1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
|
//===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AMDGPUBaseInfo.h"
#include "AMDGPU.h"
#include "AMDGPUAsmUtils.h"
#include "AMDKernelCodeT.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/AMDHSAKernelDescriptor.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/TargetParser/TargetParser.h"
#include <optional>
#define GET_INSTRINFO_NAMED_OPS
#define GET_INSTRMAP_INFO
#include "AMDGPUGenInstrInfo.inc"
static llvm::cl::opt<unsigned>
AmdhsaCodeObjectVersion("amdhsa-code-object-version", llvm::cl::Hidden,
llvm::cl::desc("AMDHSA Code Object Version"),
llvm::cl::init(4));
namespace {
/// \returns Bit mask for given bit \p Shift and bit \p Width.
unsigned getBitMask(unsigned Shift, unsigned Width) {
return ((1 << Width) - 1) << Shift;
}
/// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
///
/// \returns Packed \p Dst.
unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
unsigned Mask = getBitMask(Shift, Width);
return ((Src << Shift) & Mask) | (Dst & ~Mask);
}
/// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
///
/// \returns Unpacked bits.
unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
return (Src & getBitMask(Shift, Width)) >> Shift;
}
/// \returns Vmcnt bit shift (lower bits).
unsigned getVmcntBitShiftLo(unsigned VersionMajor) {
return VersionMajor >= 11 ? 10 : 0;
}
/// \returns Vmcnt bit width (lower bits).
unsigned getVmcntBitWidthLo(unsigned VersionMajor) {
return VersionMajor >= 11 ? 6 : 4;
}
/// \returns Expcnt bit shift.
unsigned getExpcntBitShift(unsigned VersionMajor) {
return VersionMajor >= 11 ? 0 : 4;
}
/// \returns Expcnt bit width.
unsigned getExpcntBitWidth(unsigned VersionMajor) { return 3; }
/// \returns Lgkmcnt bit shift.
unsigned getLgkmcntBitShift(unsigned VersionMajor) {
return VersionMajor >= 11 ? 4 : 8;
}
/// \returns Lgkmcnt bit width.
unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
return VersionMajor >= 10 ? 6 : 4;
}
/// \returns Vmcnt bit shift (higher bits).
unsigned getVmcntBitShiftHi(unsigned VersionMajor) { return 14; }
/// \returns Vmcnt bit width (higher bits).
unsigned getVmcntBitWidthHi(unsigned VersionMajor) {
return (VersionMajor == 9 || VersionMajor == 10) ? 2 : 0;
}
/// \returns VmVsrc bit width
inline unsigned getVmVsrcBitWidth() { return 3; }
/// \returns VmVsrc bit shift
inline unsigned getVmVsrcBitShift() { return 2; }
/// \returns VaVdst bit width
inline unsigned getVaVdstBitWidth() { return 4; }
/// \returns VaVdst bit shift
inline unsigned getVaVdstBitShift() { return 12; }
/// \returns SaSdst bit width
inline unsigned getSaSdstBitWidth() { return 1; }
/// \returns SaSdst bit shift
inline unsigned getSaSdstBitShift() { return 0; }
} // end namespace anonymous
namespace llvm {
namespace AMDGPU {
std::optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
return std::nullopt;
switch (AmdhsaCodeObjectVersion) {
case 2:
return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
case 3:
return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
case 4:
return ELF::ELFABIVERSION_AMDGPU_HSA_V4;
case 5:
return ELF::ELFABIVERSION_AMDGPU_HSA_V5;
default:
report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") +
Twine(AmdhsaCodeObjectVersion));
}
}
bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
if (std::optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
return false;
}
bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
if (std::optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
return false;
}
bool isHsaAbiVersion4(const MCSubtargetInfo *STI) {
if (std::optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4;
return false;
}
bool isHsaAbiVersion5(const MCSubtargetInfo *STI) {
if (std::optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V5;
return false;
}
bool isHsaAbiVersion3AndAbove(const MCSubtargetInfo *STI) {
return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI) ||
isHsaAbiVersion5(STI);
}
unsigned getAmdhsaCodeObjectVersion() {
return AmdhsaCodeObjectVersion;
}
unsigned getCodeObjectVersion(const Module &M) {
if (auto Ver = mdconst::extract_or_null<ConstantInt>(
M.getModuleFlag("amdgpu_code_object_version"))) {
return (unsigned)Ver->getZExtValue() / 100;
}
// Default code object version.
return AMDHSA_COV4;
}
unsigned getMultigridSyncArgImplicitArgPosition(unsigned CodeObjectVersion) {
switch (CodeObjectVersion) {
case AMDHSA_COV2:
case AMDHSA_COV3:
case AMDHSA_COV4:
return 48;
case AMDHSA_COV5:
default:
return AMDGPU::ImplicitArg::MULTIGRID_SYNC_ARG_OFFSET;
}
}
// FIXME: All such magic numbers about the ABI should be in a
// central TD file.
unsigned getHostcallImplicitArgPosition(unsigned CodeObjectVersion) {
switch (CodeObjectVersion) {
case AMDHSA_COV2:
case AMDHSA_COV3:
case AMDHSA_COV4:
return 24;
case AMDHSA_COV5:
default:
return AMDGPU::ImplicitArg::HOSTCALL_PTR_OFFSET;
}
}
unsigned getDefaultQueueImplicitArgPosition(unsigned CodeObjectVersion) {
switch (CodeObjectVersion) {
case AMDHSA_COV2:
case AMDHSA_COV3:
case AMDHSA_COV4:
return 32;
case AMDHSA_COV5:
default:
return AMDGPU::ImplicitArg::DEFAULT_QUEUE_OFFSET;
}
}
unsigned getCompletionActionImplicitArgPosition(unsigned CodeObjectVersion) {
switch (CodeObjectVersion) {
case AMDHSA_COV2:
case AMDHSA_COV3:
case AMDHSA_COV4:
return 40;
case AMDHSA_COV5:
default:
return AMDGPU::ImplicitArg::COMPLETION_ACTION_OFFSET;
}
}
#define GET_MIMGBaseOpcodesTable_IMPL
#define GET_MIMGDimInfoTable_IMPL
#define GET_MIMGInfoTable_IMPL
#define GET_MIMGLZMappingTable_IMPL
#define GET_MIMGMIPMappingTable_IMPL
#define GET_MIMGBiasMappingTable_IMPL
#define GET_MIMGOffsetMappingTable_IMPL
#define GET_MIMGG16MappingTable_IMPL
#define GET_MAIInstInfoTable_IMPL
#include "AMDGPUGenSearchableTables.inc"
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
unsigned VDataDwords, unsigned VAddrDwords) {
const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
VDataDwords, VAddrDwords);
return Info ? Info->Opcode : -1;
}
const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
const MIMGInfo *Info = getMIMGInfo(Opc);
return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
}
int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
const MIMGInfo *NewInfo =
getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
NewChannels, OrigInfo->VAddrDwords);
return NewInfo ? NewInfo->Opcode : -1;
}
unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
const MIMGDimInfo *Dim, bool IsA16,
bool IsG16Supported) {
unsigned AddrWords = BaseOpcode->NumExtraArgs;
unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
(BaseOpcode->LodOrClampOrMip ? 1 : 0);
if (IsA16)
AddrWords += divideCeil(AddrComponents, 2);
else
AddrWords += AddrComponents;
// Note: For subtargets that support A16 but not G16, enabling A16 also
// enables 16 bit gradients.
// For subtargets that support A16 (operand) and G16 (done with a different
// instruction encoding), they are independent.
if (BaseOpcode->Gradients) {
if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
// There are two gradients per coordinate, we pack them separately.
