExecOpc;
unsigned AndSaveExecTermOpc;
unsigned WQMOpc;
Register Exec;
Register LiveMaskReg;
DenseMap<const MachineInstr *, InstrInfo> Instructions;
MapVector<MachineBasicBlock *, BlockInfo> Blocks;
// Tracks state (WQM/StrictWWM/StrictWQM/Exact) after a given instruction
DenseMap<const MachineInstr *, char> StateTransition;
SmallVector<MachineInstr *, 2> LiveMaskQueries;
SmallVector<MachineInstr *, 4> LowerToMovInstrs;
SmallVector<MachineInstr *, 4> LowerToCopyInstrs;
SmallVector<MachineInstr *, 4> KillInstrs;
void printInfo();
void markInstruction(MachineInstr &MI, char Flag,
std::vector<WorkItem> &Worklist);
void markDefs(const MachineInstr &UseMI, LiveRange &LR, Register Reg,
unsigned SubReg, char Flag, std::vector<WorkItem> &Worklist);
void markOperand(const MachineInstr &MI, const MachineOperand &Op, char Flag,
std::vector<WorkItem> &Worklist);
void markInstructionUses(const MachineInstr &MI, char Flag,
std::vector<WorkItem> &Worklist);
char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist);
void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist);
void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist);
char analyzeFunction(MachineFunction &MF);
MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before);
MachineBasicBlock::iterator
prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First,
MachineBasicBlock::iterator Last, bool PreferLast,
bool SaveSCC);
void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
Register SaveWQM);
void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
Register SavedWQM);
void toStrictMode(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
Register SaveOrig, char StrictStateNeeded);
void fromStrictMode(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before, Register SavedOrig,
char NonStrictState, char CurrentStrictState);
MachineBasicBlock *splitBlock(MachineBasicBlock *BB, MachineInstr *TermMI);
MachineInstr *lowerKillI1(MachineBasicBlock &MBB, MachineInstr &MI,
bool IsWQM);
MachineInstr *lowerKillF32(MachineBasicBlock &MBB, MachineInstr &MI);
void lowerPseudoStrictMode(MachineBasicBlock &MBB, MachineInstr *Entry,
MachineInstr *Exit);
void lowerBlock(MachineBasicBlock &MBB);
void processBlock(MachineBasicBlock &MBB, bool IsEntry);
void lowerLiveMaskQueries();
void lowerCopyInstrs();
void lowerKillInstrs(bool IsWQM);
public:
static char ID;
SIWholeQuadMode() :
MachineFunctionPass(ID) { }
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return "SI Whole Quad Mode"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LiveIntervals>();
AU.addPreserved<SlotIndexes>();
AU.addPreserved<LiveIntervals>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachinePostDominatorTree>();
AU.addPreserved<MachinePostDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionProperties getClearedProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::IsSSA);
}
};
} // end anonymous namespace
char SIWholeQuadMode::ID = 0;
INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
false)
char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID;
FunctionPass *llvm::createSIWholeQuadModePass() {
return new SIWholeQuadMode;
}
#ifndef NDEBUG
LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() {
for (const auto &BII : Blocks) {
dbgs() << "\n"
<< printMBBReference(*BII.first) << ":\n"
<< " InNeeds = " << PrintState(BII.second.InNeeds)
<< ", Needs = " << PrintState(BII.second.Needs)
<< ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n";
for (const MachineInstr &MI : *BII.first) {
auto III = Instructions.find(&MI);
if (III == Instructions.end())
continue;
dbgs() << " " << MI << " Needs = " << PrintState(III->second.Needs)
<< ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n';
}
}
}
#endif
void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag,
std::vector<WorkItem> &Worklist) {
InstrInfo &II = Instructions[&MI];
assert(!(Flag & StateExact) && Flag != 0);
// Remove any disabled states from the flag. The user that required it gets
// an undefined value in the helper lanes. For example, this can happen if
// the result of an atomic is used by instruction that requires WQM, where
// ignoring the request for WQM is correct as per the relevant specs.
Flag &= ~II.Disabled;
// Ignore if the flag is already encompassed by the existing needs, or we
// just disabled everything.
if ((II.Needs & Flag) == Flag)
return;
LLVM_DEBUG(dbgs() << "markInstruction " << PrintState(Flag) << ": " << MI);
II.Needs |= Flag;
Worklist.push_back(&MI);
}
/// Mark all relevant definitions of register \p Reg in usage \p UseMI.
void SIWholeQuadMode::markDefs(const MachineInstr &UseMI, LiveRange &LR,
Register Reg, unsigned SubReg, char Flag,
std::vector<WorkItem> &Worklist) {
LLVM_DEBUG(dbgs() << "markDefs " << PrintState(Flag) << ": " << UseMI);
LiveQueryResult UseLRQ = LR.Query(LIS->getInstructionIndex(UseMI));
const VNInfo *Value = UseLRQ.valueIn();
if (!Value)
return;
// Note: this code assumes that lane masks on AMDGPU completely
// cover registers.
const LaneBitmask UseLanes =
SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
: (Reg.isVirtual() ? MRI->getMaxLaneMaskForVReg(Reg)
: LaneBitmask::getNone());
// Perform a depth-first iteration of the LiveRange graph marking defs.
// Stop processing of a given branch when all use lanes have been defined.
// The first definition stops processing for a physical register.