// For the 3d case,
// we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
AddrWords += alignTo<2>(Dim->NumGradients / 2);
else
AddrWords += Dim->NumGradients;
}
return AddrWords;
}
struct MUBUFInfo {
uint16_t Opcode;
uint16_t BaseOpcode;
uint8_t elements;
bool has_vaddr;
bool has_srsrc;
bool has_soffset;
bool IsBufferInv;
};
struct MTBUFInfo {
uint16_t Opcode;
uint16_t BaseOpcode;
uint8_t elements;
bool has_vaddr;
bool has_srsrc;
bool has_soffset;
};
struct SMInfo {
uint16_t Opcode;
bool IsBuffer;
};
struct VOPInfo {
uint16_t Opcode;
bool IsSingle;
};
struct VOPC64DPPInfo {
uint16_t Opcode;
};
struct VOPDComponentInfo {
uint16_t BaseVOP;
uint16_t VOPDOp;
bool CanBeVOPDX;
};
struct VOPDInfo {
uint16_t Opcode;
uint16_t OpX;
uint16_t OpY;
};
struct VOPTrue16Info {
uint16_t Opcode;
bool IsTrue16;
};
#define GET_MTBUFInfoTable_DECL
#define GET_MTBUFInfoTable_IMPL
#define GET_MUBUFInfoTable_DECL
#define GET_MUBUFInfoTable_IMPL
#define GET_SMInfoTable_DECL
#define GET_SMInfoTable_IMPL
#define GET_VOP1InfoTable_DECL
#define GET_VOP1InfoTable_IMPL
#define GET_VOP2InfoTable_DECL
#define GET_VOP2InfoTable_IMPL
#define GET_VOP3InfoTable_DECL
#define GET_VOP3InfoTable_IMPL
#define GET_VOPC64DPPTable_DECL
#define GET_VOPC64DPPTable_IMPL
#define GET_VOPC64DPP8Table_DECL
#define GET_VOPC64DPP8Table_IMPL
#define GET_VOPDComponentTable_DECL
#define GET_VOPDComponentTable_IMPL
#define GET_VOPDPairs_DECL
#define GET_VOPDPairs_IMPL
#define GET_VOPTrue16Table_DECL
#define GET_VOPTrue16Table_IMPL
#define GET_WMMAOpcode2AddrMappingTable_DECL
#define GET_WMMAOpcode2AddrMappingTable_IMPL
#define GET_WMMAOpcode3AddrMappingTable_DECL
#define GET_WMMAOpcode3AddrMappingTable_IMPL
#include "AMDGPUGenSearchableTables.inc"
int getMTBUFBaseOpcode(unsigned Opc) {
const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
return Info ? Info->BaseOpcode : -1;
}
int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
return Info ? Info->Opcode : -1;
}
int getMTBUFElements(unsigned Opc) {
const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
return Info ? Info->elements : 0;
}
bool getMTBUFHasVAddr(unsigned Opc) {
const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
return Info ? Info->has_vaddr : false;
}
bool getMTBUFHasSrsrc(unsigned Opc) {
const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
return Info ? Info->has_srsrc : false;
}
bool getMTBUFHasSoffset(unsigned Opc) {
const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
return Info ? Info->has_soffset : false;
}
int getMUBUFBaseOpcode(unsigned Opc) {
const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
return Info ? Info->BaseOpcode : -1;
}
int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
return Info ? Info->Opcode : -1;
}
int getMUBUFElements(unsigned Opc) {
const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
return Info ? Info->elements : 0;
}
bool getMUBUFHasVAddr(unsigned Opc) {
const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
return Info ? Info->has_vaddr : false;
}
bool getMUBUFHasSrsrc(unsigned Opc) {
const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
return Info ? Info->has_srsrc : false;
}
bool getMUBUFHasSoffset(unsigned Opc) {
const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
return Info ? Info->has_soffset : false;
}
bool getMUBUFIsBufferInv(unsigned Opc) {
const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
return Info ? Info->IsBufferInv : false;
}
bool getSMEMIsBuffer(unsigned Opc) {
const SMInfo *Info = getSMEMOpcodeHelper(Opc);
return Info ? Info->IsBuffer : false;
}
bool getVOP1IsSingle(unsigned Opc) {
const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
return Info ? Info->IsSingle : false;
}
bool getVOP2IsSingle(unsigned Opc) {
const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
return Info ? Info->IsSingle : false;
}
bool getVOP3IsSingle(unsigned Opc) {
const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
return Info ? Info->IsSingle : false;
}
bool isVOPC64DPP(unsigned Opc) {
return isVOPC64DPPOpcodeHelper(Opc) || isVOPC64DPP8OpcodeHelper(Opc);
}
bool getMAIIsDGEMM(unsigned Opc) {
const MAIInstInfo *Info = getMAIInstInfoHelper(Opc);
return Info ? Info->is_dgemm : false;
}
bool getMAIIsGFX940XDL(unsigned Opc) {
const MAIInstInfo *Info = getMAIInstInfoHelper(Opc);
return Info ? Info->is_gfx940_xdl : false;
}
CanBeVOPD getCanBeVOPD(unsigned Opc) {
const VOPDComponentInfo *Info = getVOPDComponentHelper(Opc);
if (Info)
return {Info->CanBeVOPDX, true};
else
return {false, false};
}
unsigned getVOPDOpcode(unsigned Opc) {
const VOPDComponentInfo *Info = getVOPDComponentHelper(Opc);
return Info ? Info->VOPDOp : ~0u;
}
bool isVOPD(unsigned Opc) {
return AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0X);
}
bool isMAC(unsigned Opc) {
return Opc == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
Opc == AMDGPU::V_MAC_F32_e64_gfx10 ||
Opc == AMDGPU::V_MAC_F32_e64_vi ||
Opc == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
Opc == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
Opc == AMDGPU::V_MAC_F16_e64_vi ||
Opc == AMDGPU::V_FMAC_F64_e64_gfx90a ||
Opc == AMDGPU::V_FMAC_F32_e64_gfx10 ||
Opc == AMDGPU::V_FMAC_F32_e64_gfx11 ||
Opc == AMDGPU::V_FMAC_F32_e64_vi ||
Opc == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
Opc == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
Opc == AMDGPU::V_FMAC_F16_e64_gfx10 ||
Opc == AMDGPU::V_FMAC_F16_t16_e64_gfx11 ||
Opc == AMDGPU::V_DOT2C_F32_F16_e64_vi ||
Opc == AMDGPU::V_DOT2C_I32_I16_e64_vi ||
Opc == AMDGPU::V_DOT4C_I32_I8_e64_vi ||
Opc == AMDGPU::V_DOT8C_I32_I4_e64_vi;
}
bool isPermlane16(unsigned Opc) {
return Opc == AMDGPU::V_PERMLANE16_B32_gfx10 ||
Opc == AMDGPU::V_PERMLANEX16_B32_gfx10 ||
Opc == AMDGPU::V_PERMLANE16_B32_e64_gfx11 ||
Opc == AMDGPU::V_PERMLANEX16_B32_e64_gfx11;
}
bool isTrue16Inst(unsigned Opc) {
const VOPTrue16Info *Info = getTrue16OpcodeHelper(Opc);
return Info ? Info->IsTrue16 : false;
}
unsigned mapWMMA2AddrTo3AddrOpcode(unsigned Opc) {
const WMMAOpcodeMappingInfo *Info = getWMMAMappingInfoFrom2AddrOpcode(Opc);
return Info ? Info->Opcode3Addr : ~0u;
}
unsigned mapWMMA3AddrTo2AddrOpcode(unsigned Opc) {
const WMMAOpcodeMappingInfo *Info = getWMMAMappingInfoFrom3AddrOpcode(Opc);
return Info ? Info->Opcode2Addr : ~0u;
}
// Wrapper for Tablegen'd function. enum Subtarget is not defined in any
// header files, so we need to wrap it in a function that takes unsigned
// instead.
int getMCOpcode(uint16_t Opcode, unsigned Gen) {
return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
}
int getVOPDFull(unsigned OpX, unsigned OpY) {
const VOPDInfo *Info = getVOPDInfoFromComponentOpcodes(OpX, OpY);
return Info ? Info->Opcode : -1;
}
std::pair<unsigned, unsigned> getVOPDComponents(unsigned VOPDOpcode) {
const VOPDInfo *Info = getVOPDOpcodeHelper(VOPDOpcode);
assert(Info);
auto OpX = getVOPDBaseFromComponent(Info->OpX);
auto OpY = getVOPDBaseFromComponent(Info->OpY);
assert(OpX && OpY);
return {OpX->BaseVOP, OpY->BaseVOP};
}
namespace VOPD {
ComponentProps::ComponentProps(const MCInstrDesc &OpDesc) {
assert(OpDesc.getNumDefs() == Component::DST_NUM);
assert(OpDesc.getOperandConstraint(Component::SRC0, MCOI::TIED_TO) == -1);
assert(OpDesc.getOperandConstraint(Component::SRC1, MCOI::TIED_TO) == -1);
auto TiedIdx = OpDesc.getOperandConstraint(Component::SRC2, MCOI::TIED_TO);
assert(TiedIdx == -1 || TiedIdx == Component::DST);
HasSrc2Acc = TiedIdx != -1;
SrcOperandsNum = OpDesc.getNumOperands() - OpDesc.getNumDefs();
assert(SrcOperandsNum <= Component::MAX_SRC_NUM);
auto OperandsNum = OpDesc.getNumOperands();
unsigned CompOprIdx;
for (CompOprIdx = Component::SRC1; CompOprIdx < OperandsNum; ++CompOprIdx) {
if (OpDesc.operands()[CompOprIdx].OperandType == AMDGPU::OPERAND_KIMM32) {
MandatoryLiteralIdx = CompOprIdx;
break;
}
}
}
unsigned ComponentInfo::getIndexInParsedOperands(unsigned CompOprIdx) const {
assert(CompOprIdx < Component::MAX_OPR_NUM);
if (CompOprIdx == Component::DST)
return getIndexOfDstInParsedOperands();
auto CompSrcIdx = CompOprIdx - Component::DST_NUM;
if (CompSrcIdx < getCompParsedSrcOperandsNum())
return getIndexOfSrcInParsedOperands(CompSrcIdx);
// The specified operand does not exist.
return 0;
}
std::optional<unsigned> InstInfo::getInvalidCompOperandIndex(
std::function<unsigned(unsigned, unsigned)> GetRegIdx) const {
auto OpXRegs = getRegIndices(ComponentIndex::X, GetRegIdx);
auto OpYRegs = getRegIndices(ComponentIndex::Y, GetRegIdx);
unsigned CompOprIdx;
for (CompOprIdx = 0; CompOprIdx < Component::MAX_OPR_NUM; ++CompOprIdx) {
unsigned BanksMasks = VOPD_VGPR_BANK_MASKS[CompOprIdx];
if (OpXRegs[CompOprIdx] && OpYRegs[CompOprIdx] &&
((OpXRegs[CompOprIdx] & BanksMasks) ==
(OpYRegs[CompOprIdx] & BanksMasks)))
return CompOprIdx;
}
return {};
}
// Return an array of VGPR registers [DST,SRC0,SRC1,SRC2] used
// by the specified component. If an operand is unused
// or is not a VGPR, the corresponding value is 0.
//
// GetRegIdx(Component, MCOperandIdx) must return a VGPR register index
// for the specified component and MC operand. The callback must return 0
// if the operand is not a register or not a VGPR.
InstInfo::RegIndices InstInfo::getRegIndices(
unsigned CompIdx,
std::function<unsigned(unsigned, unsigned)> GetRegIdx) const {
assert(CompIdx < COMPONENTS_NUM);
const auto &Comp = CompInfo[CompIdx];
InstInfo::RegIndices RegIndices;
RegIndices[DST] = GetRegIdx(CompIdx, Comp.getIndexOfDstInMCOperands());
for (unsigned CompOprIdx : {SRC0, SRC1, SRC2}) {
unsigned CompSrcIdx = CompOprIdx - DST_NUM;
RegIndices[CompOprIdx] =
Comp.hasRegSrcOperand(CompSrcIdx)
? GetRegIdx(CompIdx, Comp.getIndexOfSrcInMCOperands(CompSrcIdx))
: 0;
}
return RegIndices;
}
} // namespace VOPD
VOPD::InstInfo getVOPDInstInfo(const MCInstrDesc &OpX, const MCInstrDesc &OpY) {
return VOPD::InstInfo(OpX, OpY);
}
VOPD::InstInfo getVOPDInstInfo(unsigned VOPDOpcode,
const MCInstrInfo *InstrInfo) {
auto [OpX, OpY] = getVOPDComponents(VOPDOpcode);
const auto &OpXDesc = InstrInfo->get(OpX);
const auto &OpYDesc = InstrInfo->get(OpY);
VOPD::ComponentInfo OpXInfo(OpXDesc, VOPD::ComponentKind::COMPONENT_X);
VOPD::ComponentInfo OpYInfo(OpYDesc, OpXInfo);
return VOPD::InstInfo(OpXInfo, OpYInfo);
}
namespace IsaInfo {
AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
: STI(STI), XnackSetting(TargetIDSetting::Any),
SramEccSetting(TargetIDSetting::Any), CodeObjectVersion(0) {
if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
XnackSetting = TargetIDSetting::Unsupported;
if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
SramEccSetting = TargetIDSetting::Unsupported;
}
void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
// Check if xnack or sramecc is explicitly enabled or disabled. In the
// absence of the target features we assume we must generate code that can run
// in any environment.
SubtargetFeatures Features(FS);
std::optional<bool> XnackRequested;
std::optional<bool> SramEccRequested;
for (const std::string &Feature : Features.getFeatures()) {
if (Feature == "+xnack")
XnackRequested = true;
else if (Feature == "-xnack")
XnackRequested = false;
else if (Feature == "+sramecc")
SramEccRequested = true;
else if (Feature == "-sramecc")
SramEccRequested = false;
}
bool XnackSupported = isXnackSupported();
bool SramEccSupported = isSramEccSupported();
if (XnackRequested) {
if (XnackSupported) {
XnackSetting =
*XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
} else {
// If a specific xnack setting was requested and this GPU does not support
// xnack emit a warning. Setting will remain set to "Unsupported".
if (*XnackRequested) {
errs() << "warning: xnack 'On' was requested for a processor that does "
"not support it!\n";
} else {
errs() << "warning: xnack 'Off' was requested for a processor that "
"does not support it!\n";
}
}
}
if (SramEccRequested) {
if (SramEccSupported) {
SramEccSetting =
*SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
} else {
// If a specific sramecc setting was requested and this GPU does not
// support sramecc emit a warning. Setting will remain set to
// "Unsupported".
if (*SramEccRequested) {
errs() << "warning: sramecc 'On' was requested for a processor that "
"does not support it!\n";
} else {
errs() << "warning: sramecc 'Off' was requested for a processor that "
"does not support it!\n";
}
}
}
}
static TargetIDSetting
getTargetIDSettingFromFeatureString(StringRef FeatureString) {
if (FeatureString.endswith("-"))
return TargetIDSetting::Off;
if (FeatureString.endswith("+"))
return TargetIDSetting::On;
llvm_unreachable("Malformed feature string");
}
void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
SmallVector<StringRef, 3> TargetIDSplit;
TargetID.split(TargetIDSplit, ':');
for (const auto &FeatureString : TargetIDSplit) {
if (FeatureString.startswith("xnack"))
XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
if (FeatureString.startswith("sramecc"))
SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
}
}
std::string AMDGPUTargetID::toString() const {
std::string StringRep;
raw_string_ostream StreamRep(StringRep);
auto TargetTriple = STI.getTargetTriple();
auto Version = getIsaVersion(STI.getCPU());
StreamRep << TargetTriple.getArchName() << '-'
<< TargetTriple.getVendorName() << '-'
<< TargetTriple.getOSName() << '-'
<< TargetTriple.getEnvironmentName() << '-';
std::string Processor;
// TODO: Following else statement is present here because we used various
// alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
// Remove once all aliases are removed from GCNProcessors.td.
if (Version.Major >= 9)
Processor = STI.getCPU().str();
else
Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
Twine(Version.Stepping))
.str();
std::string Features;
if (STI.getTargetTriple().getOS() == Triple::AMDHSA) {
switch (CodeObjectVersion) {
case AMDGPU::AMDHSA_COV2:
// Code object V2 only supported specific processors and had fixed
// settings for the XNACK.