struct PhiEntry {
const VNInfo *Phi;
unsigned PredIdx;
LaneBitmask DefinedLanes;
PhiEntry(const VNInfo *Phi, unsigned PredIdx, LaneBitmask DefinedLanes)
: Phi(Phi), PredIdx(PredIdx), DefinedLanes(DefinedLanes) {}
};
using VisitKey = std::pair<const VNInfo *, LaneBitmask>;
SmallVector<PhiEntry, 2> PhiStack;
SmallSet<VisitKey, 4> Visited;
LaneBitmask DefinedLanes;
unsigned NextPredIdx = 0; // Only used for processing phi nodes
do {
const VNInfo *NextValue = nullptr;
const VisitKey Key(Value, DefinedLanes);
if (Visited.insert(Key).second) {
// On first visit to a phi then start processing first predecessor
NextPredIdx = 0;
}
if (Value->isPHIDef()) {
// Each predecessor node in the phi must be processed as a subgraph
const MachineBasicBlock *MBB = LIS->getMBBFromIndex(Value->def);
assert(MBB && "Phi-def has no defining MBB");
// Find next predecessor to process
unsigned Idx = NextPredIdx;
auto PI = MBB->pred_begin() + Idx;
auto PE = MBB->pred_end();
for (; PI != PE && !NextValue; ++PI, ++Idx) {
if (const VNInfo *VN = LR.getVNInfoBefore(LIS->getMBBEndIdx(*PI))) {
if (!Visited.count(VisitKey(VN, DefinedLanes)))
NextValue = VN;
}
}
// If there are more predecessors to process; add phi to stack
if (PI != PE)
PhiStack.emplace_back(Value, Idx, DefinedLanes);
} else {
MachineInstr *MI = LIS->getInstructionFromIndex(Value->def);
assert(MI && "Def has no defining instruction");
if (Reg.isVirtual()) {
// Iterate over all operands to find relevant definitions
bool HasDef = false;
for (const MachineOperand &Op : MI->all_defs()) {
if (Op.getReg() != Reg)
continue;
// Compute lanes defined and overlap with use
LaneBitmask OpLanes =
Op.isUndef() ? LaneBitmask::getAll()
: TRI->getSubRegIndexLaneMask(Op.getSubReg());
LaneBitmask Overlap = (UseLanes & OpLanes);
// Record if this instruction defined any of use
HasDef |= Overlap.any();
// Mark any lanes defined
DefinedLanes |= OpLanes;
}
// Check if all lanes of use have been defined
if ((DefinedLanes & UseLanes) != UseLanes) {
// Definition not complete; need to process input value
LiveQueryResult LRQ = LR.Query(LIS->getInstructionIndex(*MI));
if (const VNInfo *VN = LRQ.valueIn()) {
if (!Visited.count(VisitKey(VN, DefinedLanes)))
NextValue = VN;
}
}
// Only mark the instruction if it defines some part of the use
if (HasDef)
markInstruction(*MI, Flag, Worklist);
} else {
// For physical registers simply mark the defining instruction
markInstruction(*MI, Flag, Worklist);
}
}
if (!NextValue && !PhiStack.empty()) {
// Reach end of chain; revert to processing last phi
PhiEntry &Entry = PhiStack.back();
NextValue = Entry.Phi;
NextPredIdx = Entry.PredIdx;
DefinedLanes = Entry.DefinedLanes;
PhiStack.pop_back();
}
Value = NextValue;
} while (Value);
}
void SIWholeQuadMode::markOperand(const MachineInstr &MI,
const MachineOperand &Op, char Flag,
std::vector<WorkItem> &Worklist) {
assert(Op.isReg());
Register Reg = Op.getReg();
// Ignore some hardware registers
switch (Reg) {
case AMDGPU::EXEC:
case AMDGPU::EXEC_LO:
return;
default:
break;
}
LLVM_DEBUG(dbgs() << "markOperand " << PrintState(Flag) << ": " << Op
<< " for " << MI);
if (Reg.isVirtual()) {
LiveRange &LR = LIS->getInterval(Reg);
markDefs(MI, LR, Reg, Op.getSubReg(), Flag, Worklist);
} else {
// Handle physical registers that we need to track; this is mostly relevant
// for VCC, which can appear as the (implicit) input of a uniform branch,
// e.g. when a loop counter is stored in a VGPR.
for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) {
LiveRange &LR = LIS->getRegUnit(Unit);
const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn();
if (!Value)
continue;
markDefs(MI, LR, Unit, AMDGPU::NoSubRegister, Flag, Worklist);
}
}
}
/// Mark all instructions defining the uses in \p MI with \p Flag.
void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag,
std::vector<WorkItem> &Worklist) {
LLVM_DEBUG(dbgs() << "markInstructionUses " << PrintState(Flag) << ": "
<< MI);
for (const MachineOperand &Use : MI.all_uses())
markOperand(MI, Use, Flag, Worklist);
}
// Scan instructions to determine which ones require an Exact execmask and
// which ones seed WQM requirements.
char SIWholeQuadMode::scanInstructions(MachineFunction &MF,
std::vector<WorkItem> &Worklist) {
char GlobalFlags = 0;
bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs");
SmallVector<MachineInstr *, 4> SetInactiveInstrs;
SmallVector<MachineInstr *, 4> SoftWQMInstrs;
bool HasImplicitDerivatives =
MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS;
// We need to visit the basic blocks in reverse post-order so that we visit
// defs before uses, in particular so that we don't accidentally mark an
// instruction as needing e.g. WQM before visiting it and realizing it needs
// WQM disabled.
ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
for (MachineBasicBlock *MBB : RPOT) {
BlockInfo &BBI = Blocks[MBB];
for (MachineInstr &MI : *MBB) {
InstrInfo &III = Instructions[&MI];
unsigned Opcode = MI.getOpcode();
char Flags = 0;
if (TII->isWQM(Opcode)) {
// If LOD is not supported WQM is not needed.
if (!ST->hasExtendedImageInsts())
continue;
// Only generate implicit WQM if implicit derivatives are required.
// This avoids inserting unintended WQM if a shader type without
// implicit derivatives uses an image sampling instruction.
if (!HasImplicitDerivatives)
continue;
// Sampling instructions don't need to produce results for all pixels
// in a quad, they just require all inputs of a quad to have been
// computed for derivatives.
markInstructionUses(MI, StateWQM, Worklist);
GlobalFlags |= StateWQM;
continue;
} else if (Opcode == AMDGPU::WQM) {
// The WQM intrinsic requires its output to have all the helper lanes
// correct, so we need it to be in WQM.
Flags = StateWQM;
LowerToCopyInstrs.push_back(&MI);
} else if (Opcode == AMDGPU::SOFT_WQM) {
LowerToCopyInstrs.push_back(&MI);
SoftWQMInstrs.push_back(&MI);
continue;
} else if (Opcode == AMDGPU::STRICT_WWM) {
// The STRICT_WWM intrinsic doesn't make the same guarantee, and plus
// it needs to be executed in WQM or Exact so that its copy doesn't
// clobber inactive lanes.
markInstructionUses(MI, StateStrictWWM, Worklist);
GlobalFlags |= StateStrictWWM;
LowerToMovInstrs.push_back(&MI);
continue;
} else if (Opcode == AMDGPU::STRICT_WQM ||
TII->isDualSourceBlendEXP(MI)) {
// STRICT_WQM is similar to STRICTWWM, but instead of enabling all
// threads of the wave like STRICTWWM, STRICT_WQM enables all threads in
// quads that have at least one active thread.
markInstructionUses(MI, StateStrictWQM, Worklist);
GlobalFlags |= StateStrictWQM;
if (Opcode == AMDGPU::STRICT_WQM) {
LowerToMovInstrs.push_back(&MI);
} else {
// Dual source blend export acts as implicit strict-wqm, its sources
// need to be shuffled in strict wqm, but the export itself needs to
// run in exact mode.