if (Processor == "gfx600") {
} else if (Processor == "gfx601") {
} else if (Processor == "gfx602") {
} else if (Processor == "gfx700") {
} else if (Processor == "gfx701") {
} else if (Processor == "gfx702") {
} else if (Processor == "gfx703") {
} else if (Processor == "gfx704") {
} else if (Processor == "gfx705") {
} else if (Processor == "gfx801") {
if (!isXnackOnOrAny())
report_fatal_error(
"AMD GPU code object V2 does not support processor " +
Twine(Processor) + " without XNACK");
} else if (Processor == "gfx802") {
} else if (Processor == "gfx803") {
} else if (Processor == "gfx805") {
} else if (Processor == "gfx810") {
if (!isXnackOnOrAny())
report_fatal_error(
"AMD GPU code object V2 does not support processor " +
Twine(Processor) + " without XNACK");
} else if (Processor == "gfx900") {
if (isXnackOnOrAny())
Processor = "gfx901";
} else if (Processor == "gfx902") {
if (isXnackOnOrAny())
Processor = "gfx903";
} else if (Processor == "gfx904") {
if (isXnackOnOrAny())
Processor = "gfx905";
} else if (Processor == "gfx906") {
if (isXnackOnOrAny())
Processor = "gfx907";
} else if (Processor == "gfx90c") {
if (isXnackOnOrAny())
report_fatal_error(
"AMD GPU code object V2 does not support processor " +
Twine(Processor) + " with XNACK being ON or ANY");
} else {
report_fatal_error(
"AMD GPU code object V2 does not support processor " +
Twine(Processor));
}
break;
case AMDGPU::AMDHSA_COV3:
// xnack.
if (isXnackOnOrAny())
Features += "+xnack";
// In code object v2 and v3, "sramecc" feature was spelled with a
// hyphen ("sram-ecc").
if (isSramEccOnOrAny())
Features += "+sram-ecc";
break;
case AMDGPU::AMDHSA_COV4:
case AMDGPU::AMDHSA_COV5:
// sramecc.
if (getSramEccSetting() == TargetIDSetting::Off)
Features += ":sramecc-";
else if (getSramEccSetting() == TargetIDSetting::On)
Features += ":sramecc+";
// xnack.
if (getXnackSetting() == TargetIDSetting::Off)
Features += ":xnack-";
else if (getXnackSetting() == TargetIDSetting::On)
Features += ":xnack+";
break;
default:
break;
}
}
StreamRep << Processor << Features;
StreamRep.flush();
return StringRep;
}
unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
if (STI->getFeatureBits().test(FeatureWavefrontSize16))
return 16;
if (STI->getFeatureBits().test(FeatureWavefrontSize32))
return 32;
return 64;
}
unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
unsigned BytesPerCU = 0;
if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
BytesPerCU = 32768;
if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
BytesPerCU = 65536;
// "Per CU" really means "per whatever functional block the waves of a
// workgroup must share". So the effective local memory size is doubled in
// WGP mode on gfx10.
if (isGFX10Plus(*STI) && !STI->getFeatureBits().test(FeatureCuMode))
BytesPerCU *= 2;
return BytesPerCU;
}
unsigned getAddressableLocalMemorySize(const MCSubtargetInfo *STI) {
if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
return 32768;
if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
return 65536;
return 0;
}
unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
// "Per CU" really means "per whatever functional block the waves of a
// workgroup must share". For gfx10 in CU mode this is the CU, which contains
// two SIMDs.
if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
return 2;
// Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
// two CUs, so a total of four SIMDs.
return 4;
}
unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize) {
assert(FlatWorkGroupSize != 0);
if (STI->getTargetTriple().getArch() != Triple::amdgcn)
return 8;
unsigned MaxWaves = getMaxWavesPerEU(STI) * getEUsPerCU(STI);
unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
if (N == 1) {
// Single-wave workgroups don't consume barrier resources.
return MaxWaves;
}
unsigned MaxBarriers = 16;
if (isGFX10Plus(*STI) && !STI->getFeatureBits().test(FeatureCuMode))
MaxBarriers = 32;
return std::min(MaxWaves / N, MaxBarriers);
}
unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
return 1;
}
unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
// FIXME: Need to take scratch memory into account.
if (isGFX90A(*STI))
return 8;
if (!isGFX10Plus(*STI))
return 10;
return hasGFX10_3Insts(*STI) ? 16 : 20;
}
unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize) {
return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
getEUsPerCU(STI));
}
unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
return 1;
}
unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
// Some subtargets allow encoding 2048, but this isn't tested or supported.
return 1024;
}
unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize) {
return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
}
unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
IsaVersion Version = getIsaVersion(STI->getCPU());
if (Version.Major >= 10)
return getAddressableNumSGPRs(STI);
if (Version.Major >= 8)
return 16;
return 8;
}
unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
return 8;
}
unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
IsaVersion Version = getIsaVersion(STI->getCPU());
if (Version.Major >= 8)
return 800;
return 512;
}
unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
if (STI->getFeatureBits().test(FeatureSGPRInitBug))
return FIXED_NUM_SGPRS_FOR_INIT_BUG;
IsaVersion Version = getIsaVersion(STI->getCPU());
if (Version.Major >= 10)
return 106;
if (Version.Major >= 8)
return 102;
return 104;
}
unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
assert(WavesPerEU != 0);
IsaVersion Version = getIsaVersion(STI->getCPU());
if (Version.Major >= 10)
return 0;
if (WavesPerEU >= getMaxWavesPerEU(STI))
return 0;
unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
if (STI->getFeatureBits().test(FeatureTrapHandler))
MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
}
unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
bool Addressable) {
assert(WavesPerEU != 0);
unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
IsaVersion Version = getIsaVersion(STI->getCPU());
if (Version.Major >= 10)
return Addressable ? AddressableNumSGPRs : 108;
if (Version.Major >= 8 && !Addressable)
AddressableNumSGPRs = 112;
unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
if (STI->getFeatureBits().test(FeatureTrapHandler))
MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
return std::min(MaxNumSGPRs, AddressableNumSGPRs);
}
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
bool FlatScrUsed, bool XNACKUsed) {
unsigned ExtraSGPRs = 0;
if (VCCUsed)
ExtraSGPRs = 2;
IsaVersion Version = getIsaVersion(STI->getCPU());
if (Version.Major >= 10)
return ExtraSGPRs;
if (Version.Major < 8) {
if (FlatScrUsed)
ExtraSGPRs = 4;
} else {
if (XNACKUsed)
ExtraSGPRs = 4;
if (FlatScrUsed ||
STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
ExtraSGPRs = 6;
}
return ExtraSGPRs;
}
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
bool FlatScrUsed) {
return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
}
unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
// SGPRBlocks is actual number of SGPR blocks minus 1.
return NumSGPRs / getSGPREncodingGranule(STI) - 1;
}
unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
std::optional<bool> EnableWavefrontSize32) {
if (STI->getFeatureBits().test(FeatureGFX90AInsts))
return 8;
bool IsWave32 = EnableWavefrontSize32 ?
*EnableWavefrontSize32 :
STI->getFeatureBits().test(FeatureWavefrontSize32);
if (STI->getFeatureBits().test(FeatureGFX11FullVGPRs))
return IsWave32 ? 24 : 12;
if (hasGFX10_3Insts(*STI))
return IsWave32 ? 16 : 8;
return IsWave32 ? 8 : 4;
}
unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
std::optional<bool> EnableWavefrontSize32) {
if (STI->getFeatureBits().test(FeatureGFX90AInsts))
return 8;
bool IsWave32 = EnableWavefrontSize32 ?
*EnableWavefrontSize32 :
STI->getFeatureBits().test(FeatureWavefrontSize32);
return IsWave32 ? 8 : 4;
}
unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
if (STI->getFeatureBits().test(FeatureGFX90AInsts))
return 512;
if (!isGFX10Plus(*STI))
return 256;
bool IsWave32 = STI->getFeatureBits().test(FeatureWavefrontSize32);
if (STI->getFeatureBits().test(FeatureGFX11FullVGPRs))
return IsWave32 ? 1536 : 768;
return IsWave32 ? 1024 : 512;
}
unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
if (STI->getFeatureBits().test(FeatureGFX90AInsts))
return 512;
return 256;
}
unsigned getNumWavesPerEUWithNumVGPRs(const MCSubtargetInfo *STI,
unsigned NumVGPRs) {
unsigned MaxWaves = getMaxWavesPerEU(STI);
unsigned Granule = getVGPRAllocGranule(STI);
if (NumVGPRs < Granule)
return MaxWaves;
unsigned RoundedRegs = alignTo(NumVGPRs, Granule);
return std::min(std::max(getTotalNumVGPRs(STI) / RoundedRegs, 1u), MaxWaves);
}
unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
assert(WavesPerEU != 0);
unsigned MaxWavesPerEU = getMaxWavesPerEU(STI);
if (WavesPerEU >= MaxWavesPerEU)
return 0;
unsigned TotNumVGPRs = getTotalNumVGPRs(STI);
unsigned AddrsableNumVGPRs = getAddressableNumVGPRs(STI);
unsigned Granule = getVGPRAllocGranule(STI);
unsigned MaxNumVGPRs = alignDown(TotNumVGPRs / WavesPerEU, Granule);
if (MaxNumVGPRs == alignDown(TotNumVGPRs / MaxWavesPerEU, Granule))
return 0;
unsigned MinWavesPerEU = getNumWavesPerEUWithNumVGPRs(STI, AddrsableNumVGPRs);
if (WavesPerEU < MinWavesPerEU)
return getMinNumVGPRs(STI, MinWavesPerEU);
unsigned MaxNumVGPRsNext = alignDown(TotNumVGPRs / (WavesPerEU + 1), Granule);
unsigned MinNumVGPRs = 1 + std::min(MaxNumVGPRs - Granule, MaxNumVGPRsNext);
return std::min(MinNumVGPRs, AddrsableNumVGPRs);
}
unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
assert(WavesPerEU != 0);
unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
getVGPRAllocGranule(STI));
unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
return std::min(MaxNumVGPRs, AddressableNumVGPRs);
}
unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
std::optional<bool> EnableWavefrontSize32) {
NumVGPRs = alignTo(std::max(1u, NumVGPRs),
getVGPREncodingGranule(STI, EnableWavefrontSize32));
// VGPRBlocks is actual number of VGPR blocks minus 1.
return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
}
} // end namespace IsaInfo
void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
const MCSubtargetInfo *STI) {
IsaVersion Version = getIsaVersion(STI->getCPU());
memset(&Header, 0, sizeof(Header));
Header.amd_kernel_code_version_major = 1;
Header.amd_kernel_code_version_minor = 2;
Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
Header.amd_machine_version_major = Version.Major;
Header.amd_machine_version_minor = Version.Minor;
Header.amd_machine_version_stepping = Version.Stepping;
Header.kernel_code_entry_byte_offset = sizeof(Header);
Header.wavefront_size = 6;
// If the code object does not support indirect functions, then the value must
// be 0xffffffff.
Header.call_convention = -1;
// These alignment values are specified in powers of two, so alignment =
// 2^n. The minimum alignment is 2^4 = 16.
Header.kernarg_segment_alignment = 4;
Header.group_segment_alignment = 4;
Header.private_segment_alignment = 4;
if (Version.Major >= 10) {
if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
Header.wavefront_size = 5;
Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
}
Header.compute_pgm_resource_registers |=
S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
S_00B848_MEM_ORDERED(1);
}
}
amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
const MCSubtargetInfo *STI) {
IsaVersion Version = getIsaVersion(STI->getCPU());
amdhsa::kernel_descriptor_t KD;
memset(&KD, 0, sizeof(KD));
AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
if (Version.Major >= 10) {
AMDHSA_BITS_SET(KD.kernel_code_properties,
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
}
if (AMDGPU::isGFX90A(*STI)) {
AMDHSA_BITS_SET(KD.compute_pgm_rsrc3,
amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0);
}
return KD;
}
bool isGroupSegment(const GlobalValue *GV) {
return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
}
bool isGlobalSegment(const GlobalValue *GV) {
return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
}
bool isReadOnlySegment(const GlobalValue *GV) {
unsigned AS = GV->getAddressSpace();
return AS == AMDGPUAS::CONSTANT_ADDRESS ||
AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
}
bool shouldEmitConstantsToTextSection(const Triple &TT) {
return TT.getArch() == Triple::r600;
}
std::pair<unsigned, unsigned>
getIntegerPairAttribute(const Function &F, StringRef Name,
std::pair<unsigned, unsigned> Default,
bool OnlyFirstRequired) {
Attribute A = F.getFnAttribute(Name);
if (!A.isStringAttribute())
return Default;
LLVMContext &Ctx = F.getContext();
std::pair<unsigned, unsigned> Ints = Default;
std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
if (Strs.first.trim().getAsInteger(0, Ints.first)) {
Ctx.emitError("can't parse first integer attribute " + Name);
return Default;
}
if (Strs.second.trim().getAsInteger(0, Ints.second)) {
if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
Ctx.emitError("can't parse second integer attribute " + Name);
return Default;
}
}
return Ints;
}
unsigned getVmcntBitMask(const IsaVersion &Version) {
return (1 << (getVmcntBitWidthLo(Version.Major) +
getVmcntBitWidthHi(Version.Major))) -
1;
}
unsigned getExpcntBitMask(const IsaVersion &Version) {
return (1 << getExpcntBitWidth(Version.Major)) - 1;
}
unsigned getLgkmcntBitMask(const IsaVersion &Version) {
return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
}
unsigned getWaitcntBitMask(const IsaVersion &Version) {
unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(Version.Major),
getVmcntBitWidthLo(Version.Major));
unsigned Expcnt = getBitMask(getExpcntBitShift(Version.Major),
getExpcntBitWidth(Version.Major));
unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(Version.Major),
getLgkmcntBitWidth(Version.Major));
unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(Version.Major),
getVmcntBitWidthHi(Version.Major));
return VmcntLo | Expcnt | Lgkmcnt | VmcntHi;
}
unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
unsigned VmcntLo = unpackBits(Waitcnt, getVmcntBitShiftLo(Version.Major),
getVmcntBitWidthLo(Version.Major));
unsigned VmcntHi = unpackBits(Waitcnt, getVmcntBitShiftHi(Version.Major),
getVmcntBitWidthHi(Version.Major));
return VmcntLo | VmcntHi << getVmcntBitWidthLo(Version.Major);
}
unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
return unpackBits(Waitcnt, getExpcntBitShift(Version.Major),
getExpcntBitWidth(Version.Major));
}
unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
return unpackBits(Waitcnt, getLgkmcntBitShift(Version.Major),
getLgkmcntBitWidth(Version.Major));
}
void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
Vmcnt = decodeVmcnt(Version, Waitcnt);
Expcnt = decodeExpcnt(Version, Waitcnt);
Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
}
Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
Waitcnt Decoded;
Decoded.VmCnt = decodeVmcnt(Version, Encoded);
Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
return Decoded;
}
unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Vmcnt) {
Waitcnt = packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(Version.Major),
getVmcntBitWidthLo(Version.Major));
return packBits(Vmcnt >> getVmcntBitWidthLo(Version.Major), Waitcnt,
getVmcntBitShiftHi(Version.Major),
getVmcntBitWidthHi(Version.Major));
}
unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Expcnt) {
return packBits(Expcnt, Waitcnt, getExpcntBitShift(Version.Major),
getExpcntBitWidth(Version.Major));
}
unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Lgkmcnt) {
return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(Version.Major),
getLgkmcntBitWidth(Version.Major));
}
unsigned encodeWaitcnt(const IsaVersion &Version,
unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
unsigned Waitcnt = getWaitcntBitMask(Version);
Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
return Waitcnt;
}
unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
}
//===----------------------------------------------------------------------===//
// Custom Operands.
//
// A table of custom operands shall describe "primary" operand names
// first followed by aliases if any. It is not required but recommended
// to arrange operands so that operand encoding match operand position
// in the table. This will make disassembly a bit more efficient.
// Unused slots in the table shall have an empty name.
//
//===----------------------------------------------------------------------===//
template <class T>
static bool isValidOpr(int Idx, const CustomOperand<T> OpInfo[], int OpInfoSize,
T Context) {
return 0 <= Idx && Idx < OpInfoSize && !OpInfo[Idx].Name.empty() &&
(!OpInfo[Idx].Cond || OpInfo[Idx].Cond(Context));
}
template <class T>
static int getOprIdx(std::function<bool(const CustomOperand<T> &)> Test,
const CustomOperand<T> OpInfo[], int OpInfoSize,
T Context) {
int InvalidIdx = OPR_ID_UNKNOWN;
for (int Idx = 0; Idx < OpInfoSize; ++Idx) {
if (Test(OpInfo[Idx])) {
if (!OpInfo[Idx].Cond || OpInfo[Idx].Cond(Context))
return Idx;
InvalidIdx = OPR_ID_UNSUPPORTED;
}
}
return InvalidIdx;
}
template <class T>
static int getOprIdx(const StringRef Name, const CustomOperand<T> OpInfo[],
int OpInfoSize, T Context) {
auto Test = [=](const CustomOperand<T> &Op) { return Op.Name == Name; };
return getOprIdx<T>(Test, OpInfo, OpInfoSize, Context);
}
template <class T>
static int getOprIdx(int Id, const CustomOperand<T> OpInfo[], int OpInfoSize,
T Context, bool QuickCheck = true) {
auto Test = [=](const CustomOperand<T> &Op) {
return Op.Encoding == Id && !Op.Name.empty();
};
// This is an optimization that should work in most cases.