BBI.Needs |= StateExact;
if (!(BBI.InNeeds & StateExact)) {
BBI.InNeeds |= StateExact;
Worklist.push_back(MBB);
}
GlobalFlags |= StateExact;
III.Disabled = StateWQM | StateStrict;
}
continue;
} else if (Opcode == AMDGPU::LDS_PARAM_LOAD ||
Opcode == AMDGPU::LDS_DIRECT_LOAD) {
// Mark these STRICTWQM, but only for the instruction, not its operands.
// This avoid unnecessarily marking M0 as requiring WQM.
InstrInfo &II = Instructions[&MI];
II.Needs |= StateStrictWQM;
GlobalFlags |= StateStrictWQM;
continue;
} else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 ||
Opcode == AMDGPU::V_SET_INACTIVE_B64) {
III.Disabled = StateStrict;
MachineOperand &Inactive = MI.getOperand(2);
if (Inactive.isReg()) {
if (Inactive.isUndef()) {
LowerToCopyInstrs.push_back(&MI);
} else {
markOperand(MI, Inactive, StateStrictWWM, Worklist);
}
}
SetInactiveInstrs.push_back(&MI);
continue;
} else if (TII->isDisableWQM(MI)) {
BBI.Needs |= StateExact;
if (!(BBI.InNeeds & StateExact)) {
BBI.InNeeds |= StateExact;
Worklist.push_back(MBB);
}
GlobalFlags |= StateExact;
III.Disabled = StateWQM | StateStrict;
continue;
} else {
if (Opcode == AMDGPU::SI_PS_LIVE || Opcode == AMDGPU::SI_LIVE_MASK) {
LiveMaskQueries.push_back(&MI);
} else if (Opcode == AMDGPU::SI_KILL_I1_TERMINATOR ||
Opcode == AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR ||
Opcode == AMDGPU::SI_DEMOTE_I1) {
KillInstrs.push_back(&MI);
BBI.NeedsLowering = true;
} else if (WQMOutputs) {
// The function is in machine SSA form, which means that physical
// VGPRs correspond to shader inputs and outputs. Inputs are
// only used, outputs are only defined.
// FIXME: is this still valid?
for (const MachineOperand &MO : MI.defs()) {
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (!Reg.isVirtual() &&
TRI->hasVectorRegisters(TRI->getPhysRegBaseClass(Reg))) {
Flags = StateWQM;
break;
}
}
}
if (!Flags)
continue;
}
markInstruction(MI, Flags, Worklist);
GlobalFlags |= Flags;
}
}
// Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is
// ever used anywhere in the function. This implements the corresponding
// semantics of @llvm.amdgcn.set.inactive.
// Similarly for SOFT_WQM instructions, implementing @llvm.amdgcn.softwqm.
if (GlobalFlags & StateWQM) {
for (MachineInstr *MI : SetInactiveInstrs)
markInstruction(*MI, StateWQM, Worklist);
for (MachineInstr *MI : SoftWQMInstrs)
markInstruction(*MI, StateWQM, Worklist);
}
return GlobalFlags;
}
void SIWholeQuadMode::propagateInstruction(MachineInstr &MI,
std::vector<WorkItem>& Worklist) {
MachineBasicBlock *MBB = MI.getParent();
InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references
BlockInfo &BI = Blocks[MBB];
// Control flow-type instructions and stores to temporary memory that are
// followed by WQM computations must themselves be in WQM.
if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) &&
(MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) {
Instructions[&MI].Needs = StateWQM;
II.Needs = StateWQM;
}
// Propagate to block level
if (II.Needs & StateWQM) {
BI.Needs |= StateWQM;
if (!(BI.InNeeds & StateWQM)) {
BI.InNeeds |= StateWQM;
Worklist.push_back(MBB);
}
}
// Propagate backwards within block
if (MachineInstr *PrevMI = MI.getPrevNode()) {
char InNeeds = (II.Needs & ~StateStrict) | II.OutNeeds;
if (!PrevMI->isPHI()) {
InstrInfo &PrevII = Instructions[PrevMI];
if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) {
PrevII.OutNeeds |= InNeeds;
Worklist.push_back(PrevMI);
}
}
}
// Propagate WQM flag to instruction inputs
assert(!(II.Needs & StateExact));
if (II.Needs != 0)
markInstructionUses(MI, II.Needs, Worklist);
// Ensure we process a block containing StrictWWM/StrictWQM, even if it does
// not require any WQM transitions.
if (II.Needs & StateStrictWWM)
BI.Needs |= StateStrictWWM;
if (II.Needs & StateStrictWQM)
BI.Needs |= StateStrictWQM;
}
void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB,
std::vector<WorkItem>& Worklist) {
BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references.
// Propagate through instructions
if (!MBB.empty()) {
MachineInstr *LastMI = &*MBB.rbegin();
InstrInfo &LastII = Instructions[LastMI];
if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) {
LastII.OutNeeds |= BI.OutNeeds;
Worklist.push_back(LastMI);
}
}
// Predecessor blocks must provide for our WQM/Exact needs.
for (MachineBasicBlock *Pred : MBB.predecessors()) {
BlockInfo &PredBI = Blocks[Pred];
if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds)
continue;
PredBI.OutNeeds |= BI.InNeeds;
PredBI.InNeeds |= BI.InNeeds;
Worklist.push_back(Pred);
}
// All successors must be prepared to accept the same set of WQM/Exact data.
for (MachineBasicBlock *Succ : MBB.successors()) {
BlockInfo &SuccBI = Blocks[Succ];
if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds)
continue;
SuccBI.InNeeds |= BI.OutNeeds;
Worklist.push_back(Succ);
}
}
char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) {
std::vector<WorkItem> Worklist;
char GlobalFlags = scanInstructions(MF, Worklist);
while (!Worklist.empty()) {
WorkItem WI = Worklist.back();
Worklist.pop_back();
if (WI.MI)
propagateInstruction(*WI.MI, Worklist);
else
propagateBlock(*WI.MBB, Worklist);
}
return GlobalFlags;
}
MachineBasicBlock::iterator
SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before) {
Register SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
MachineInstr *Save =
BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg)
.addReg(AMDGPU::SCC);
MachineInstr *Restore =
BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC)
.addReg(SaveReg);
LIS->InsertMachineInstrInMaps(*Save);
LIS->InsertMachineInstrInMaps(*Restore);
LIS->createAndComputeVirtRegInterval(SaveReg);
return Restore;
}
MachineBasicBlock *SIWholeQuadMode::splitBlock(MachineBasicBlock *BB,
MachineInstr *TermMI) {
LLVM_DEBUG(dbgs() << "Split block " << printMBBReference(*BB) << " @ "
<< *TermMI << "\n");
MachineBasicBlock *SplitBB =
BB->splitAt(*TermMI, /*UpdateLiveIns*/ true, LIS);
// Convert last instruction in block to a terminator.
// Note: this only covers the expected patterns
unsigned NewOpcode = 0;
switch (TermMI->getOpcode()) {
case AMDGPU::S_AND_B32:
NewOpcode = AMDGPU::S_AND_B32_term;
break;
case AMDGPU::S_AND_B64:
NewOpcode = AMDGPU::S_AND_B64_term;
break;
case AMDGPU::S_MOV_B32:
NewOpcode = AMDGPU::S_MOV_B32_term;
break;
case AMDGPU::S_MOV_B64:
NewOpcode = AMDGPU::S_MOV_B64_term;
break;
default:
break;
}
if (NewOpcode)
TermMI->setDesc(TII->get(NewOpcode));
if (SplitBB != BB) {
// Update dominator trees
using DomTreeT = DomTreeBase<MachineBasicBlock>;
SmallVector<DomTreeT::UpdateType, 16> DTUpdates;
for (MachineBasicBlock *Succ : SplitBB->successors()) {
DTUpdates.push_back({DomTreeT::Insert, SplitBB, Succ});
DTUpdates.push_back({DomTreeT::Delete, BB, Succ});
}
DTUpdates.push_back({DomTreeT::Insert, BB, SplitBB});
if (MDT)
MDT->getBase().applyUpdates(DTUpdates);
if (PDT)
PDT->getBase().applyUpdates(DTUpdates);
// Link blocks
MachineInstr *MI =
BuildMI(*BB, BB->end(), DebugLoc(), TII->get(AMDGPU::S_BRANCH))
.addMBB(SplitBB);
LIS->InsertMachineInstrInMaps(*MI);
}
return SplitBB;
}
MachineInstr *SIWholeQuadMode::lowerKillF32(MachineBasicBlock &MBB,
MachineInstr &MI) {
const DebugLoc &DL = MI.getDebugLoc();
unsigned Opcode = 0;
assert(MI.getOperand(0).isReg());
// Comparison is for live lanes; however here we compute the inverse
// (killed lanes). This is because VCMP will always generate 0 bits
// for inactive lanes so a mask of live lanes would not be correct
// inside control flow.
// Invert the comparison by swapping the operands and adjusting
// the comparison codes.
switch (MI.getOperand(2).getImm()) {
case ISD::SETUEQ:
Opcode = AMDGPU::V_CMP_LG_F32_e64;
break;
case ISD::SETUGT:
Opcode = AMDGPU::V_CMP_GE_F32_e64;
break;
case ISD::SETUGE:
Opcode = AMDGPU::V_CMP_GT_F32_e64;
break;
case ISD::SETULT:
Opcode = AMDGPU::V_CMP_LE_F32_e64;
break;
case ISD::SETULE:
Opcode = AMDGPU::V_CMP_LT_F32_e64;
break;
case ISD::SETUNE:
Opcode = AMDGPU::V_CMP_EQ_F32_e64;
break;
case ISD::SETO:
Opcode = AMDGPU::V_CMP_O_F32_e64;
break;
case ISD::SETUO:
Opcode = AMDGPU::V_CMP_U_F32_e64;
break;
case ISD::SETOEQ:
case ISD::SETEQ:
Opcode = AMDGPU::V_CMP_NEQ_F32_e64;
break;
case ISD::SETOGT:
case ISD::SETGT:
Opcode = AMDGPU::V_CMP_NLT_F32_e64;
break;
case ISD::SETOGE:
case ISD::SETGE:
Opcode = AMDGPU::V_CMP_NLE_F32_e64;
break;
case ISD::SETOLT:
case ISD::SETLT:
Opcode = AMDGPU::V_CMP_NGT_F32_e64;
break;
case ISD::SETOLE:
case ISD::SETLE:
Opcode = AMDGPU::V_CMP_NGE_F32_e64;
break;
case ISD::SETONE:
case ISD::SETNE:
Opcode = AMDGPU::V_CMP_NLG_F32_e64;
break;
default:
llvm_unreachable("invalid ISD:SET cond code");
}
// Pick opcode based on comparison type.
MachineInstr *VcmpMI;
const MachineOperand &Op0 = MI.getOperand(0);
const MachineOperand &Op1 = MI.getOperand(1);
// VCC represents lanes killed.
Register VCC = ST->isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC;
if (TRI->isVGPR(*MRI, Op0.getReg())) {
Opcode = AMDGPU::getVOPe32(Opcode);
VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode)).add(Op1).add(Op0);
} else {
VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode))
.addReg(VCC, RegState::Define)
.addImm(0) // src0 modifiers
.add(Op1)
.addImm(0) // src1 modifiers
.add(Op0)
.addImm(0); // omod
}
MachineInstr *MaskUpdateMI =
BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg)
.addReg(LiveMaskReg)
.addReg(VCC);
// State of SCC represents whether any lanes are live in mask,
// if SCC is 0 then no lanes will be alive anymore.