// As a side effect, it may cause selection of an alias
// instead of a primary operand name in case of sparse tables.
if (QuickCheck && isValidOpr<T>(Id, OpInfo, OpInfoSize, Context) &&
OpInfo[Id].Encoding == Id) {
return Id;
}
return getOprIdx<T>(Test, OpInfo, OpInfoSize, Context);
}
//===----------------------------------------------------------------------===//
// Custom Operand Values
//===----------------------------------------------------------------------===//
static unsigned getDefaultCustomOperandEncoding(const CustomOperandVal *Opr,
int Size,
const MCSubtargetInfo &STI) {
unsigned Enc = 0;
for (int Idx = 0; Idx < Size; ++Idx) {
const auto &Op = Opr[Idx];
if (Op.isSupported(STI))
Enc |= Op.encode(Op.Default);
}
return Enc;
}
static bool isSymbolicCustomOperandEncoding(const CustomOperandVal *Opr,
int Size, unsigned Code,
bool &HasNonDefaultVal,
const MCSubtargetInfo &STI) {
unsigned UsedOprMask = 0;
HasNonDefaultVal = false;
for (int Idx = 0; Idx < Size; ++Idx) {
const auto &Op = Opr[Idx];
if (!Op.isSupported(STI))
continue;
UsedOprMask |= Op.getMask();
unsigned Val = Op.decode(Code);
if (!Op.isValid(Val))
return false;
HasNonDefaultVal |= (Val != Op.Default);
}
return (Code & ~UsedOprMask) == 0;
}
static bool decodeCustomOperand(const CustomOperandVal *Opr, int Size,
unsigned Code, int &Idx, StringRef &Name,
unsigned &Val, bool &IsDefault,
const MCSubtargetInfo &STI) {
while (Idx < Size) {
const auto &Op = Opr[Idx++];
if (Op.isSupported(STI)) {
Name = Op.Name;
Val = Op.decode(Code);
IsDefault = (Val == Op.Default);
return true;
}
}
return false;
}
static int encodeCustomOperandVal(const CustomOperandVal &Op,
int64_t InputVal) {
if (InputVal < 0 || InputVal > Op.Max)
return OPR_VAL_INVALID;
return Op.encode(InputVal);
}
static int encodeCustomOperand(const CustomOperandVal *Opr, int Size,
const StringRef Name, int64_t InputVal,
unsigned &UsedOprMask,
const MCSubtargetInfo &STI) {
int InvalidId = OPR_ID_UNKNOWN;
for (int Idx = 0; Idx < Size; ++Idx) {
const auto &Op = Opr[Idx];
if (Op.Name == Name) {
if (!Op.isSupported(STI)) {
InvalidId = OPR_ID_UNSUPPORTED;
continue;
}
auto OprMask = Op.getMask();
if (OprMask & UsedOprMask)
return OPR_ID_DUPLICATE;
UsedOprMask |= OprMask;
return encodeCustomOperandVal(Op, InputVal);
}
}
return InvalidId;
}
//===----------------------------------------------------------------------===//
// DepCtr
//===----------------------------------------------------------------------===//
namespace DepCtr {
int getDefaultDepCtrEncoding(const MCSubtargetInfo &STI) {
static int Default = -1;
if (Default == -1)
Default = getDefaultCustomOperandEncoding(DepCtrInfo, DEP_CTR_SIZE, STI);
return Default;
}
bool isSymbolicDepCtrEncoding(unsigned Code, bool &HasNonDefaultVal,
const MCSubtargetInfo &STI) {
return isSymbolicCustomOperandEncoding(DepCtrInfo, DEP_CTR_SIZE, Code,
HasNonDefaultVal, STI);
}
bool decodeDepCtr(unsigned Code, int &Id, StringRef &Name, unsigned &Val,
bool &IsDefault, const MCSubtargetInfo &STI) {
return decodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Code, Id, Name, Val,
IsDefault, STI);
}
int encodeDepCtr(const StringRef Name, int64_t Val, unsigned &UsedOprMask,
const MCSubtargetInfo &STI) {
return encodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Name, Val, UsedOprMask,
STI);
}
unsigned decodeFieldVmVsrc(unsigned Encoded) {
return unpackBits(Encoded, getVmVsrcBitShift(), getVmVsrcBitWidth());
}
unsigned decodeFieldVaVdst(unsigned Encoded) {
return unpackBits(Encoded, getVaVdstBitShift(), getVaVdstBitWidth());
}
unsigned decodeFieldSaSdst(unsigned Encoded) {
return unpackBits(Encoded, getSaSdstBitShift(), getSaSdstBitWidth());
}
unsigned encodeFieldVmVsrc(unsigned Encoded, unsigned VmVsrc) {
return packBits(VmVsrc, Encoded, getVmVsrcBitShift(), getVmVsrcBitWidth());
}
unsigned encodeFieldVmVsrc(unsigned VmVsrc) {
return encodeFieldVmVsrc(0xffff, VmVsrc);
}
unsigned encodeFieldVaVdst(unsigned Encoded, unsigned VaVdst) {
return packBits(VaVdst, Encoded, getVaVdstBitShift(), getVaVdstBitWidth());
}
unsigned encodeFieldVaVdst(unsigned VaVdst) {
return encodeFieldVaVdst(0xffff, VaVdst);
}
unsigned encodeFieldSaSdst(unsigned Encoded, unsigned SaSdst) {
return packBits(SaSdst, Encoded, getSaSdstBitShift(), getSaSdstBitWidth());
}
unsigned encodeFieldSaSdst(unsigned SaSdst) {
return encodeFieldSaSdst(0xffff, SaSdst);
}
} // namespace DepCtr
//===----------------------------------------------------------------------===//
// hwreg
//===----------------------------------------------------------------------===//
namespace Hwreg {
int64_t getHwregId(const StringRef Name, const MCSubtargetInfo &STI) {
int Idx = getOprIdx<const MCSubtargetInfo &>(Name, Opr, OPR_SIZE, STI);
return (Idx < 0) ? Idx : Opr[Idx].Encoding;
}
bool isValidHwreg(int64_t Id) {
return 0 <= Id && isUInt<ID_WIDTH_>(Id);
}
bool isValidHwregOffset(int64_t Offset) {
return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
}
bool isValidHwregWidth(int64_t Width) {
return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
}
uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
return (Id << ID_SHIFT_) |
(Offset << OFFSET_SHIFT_) |
((Width - 1) << WIDTH_M1_SHIFT_);
}
StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
int Idx = getOprIdx<const MCSubtargetInfo &>(Id, Opr, OPR_SIZE, STI);
return (Idx < 0) ? "" : Opr[Idx].Name;
}
void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
Id = (Val & ID_MASK_) >> ID_SHIFT_;
Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
}
} // namespace Hwreg
//===----------------------------------------------------------------------===//
// exp tgt
//===----------------------------------------------------------------------===//
namespace Exp {
struct ExpTgt {
StringLiteral Name;
unsigned Tgt;
unsigned MaxIndex;
};
static constexpr ExpTgt ExpTgtInfo[] = {
{{"null"}, ET_NULL, ET_NULL_MAX_IDX},
{{"mrtz"}, ET_MRTZ, ET_MRTZ_MAX_IDX},
{{"prim"}, ET_PRIM, ET_PRIM_MAX_IDX},
{{"mrt"}, ET_MRT0, ET_MRT_MAX_IDX},
{{"pos"}, ET_POS0, ET_POS_MAX_IDX},
{{"dual_src_blend"}, ET_DUAL_SRC_BLEND0, ET_DUAL_SRC_BLEND_MAX_IDX},
{{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
};
bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
for (const ExpTgt &Val : ExpTgtInfo) {
if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
Name = Val.Name;
return true;
}
}
return false;
}
unsigned getTgtId(const StringRef Name) {
for (const ExpTgt &Val : ExpTgtInfo) {
if (Val.MaxIndex == 0 && Name == Val.Name)
return Val.Tgt;
if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) {
StringRef Suffix = Name.drop_front(Val.Name.size());