MachineInstr *EarlyTermMI =
BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0));
MachineInstr *ExecMaskMI =
BuildMI(MBB, MI, DL, TII->get(AndN2Opc), Exec).addReg(Exec).addReg(VCC);
assert(MBB.succ_size() == 1);
MachineInstr *NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH))
.addMBB(*MBB.succ_begin());
// Update live intervals
LIS->ReplaceMachineInstrInMaps(MI, *VcmpMI);
MBB.remove(&MI);
LIS->InsertMachineInstrInMaps(*MaskUpdateMI);
LIS->InsertMachineInstrInMaps(*ExecMaskMI);
LIS->InsertMachineInstrInMaps(*EarlyTermMI);
LIS->InsertMachineInstrInMaps(*NewTerm);
return NewTerm;
}
MachineInstr *SIWholeQuadMode::lowerKillI1(MachineBasicBlock &MBB,
MachineInstr &MI, bool IsWQM) {
const DebugLoc &DL = MI.getDebugLoc();
MachineInstr *MaskUpdateMI = nullptr;
const bool IsDemote = IsWQM && (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1);
const MachineOperand &Op = MI.getOperand(0);
int64_t KillVal = MI.getOperand(1).getImm();
MachineInstr *ComputeKilledMaskMI = nullptr;
Register CndReg = !Op.isImm() ? Op.getReg() : Register();
Register TmpReg;
// Is this a static or dynamic kill?
if (Op.isImm()) {
if (Op.getImm() == KillVal) {
// Static: all active lanes are killed
MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg)
.addReg(LiveMaskReg)
.addReg(Exec);
} else {
// Static: kill does nothing
MachineInstr *NewTerm = nullptr;
if (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1) {
LIS->RemoveMachineInstrFromMaps(MI);
} else {
assert(MBB.succ_size() == 1);
NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH))
.addMBB(*MBB.succ_begin());
LIS->ReplaceMachineInstrInMaps(MI, *NewTerm);
}
MBB.remove(&MI);
return NewTerm;
}
} else {
if (!KillVal) {
// Op represents live lanes after kill,
// so exec mask needs to be factored in.
TmpReg = MRI->createVirtualRegister(TRI->getBoolRC());
ComputeKilledMaskMI =
BuildMI(MBB, MI, DL, TII->get(XorOpc), TmpReg).add(Op).addReg(Exec);
MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg)
.addReg(LiveMaskReg)
.addReg(TmpReg);
} else {
// Op represents lanes to kill
MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg)
.addReg(LiveMaskReg)
.add(Op);
}
}
// State of SCC represents whether any lanes are live in mask,
// if SCC is 0 then no lanes will be alive anymore.
MachineInstr *EarlyTermMI =
BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0));
// In the case we got this far some lanes are still live,
// update EXEC to deactivate lanes as appropriate.
MachineInstr *NewTerm;
MachineInstr *WQMMaskMI = nullptr;
Register LiveMaskWQM;
if (IsDemote) {
// Demote - deactivate quads with only helper lanes
LiveMaskWQM = MRI->createVirtualRegister(TRI->getBoolRC());
WQMMaskMI =
BuildMI(MBB, MI, DL, TII->get(WQMOpc), LiveMaskWQM).addReg(LiveMaskReg);
NewTerm = BuildMI(MBB, MI, DL, TII->get(AndOpc), Exec)
.addReg(Exec)
.addReg(LiveMaskWQM);
} else {
// Kill - deactivate lanes no longer in live mask
if (Op.isImm()) {
unsigned MovOpc = ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
NewTerm = BuildMI(MBB, &MI, DL, TII->get(MovOpc), Exec).addImm(0);
} else if (!IsWQM) {
NewTerm = BuildMI(MBB, &MI, DL, TII->get(AndOpc), Exec)
.addReg(Exec)
.addReg(LiveMaskReg);
} else {
unsigned Opcode = KillVal ? AndN2Opc : AndOpc;
NewTerm =
BuildMI(MBB, &MI, DL, TII->get(Opcode), Exec).addReg(Exec).add(Op);
}
}
// Update live intervals
LIS->RemoveMachineInstrFromMaps(MI);
MBB.remove(&MI);
assert(EarlyTermMI);
assert(MaskUpdateMI);
assert(NewTerm);
if (ComputeKilledMaskMI)
LIS->InsertMachineInstrInMaps(*ComputeKilledMaskMI);
LIS->InsertMachineInstrInMaps(*MaskUpdateMI);
LIS->InsertMachineInstrInMaps(*EarlyTermMI);
if (WQMMaskMI)
LIS->InsertMachineInstrInMaps(*WQMMaskMI);
LIS->InsertMachineInstrInMaps(*NewTerm);
if (CndReg) {
LIS->removeInterval(CndReg);
LIS->createAndComputeVirtRegInterval(CndReg);
}
if (TmpReg)
LIS->createAndComputeVirtRegInterval(TmpReg);
if (LiveMaskWQM)
LIS->createAndComputeVirtRegInterval(LiveMaskWQM);
return NewTerm;
}
// Convert a strict mode transition to a pseudo transition.
// This still pre-allocates registers to prevent clobbering,
// but avoids any EXEC mask changes.
void SIWholeQuadMode::lowerPseudoStrictMode(MachineBasicBlock &MBB,
MachineInstr *Entry,
MachineInstr *Exit) {
assert(Entry->getOpcode() == AMDGPU::ENTER_STRICT_WQM);
assert(Exit->getOpcode() == AMDGPU::EXIT_STRICT_WQM);
Register SaveOrig = Entry->getOperand(0).getReg();
MachineInstr *NewEntry =
BuildMI(MBB, Entry, DebugLoc(), TII->get(AMDGPU::ENTER_PSEUDO_WM));
MachineInstr *NewExit =
BuildMI(MBB, Exit, DebugLoc(), TII->get(AMDGPU::EXIT_PSEUDO_WM));
LIS->ReplaceMachineInstrInMaps(*Exit, *NewExit);
Exit->eraseFromParent();
LIS->ReplaceMachineInstrInMaps(*Entry, *NewEntry);
Entry->eraseFromParent();
LIS->removeInterval(SaveOrig);
}
// Replace (or supplement) instructions accessing live mask.
// This can only happen once all the live mask registers have been created
// and the execute state (WQM/StrictWWM/Exact) of instructions is known.
void SIWholeQuadMode::lowerBlock(MachineBasicBlock &MBB) {
auto BII = Blocks.find(&MBB);
if (BII == Blocks.end())
return;
const BlockInfo &BI = BII->second;
if (!BI.NeedsLowering)
return;
LLVM_DEBUG(dbgs() << "\nLowering block " << printMBBReference(MBB) << ":\n");
SmallVector<MachineInstr *, 4> SplitPoints;
char State = BI.InitialState;
MachineInstr *StrictEntry = nullptr;
for (MachineInstr &MI : llvm::make_early_inc_range(
llvm::make_range(MBB.getFirstNonPHI(), MBB.end()))) {
char PreviousState = State;
if (StateTransition.count(&MI))
State = StateTransition[&MI];
MachineInstr *SplitPoint = nullptr;
switch (MI.getOpcode()) {
case AMDGPU::SI_DEMOTE_I1:
case AMDGPU::SI_KILL_I1_TERMINATOR:
SplitPoint = lowerKillI1(MBB, MI, State == StateWQM);
break;
case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
SplitPoint = lowerKillF32(MBB, MI);
break;
case AMDGPU::ENTER_STRICT_WQM:
StrictEntry = PreviousState == StateWQM ? &MI : nullptr;
break;
case AMDGPU::EXIT_STRICT_WQM:
if (State == StateWQM && StrictEntry) {
// Transition WQM -> StrictWQM -> WQM detected.
lowerPseudoStrictMode(MBB, StrictEntry, &MI);
}
StrictEntry = nullptr;
break;
case AMDGPU::ENTER_STRICT_WWM:
case AMDGPU::EXIT_STRICT_WWM:
StrictEntry = nullptr;
break;
default:
break;
}
if (SplitPoint)
SplitPoints.push_back(SplitPoint);
}
// Perform splitting after instruction scan to simplify iteration.
if (!SplitPoints.empty()) {
MachineBasicBlock *BB = &MBB;
for (MachineInstr *MI : SplitPoints) {
BB = splitBlock(BB, MI);
}
}
}
// Return an iterator in the (inclusive) range [First, Last] at which
// instructions can be safely inserted, keeping in mind that some of the
// instructions we want to add necessarily clobber SCC.
MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion(
MachineBasicBlock &MBB, MachineBasicBlock::iterator First,
MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) {
if (!SaveSCC)
return PreferLast ? Last : First;
LiveRange &LR =
LIS->getRegUnit(*TRI->regunits(MCRegister::from(AMDGPU::SCC)).begin());
auto MBBE = MBB.end();
SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First)
: LIS->getMBBEndIdx(&MBB);
SlotIndex LastIdx =
Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB);
SlotIndex Idx = PreferLast ? LastIdx : FirstIdx;
const LiveRange::Segment *S;
for (;;) {
S = LR.getSegmentContaining(Idx);
if (!S)
break;
if (PreferLast) {
SlotIndex Next = S->start.getBaseIndex();
if (Next < FirstIdx)
break;
Idx = Next;
} else {
MachineInstr *EndMI = LIS->getInstructionFromIndex(S->end.getBaseIndex());
assert(EndMI && "Segment does not end on valid instruction");
auto NextI = std::next(EndMI->getIterator());
if (NextI == MBB.end())
break;
SlotIndex Next = LIS->getInstructionIndex(*NextI);
if (Next > LastIdx)
break;
Idx = Next;
}
}
MachineBasicBlock::iterator MBBI;
if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx))
MBBI = MI;
else {
assert(Idx == LIS->getMBBEndIdx(&MBB));
MBBI = MBB.end();
}
// Move insertion point past any operations modifying EXEC.
// This assumes that the value of SCC defined by any of these operations
// does not need to be preserved.
while (MBBI != Last) {
bool IsExecDef = false;
for (const MachineOperand &MO : MBBI->all_defs()) {
IsExecDef |=
MO.getReg() == AMDGPU::EXEC_LO || MO.getReg() == AMDGPU::EXEC;
}
if (!IsExecDef)
break;
MBBI++;
S = nullptr;
}
if (S)
MBBI = saveSCC(MBB, MBBI);
return MBBI;
}
void SIWholeQuadMode::toExact(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before,
Register SaveWQM) {
bool IsTerminator = Before == MBB.end();
if (!IsTerminator) {
auto FirstTerm = MBB.getFirstTerminator();
if (FirstTerm != MBB.end()) {
SlotIndex FirstTermIdx = LIS->getInstructionIndex(*FirstTerm);
SlotIndex BeforeIdx = LIS->getInstructionIndex(*Before);
IsTerminator = BeforeIdx > FirstTermIdx;
}
}
MachineInstr *MI;
if (SaveWQM) {
unsigned Opcode = IsTerminator ? AndSaveExecTermOpc : AndSaveExecOpc;
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(Opcode), SaveWQM)
.addReg(LiveMaskReg);
} else {
unsigned Opcode = IsTerminator ? AndTermOpc : AndOpc;
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(Opcode), Exec)
.addReg(Exec)
.addReg(LiveMaskReg);
}
LIS->InsertMachineInstrInMaps(*MI);
StateTransition[MI] = StateExact;
}
void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before,
Register SavedWQM) {
MachineInstr *MI;
if (SavedWQM) {
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), Exec)
.addReg(SavedWQM);
} else {
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(WQMOpc), Exec).addReg(Exec);
}
LIS->InsertMachineInstrInMaps(*MI);
StateTransition[MI] = StateWQM;
}
void SIWholeQuadMode::toStrictMode(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before,
Register SaveOrig, char StrictStateNeeded) {
MachineInstr *MI;
assert(SaveOrig);
assert(StrictStateNeeded == StateStrictWWM ||
StrictStateNeeded == StateStrictWQM);
if (StrictStateNeeded == StateStrictWWM) {
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WWM),
SaveOrig)
.addImm(-1);
} else {
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WQM),
SaveOrig)
.addImm(-1);
}
LIS->InsertMachineInstrInMaps(*MI);
StateTransition[MI] = StrictStateNeeded;
// Mark block as needing lower so it will be checked for unnecessary transitions.
auto BII = Blocks.find(&MBB);
if (BII != Blocks.end())
BII->second.NeedsLowering = true;
}
void SIWholeQuadMode::fromStrictMode(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before,
Register SavedOrig, char NonStrictState,
char CurrentStrictState) {
MachineInstr *MI;
assert(SavedOrig);
assert(CurrentStrictState == StateStrictWWM ||
CurrentStrictState == StateStrictWQM);
if (CurrentStrictState == StateStrictWWM) {
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WWM),
Exec)
.addReg(SavedOrig);
} else {
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WQM),
Exec)
.addReg(SavedOrig);
}
LIS->InsertMachineInstrInMaps(*MI);
StateTransition[MI] = NonStrictState;
}
void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, bool IsEntry) {
auto BII = Blocks.find(&MBB);
if (BII == Blocks.end())
return;
BlockInfo &BI = BII->second;
// This is a non-entry block that is WQM throughout, so no need to do
// anything.
if (!IsEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact) {
BI.InitialState = StateWQM;
return;
}
LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB)
<< ":\n");
Register SavedWQMReg;
Register SavedNonStrictReg;
bool WQMFromExec = IsEntry;
char State = (IsEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM;
char NonStrictState = 0;
const TargetRegisterClass *BoolRC = TRI->getBoolRC();
auto II = MBB.getFirstNonPHI(), IE = MBB.end();
if (IsEntry) {
// Skip the instruction that saves LiveMask
if (II != IE && II->getOpcode() == AMDGPU::COPY)
++II;
}
// This stores the first instruction where it's safe to switch from WQM to
// Exact or vice versa.