unsigned Id;
if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
return ET_INVALID;
// Disable leading zeroes
if (Suffix.size() > 1 && Suffix[0] == '0')
return ET_INVALID;
return Val.Tgt + Id;
}
}
return ET_INVALID;
}
bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
switch (Id) {
case ET_NULL:
return !isGFX11Plus(STI);
case ET_POS4:
case ET_PRIM:
return isGFX10Plus(STI);
case ET_DUAL_SRC_BLEND0:
case ET_DUAL_SRC_BLEND1:
return isGFX11Plus(STI);
default:
if (Id >= ET_PARAM0 && Id <= ET_PARAM31)
return !isGFX11Plus(STI);
return true;
}
}
} // namespace Exp
//===----------------------------------------------------------------------===//
// MTBUF Format
//===----------------------------------------------------------------------===//
namespace MTBUFFormat {
int64_t getDfmt(const StringRef Name) {
for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
if (Name == DfmtSymbolic[Id])
return Id;
}
return DFMT_UNDEF;
}
StringRef getDfmtName(unsigned Id) {
assert(Id <= DFMT_MAX);
return DfmtSymbolic[Id];
}
static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
if (isSI(STI) || isCI(STI))
return NfmtSymbolicSICI;
if (isVI(STI) || isGFX9(STI))
return NfmtSymbolicVI;
return NfmtSymbolicGFX10;
}
int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
auto lookupTable = getNfmtLookupTable(STI);
for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
if (Name == lookupTable[Id])
return Id;
}
return NFMT_UNDEF;
}
StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
assert(Id <= NFMT_MAX);
return getNfmtLookupTable(STI)[Id];
}
bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
unsigned Dfmt;
unsigned Nfmt;
decodeDfmtNfmt(Id, Dfmt, Nfmt);
return isValidNfmt(Nfmt, STI);
}
bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
return !getNfmtName(Id, STI).empty();
}
int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
}
void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
}
int64_t getUnifiedFormat(const StringRef Name, const MCSubtargetInfo &STI) {
if (isGFX11Plus(STI)) {
for (int Id = UfmtGFX11::UFMT_FIRST; Id <= UfmtGFX11::UFMT_LAST; ++Id) {
if (Name == UfmtSymbolicGFX11[Id])
return Id;
}
} else {
for (int Id = UfmtGFX10::UFMT_FIRST; Id <= UfmtGFX10::UFMT_LAST; ++Id) {
if (Name == UfmtSymbolicGFX10[Id])
return Id;
}
}
return UFMT_UNDEF;
}
StringRef getUnifiedFormatName(unsigned Id, const MCSubtargetInfo &STI) {
if(isValidUnifiedFormat(Id, STI))
return isGFX10(STI) ? UfmtSymbolicGFX10[Id] : UfmtSymbolicGFX11[Id];
return "";
}
bool isValidUnifiedFormat(unsigned Id, const MCSubtargetInfo &STI) {
return isGFX10(STI) ? Id <= UfmtGFX10::UFMT_LAST : Id <= UfmtGFX11::UFMT_LAST;
}
int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt,
const MCSubtargetInfo &STI) {
int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
if (isGFX11Plus(STI)) {
for (int Id = UfmtGFX11::UFMT_FIRST; Id <= UfmtGFX11::UFMT_LAST; ++Id) {
if (Fmt == DfmtNfmt2UFmtGFX11[Id])
return Id;
}
} else {
for (int Id = UfmtGFX10::UFMT_FIRST; Id <= UfmtGFX10::UFMT_LAST; ++Id) {
if (Fmt == DfmtNfmt2UFmtGFX10[Id])
return Id;
}
}
return UFMT_UNDEF;
}
bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
}
unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
if (isGFX10Plus(STI))
return UFMT_DEFAULT;
return DFMT_NFMT_DEFAULT;
}
} // namespace MTBUFFormat
//===----------------------------------------------------------------------===//
// SendMsg
//===----------------------------------------------------------------------===//
namespace SendMsg {
static uint64_t getMsgIdMask(const MCSubtargetInfo &STI) {
return isGFX11Plus(STI) ? ID_MASK_GFX11Plus_ : ID_MASK_PreGFX11_;
}
int64_t getMsgId(const StringRef Name, const MCSubtargetInfo &STI) {
int Idx = getOprIdx<const MCSubtargetInfo &>(Name, Msg, MSG_SIZE, STI);
return (Idx < 0) ? Idx : Msg[Idx].Encoding;
}
bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI) {
return (MsgId & ~(getMsgIdMask(STI))) == 0;
}
StringRef getMsgName(int64_t MsgId, const MCSubtargetInfo &STI) {
int Idx = getOprIdx<const MCSubtargetInfo &>(MsgId, Msg, MSG_SIZE, STI);
return (Idx < 0) ? "" : Msg[Idx].Name;
}
int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
for (int i = F; i < L; ++i) {
if (Name == S[i]) {
return i;
}
}
return OP_UNKNOWN_;
}
bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
bool Strict) {
assert(isValidMsgId(MsgId, STI));
if (!Strict)
return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
if (MsgId == ID_SYSMSG)
return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
if (!isGFX11Plus(STI)) {
switch (MsgId) {
case ID_GS_PreGFX11:
return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
case ID_GS_DONE_PreGFX11:
return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
}
}
return OpId == OP_NONE_;
}
StringRef getMsgOpName(int64_t MsgId, int64_t OpId,
const MCSubtargetInfo &STI) {
assert(msgRequiresOp(MsgId, STI));
return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
}
bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
const MCSubtargetInfo &STI, bool Strict) {
assert(isValidMsgOp(MsgId, OpId, STI, Strict));
if (!Strict)
return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
if (!isGFX11Plus(STI)) {
switch (MsgId) {
case ID_GS_PreGFX11:
return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
case ID_GS_DONE_PreGFX11:
return (OpId == OP_GS_NOP) ?
(StreamId == STREAM_ID_NONE_) :
(STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
}
}
return StreamId == STREAM_ID_NONE_;
}
bool msgRequiresOp(int64_t MsgId, const MCSubtargetInfo &STI) {
return MsgId == ID_SYSMSG ||
(!isGFX11Plus(STI) &&
(MsgId == ID_GS_PreGFX11 || MsgId == ID_GS_DONE_PreGFX11));
}
bool msgSupportsStream(int64_t MsgId, int64_t OpId,
const MCSubtargetInfo &STI) {
return !isGFX11Plus(STI) &&
(MsgId == ID_GS_PreGFX11 || MsgId == ID_GS_DONE_PreGFX11) &&
OpId != OP_GS_NOP;
}
void decodeMsg(unsigned Val, uint16_t &MsgId, uint16_t &OpId,
uint16_t &StreamId, const MCSubtargetInfo &STI) {
MsgId = Val & getMsgIdMask(STI);
if (isGFX11Plus(STI)) {
OpId = 0;
StreamId = 0;
} else {
OpId = (Val & OP_MASK_) >> OP_SHIFT_;
StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
}
}
uint64_t encodeMsg(uint64_t MsgId,
uint64_t OpId,
uint64_t StreamId) {
return MsgId | (OpId << OP_SHIFT_) | (StreamId << STREAM_ID_SHIFT_);
}
} // namespace SendMsg
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
unsigned getInitialPSInputAddr(const Function &F) {
return F.getFnAttributeAsParsedInteger("InitialPSInputAddr", 0);
}
bool getHasColorExport(const Function &F) {
// As a safe default always respond as if PS has color exports.