MachineBasicBlock::iterator FirstWQM = IE;
// This stores the first instruction where it's safe to switch from Strict
// mode to Exact/WQM or to switch to Strict mode. It must always be the same
// as, or after, FirstWQM since if it's safe to switch to/from Strict, it must
// be safe to switch to/from WQM as well.
MachineBasicBlock::iterator FirstStrict = IE;
// Record initial state is block information.
BI.InitialState = State;
for (;;) {
MachineBasicBlock::iterator Next = II;
char Needs = StateExact | StateWQM; // Strict mode is disabled by default.
char OutNeeds = 0;
if (FirstWQM == IE)
FirstWQM = II;
if (FirstStrict == IE)
FirstStrict = II;
// First, figure out the allowed states (Needs) based on the propagated
// flags.
if (II != IE) {
MachineInstr &MI = *II;
if (MI.isTerminator() || TII->mayReadEXEC(*MRI, MI)) {
auto III = Instructions.find(&MI);
if (III != Instructions.end()) {
if (III->second.Needs & StateStrictWWM)
Needs = StateStrictWWM;
else if (III->second.Needs & StateStrictWQM)
Needs = StateStrictWQM;
else if (III->second.Needs & StateWQM)
Needs = StateWQM;
else
Needs &= ~III->second.Disabled;
OutNeeds = III->second.OutNeeds;
}
} else {
// If the instruction doesn't actually need a correct EXEC, then we can
// safely leave Strict mode enabled.
Needs = StateExact | StateWQM | StateStrict;
}
// Exact mode exit can occur in terminators, but must be before branches.
if (MI.isBranch() && OutNeeds == StateExact)
Needs = StateExact;
++Next;
} else {
// End of basic block
if (BI.OutNeeds & StateWQM)
Needs = StateWQM;
else if (BI.OutNeeds == StateExact)
Needs = StateExact;
else
Needs = StateWQM | StateExact;
}
// Now, transition if necessary.
if (!(Needs & State)) {
MachineBasicBlock::iterator First;
if (State == StateStrictWWM || Needs == StateStrictWWM ||
State == StateStrictWQM || Needs == StateStrictWQM) {
// We must switch to or from Strict mode.
First = FirstStrict;
} else {
// We only need to switch to/from WQM, so we can use FirstWQM.
First = FirstWQM;
}
// Whether we need to save SCC depends on start and end states.
bool SaveSCC = false;
switch (State) {
case StateExact:
case StateStrictWWM:
case StateStrictWQM:
// Exact/Strict -> Strict: save SCC
// Exact/Strict -> WQM: save SCC if WQM mask is generated from exec
// Exact/Strict -> Exact: no save
SaveSCC = (Needs & StateStrict) || ((Needs & StateWQM) && WQMFromExec);
break;
case StateWQM:
// WQM -> Exact/Strict: save SCC
SaveSCC = !(Needs & StateWQM);
break;
default:
llvm_unreachable("Unknown state");
break;
}
MachineBasicBlock::iterator Before =
prepareInsertion(MBB, First, II, Needs == StateWQM, SaveSCC);
if (State & StateStrict) {
assert(State == StateStrictWWM || State == StateStrictWQM);
assert(SavedNonStrictReg);
fromStrictMode(MBB, Before, SavedNonStrictReg, NonStrictState, State);
LIS->createAndComputeVirtRegInterval(SavedNonStrictReg);
SavedNonStrictReg = 0;
State = NonStrictState;
}
if (Needs & StateStrict) {
NonStrictState = State;
assert(Needs == StateStrictWWM || Needs == StateStrictWQM);
assert(!SavedNonStrictReg);
SavedNonStrictReg = MRI->createVirtualRegister(BoolRC);
toStrictMode(MBB, Before, SavedNonStrictReg, Needs);
State = Needs;
} else {
if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) {
if (!WQMFromExec && (OutNeeds & StateWQM)) {
assert(!SavedWQMReg);
SavedWQMReg = MRI->createVirtualRegister(BoolRC);
}
toExact(MBB, Before, SavedWQMReg);
State = StateExact;
} else if (State == StateExact && (Needs & StateWQM) &&
!(Needs & StateExact)) {
assert(WQMFromExec == (SavedWQMReg == 0));
toWQM(MBB, Before, SavedWQMReg);
if (SavedWQMReg) {
LIS->createAndComputeVirtRegInterval(SavedWQMReg);
SavedWQMReg = 0;
}
State = StateWQM;
} else {
// We can get here if we transitioned from StrictWWM to a
// non-StrictWWM state that already matches our needs, but we
// shouldn't need to do anything.
assert(Needs & State);
}
}
}
if (Needs != (StateExact | StateWQM | StateStrict)) {
if (Needs != (StateExact | StateWQM))
FirstWQM = IE;
FirstStrict = IE;
}
if (II == IE)
break;
II = Next;
}
assert(!SavedWQMReg);
assert(!SavedNonStrictReg);
}
void SIWholeQuadMode::lowerLiveMaskQueries() {
for (MachineInstr *MI : LiveMaskQueries) {
const DebugLoc &DL = MI->getDebugLoc();
Register Dest = MI->getOperand(0).getReg();
MachineInstr *Copy =
BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest)
.addReg(LiveMaskReg);
LIS->ReplaceMachineInstrInMaps(*MI, *Copy);
MI->eraseFromParent();
}
}
void SIWholeQuadMode::lowerCopyInstrs() {
for (MachineInstr *MI : LowerToMovInstrs) {
assert(MI->getNumExplicitOperands() == 2);
const Register Reg = MI->getOperand(0).getReg();
const TargetRegisterClass *regClass =
TRI->getRegClassForOperandReg(*MRI, MI->getOperand(0));
if (TRI->isVGPRClass(regClass)) {
const unsigned MovOp = TII->getMovOpcode(regClass);
MI->setDesc(TII->get(MovOp));
// Check that it already implicitly depends on exec (like all VALU movs
// should do).
assert(any_of(MI->implicit_operands(), [](const MachineOperand &MO) {
return MO.isUse() && MO.getReg() == AMDGPU::EXEC;
}));
} else {
// Remove early-clobber and exec dependency from simple SGPR copies.
// This allows some to be eliminated during/post RA.
LLVM_DEBUG(dbgs() << "simplify SGPR copy: " << *MI);
if (MI->getOperand(0).isEarlyClobber()) {
LIS->removeInterval(Reg);
MI->getOperand(0).setIsEarlyClobber(false);
LIS->createAndComputeVirtRegInterval(Reg);
}
int Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC);
while (Index >= 0) {
MI->removeOperand(Index);
Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC);
}
MI->setDesc(TII->get(AMDGPU::COPY));
LLVM_DEBUG(dbgs() << " -> " << *MI);
}
}
for (MachineInstr *MI : LowerToCopyInstrs) {
if (MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B32 ||
MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B64) {
assert(MI->getNumExplicitOperands() == 3);
// the only reason we should be here is V_SET_INACTIVE has
// an undef input so it is being replaced by a simple copy.
// There should be a second undef source that we should remove.
assert(MI->getOperand(2).isUndef());
MI->removeOperand(2);
MI->untieRegOperand(1);
} else {
assert(MI->getNumExplicitOperands() == 2);
}
unsigned CopyOp = MI->getOperand(1).isReg()
? (unsigned)AMDGPU::COPY
: TII->getMovOpcode(TRI->getRegClassForOperandReg(
*MRI, MI->getOperand(0)));
MI->setDesc(TII->get(CopyOp));
}
}
void SIWholeQuadMode::lowerKillInstrs(bool IsWQM) {
for (MachineInstr *MI : KillInstrs) {
MachineBasicBlock *MBB = MI->getParent();
MachineInstr *SplitPoint = nullptr;
switch (MI->getOpcode()) {
case AMDGPU::SI_DEMOTE_I1:
case AMDGPU::SI_KILL_I1_TERMINATOR:
SplitPoint = lowerKillI1(*MBB, *MI, IsWQM);
break;
case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
SplitPoint = lowerKillF32(*MBB, *MI);
break;
default:
continue;
}
if (SplitPoint)
splitBlock(MBB, SplitPoint);
}
}
bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "SI Whole Quad Mode on " << MF.getName()
<< " ------------- \n");
LLVM_DEBUG(MF.dump(););
Instructions.clear();
Blocks.clear();
LiveMaskQueries.clear();
LowerToCopyInstrs.clear();
LowerToMovInstrs.clear();
KillInstrs.clear();
StateTransition.clear();
ST = &MF.getSubtarget<GCNSubtarget>();
TII = ST->getInstrInfo();
TRI = &TII->getRegisterInfo();
MRI = &MF.getRegInfo();
LIS = &getAnalysis<LiveIntervals>();
MDT = &getAnalysis<MachineDominatorTree>();
PDT = &getAnalysis<MachinePostDominatorTree>();
if (ST->isWave32()) {
AndOpc = AMDGPU::S_AND_B32;
AndTermOpc = AMDGPU::S_AND_B32_term;
AndN2Opc = AMDGPU::S_ANDN2_B32;
XorOpc = AMDGPU::S_XOR_B32;
AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B32;
AndSaveExecTermOpc = AMDGPU::S_AND_SAVEEXEC_B32_term;
WQMOpc = AMDGPU::S_WQM_B32;
Exec = AMDGPU::EXEC_LO;
} else {
AndOpc = AMDGPU::S_AND_B64;
AndTermOpc = AMDGPU::S_AND_B64_term;
AndN2Opc = AMDGPU::S_ANDN2_B64;
XorOpc = AMDGPU::S_XOR_B64;
AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B64;
AndSaveExecTermOpc = AMDGPU::S_AND_SAVEEXEC_B64_term;
WQMOpc = AMDGPU::S_WQM_B64;
Exec = AMDGPU::EXEC;
}
const char GlobalFlags = analyzeFunction(MF);
const bool NeedsLiveMask = !(KillInstrs.empty() && LiveMaskQueries.empty());
LiveMaskReg = Exec;
// Shader is simple does not need any state changes or any complex lowering
if (!(GlobalFlags & (StateWQM | StateStrict)) && LowerToCopyInstrs.empty() &&
LowerToMovInstrs.empty() && KillInstrs.empty()) {
lowerLiveMaskQueries();
return !LiveMaskQueries.empty();
}
MachineBasicBlock &Entry = MF.front();
MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI();
// Store a copy of the original live mask when required
if (NeedsLiveMask || (GlobalFlags & StateWQM)) {
LiveMaskReg = MRI->createVirtualRegister(TRI->getBoolRC());
MachineInstr *MI =
BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::COPY), LiveMaskReg)
.addReg(Exec);
LIS->InsertMachineInstrInMaps(*MI);
}
LLVM_DEBUG(printInfo());
lowerLiveMaskQueries();
lowerCopyInstrs();
// Shader only needs WQM
if (GlobalFlags == StateWQM) {
auto MI = BuildMI(Entry, EntryMI, DebugLoc(), TII->get(WQMOpc), Exec)
.addReg(Exec);
LIS->InsertMachineInstrInMaps(*MI);
lowerKillInstrs(true);
} else {
for (auto BII : Blocks)
processBlock(*BII.first, BII.first == &Entry);
// Lowering blocks causes block splitting so perform as a second pass.
for (auto BII : Blocks)
lowerBlock(*BII.first);
}
// Compute live range for live mask
if (LiveMaskReg != Exec)
LIS->createAndComputeVirtRegInterval(LiveMaskReg);
// Physical registers like SCC aren't tracked by default anyway, so just
// removing the ranges we computed is the simplest option for maintaining
// the analysis results.
LIS->removeAllRegUnitsForPhysReg(AMDGPU::SCC);
// If we performed any kills then recompute EXEC
if (!KillInstrs.empty())
LIS->removeAllRegUnitsForPhysReg(AMDGPU::EXEC);
return true;
}
|