return F.getFnAttributeAsParsedInteger(
"amdgpu-color-export",
F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
}
bool getHasDepthExport(const Function &F) {
return F.getFnAttributeAsParsedInteger("amdgpu-depth-export", 0) != 0;
}
bool isShader(CallingConv::ID cc) {
switch(cc) {
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_LS:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
case CallingConv::AMDGPU_CS:
return true;
default:
return false;
}
}
bool isGraphics(CallingConv::ID cc) {
return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
}
bool isCompute(CallingConv::ID cc) {
return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
}
bool isEntryFunctionCC(CallingConv::ID CC) {
switch (CC) {
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
case CallingConv::AMDGPU_CS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_LS:
return true;
default:
return false;
}
}
bool isModuleEntryFunctionCC(CallingConv::ID CC) {
switch (CC) {
case CallingConv::AMDGPU_Gfx:
return true;
default:
return isEntryFunctionCC(CC);
}
}
bool isKernelCC(const Function *Func) {
return AMDGPU::isModuleEntryFunctionCC(Func->getCallingConv());
}
bool hasXNACK(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureXNACK);
}
bool hasSRAMECC(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureSRAMECC);
}
bool hasMIMG_R128(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureMIMG_R128) && !STI.hasFeature(AMDGPU::FeatureR128A16);
}
bool hasA16(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureA16);
}
bool hasG16(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureG16);
}
bool hasPackedD16(const MCSubtargetInfo &STI) {
return !STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem) && !isCI(STI) &&
!isSI(STI);
}
unsigned getNSAMaxSize(const MCSubtargetInfo &STI) {
auto Version = getIsaVersion(STI.getCPU());
if (Version.Major == 10)
return Version.Minor >= 3 ? 13 : 5;
if (Version.Major == 11)
return 5;
return 0;
}
bool isSI(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureSouthernIslands);
}
bool isCI(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureSeaIslands);
}
bool isVI(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
}
bool isGFX9(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureGFX9);
}
bool isGFX9_GFX10(const MCSubtargetInfo &STI) {
return isGFX9(STI) || isGFX10(STI);
}
bool isGFX8_GFX9_GFX10(const MCSubtargetInfo &STI) {
return isVI(STI) || isGFX9(STI) || isGFX10(STI);
}
bool isGFX8Plus(const MCSubtargetInfo &STI) {
return isVI(STI) || isGFX9Plus(STI);
}
bool isGFX9Plus(const MCSubtargetInfo &STI) {
return isGFX9(STI) || isGFX10Plus(STI);
}
bool isGFX10(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureGFX10);
}
bool isGFX10Plus(const MCSubtargetInfo &STI) {
return isGFX10(STI) || isGFX11Plus(STI);
}
bool isGFX11(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureGFX11);
}
bool isGFX11Plus(const MCSubtargetInfo &STI) {
return isGFX11(STI);
}
bool isNotGFX11Plus(const MCSubtargetInfo &STI) {
return !isGFX11Plus(STI);
}
bool isNotGFX10Plus(const MCSubtargetInfo &STI) {
return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI);
}
bool isGFX10Before1030(const MCSubtargetInfo &STI) {
return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI);
}
bool isGCN3Encoding(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureGCN3Encoding);
}
bool isGFX10_AEncoding(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureGFX10_AEncoding);
}
bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding);
}
bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureGFX10_3Insts);
}
bool isGFX90A(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
}
bool isGFX940(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureGFX940Insts);
}
bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
}
bool hasMAIInsts(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureMAIInsts);
}
bool hasVOPD(const MCSubtargetInfo &STI) {
return STI.hasFeature(AMDGPU::FeatureVOPD);
}
int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR,
int32_t ArgNumVGPR) {
if (has90AInsts && ArgNumAGPR)
return alignTo(ArgNumVGPR, 4) + ArgNumAGPR;
return std::max(ArgNumVGPR, ArgNumAGPR);
}
bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
Reg == AMDGPU::SCC;
}
#define MAP_REG2REG \
using namespace AMDGPU; \
switch(Reg) { \
default: return Reg; \
CASE_CI_VI(FLAT_SCR) \
CASE_CI_VI(FLAT_SCR_LO) \
CASE_CI_VI(FLAT_SCR_HI) \
CASE_VI_GFX9PLUS(TTMP0) \
CASE_VI_GFX9PLUS(TTMP1) \
CASE_VI_GFX9PLUS(TTMP2) \
CASE_VI_GFX9PLUS(TTMP3) \
CASE_VI_GFX9PLUS(TTMP4) \
CASE_VI_GFX9PLUS(TTMP5) \
CASE_VI_GFX9PLUS(TTMP6) \
CASE_VI_GFX9PLUS(TTMP7) \
CASE_VI_GFX9PLUS(TTMP8) \
CASE_VI_GFX9PLUS(TTMP9) \
CASE_VI_GFX9PLUS(TTMP10) \
CASE_VI_GFX9PLUS(TTMP11) \
CASE_VI_GFX9PLUS(TTMP12) \
CASE_VI_GFX9PLUS(TTMP13) \
CASE_VI_GFX9PLUS(TTMP14) \
CASE_VI_GFX9PLUS(TTMP15) \
CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
CASE_GFXPRE11_GFX11PLUS(M0) \
CASE_GFXPRE11_GFX11PLUS(SGPR_NULL) \
CASE_GFXPRE11_GFX11PLUS_TO(SGPR_NULL64, SGPR_NULL) \
}
#define CASE_CI_VI(node) \
assert(!isSI(STI)); \
case node: return isCI(STI) ? node##_ci : node##_vi;
#define CASE_VI_GFX9PLUS(node) \
case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
#define CASE_GFXPRE11_GFX11PLUS(node) \
case node: return isGFX11Plus(STI) ? node##_gfx11plus : node##_gfxpre11;
#define CASE_GFXPRE11_GFX11PLUS_TO(node, result) \
case node: return isGFX11Plus(STI) ? result##_gfx11plus : result##_gfxpre11;
unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
if (STI.getTargetTriple().getArch() == Triple::r600)
return Reg;
MAP_REG2REG
}
#undef CASE_CI_VI
#undef CASE_VI_GFX9PLUS
#undef CASE_GFXPRE11_GFX11PLUS
#undef CASE_GFXPRE11_GFX11PLUS_TO
#define CASE_CI_VI(node) case node##_ci: case node##_vi: return node;
#define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
#define CASE_GFXPRE11_GFX11PLUS(node) case node##_gfx11plus: case node##_gfxpre11: return node;
#define CASE_GFXPRE11_GFX11PLUS_TO(node, result)
unsigned mc2PseudoReg(unsigned Reg) {
MAP_REG2REG
}
bool isInlineValue(unsigned Reg) {
switch (Reg) {
case AMDGPU::SRC_SHARED_BASE_LO:
case AMDGPU::SRC_SHARED_BASE:
case AMDGPU::SRC_SHARED_LIMIT_LO:
case AMDGPU::SRC_SHARED_LIMIT:
case AMDGPU::SRC_PRIVATE_BASE_LO:
case AMDGPU::SRC_PRIVATE_BASE:
case AMDGPU::SRC_PRIVATE_LIMIT_LO:
case AMDGPU::SRC_PRIVATE_LIMIT:
case AMDGPU::SRC_POPS_EXITING_WAVE_ID:
return true;
case AMDGPU::SRC_VCCZ:
case AMDGPU::SRC_EXECZ:
case AMDGPU::SRC_SCC:
return true;
case AMDGPU::SGPR_NULL:
return true;
default:
return false;
}
}
#undef CASE_CI_VI
#undef CASE_VI_GFX9PLUS
#undef CASE_GFXPRE11_GFX11PLUS
#undef CASE_GFXPRE11_GFX11PLUS_TO
#undef MAP_REG2REG
bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
assert(OpNo < Desc.NumOperands);
unsigned OpType = Desc.operands()[OpNo].OperandType;
return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
OpType <= AMDGPU::OPERAND_SRC_LAST;
}
bool isKImmOperand(const MCInstrDesc &Desc, unsigned OpNo) {
assert(OpNo < Desc.NumOperands);
unsigned OpType = Desc.operands()[OpNo].OperandType;
return OpType >= AMDGPU::OPERAND_KIMM_FIRST &&
OpType <= AMDGPU::OPERAND_KIMM_LAST;
}
bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
assert(OpNo < Desc.NumOperands);
unsigned OpType = Desc.operands()[OpNo].OperandType;
switch (OpType) {
case AMDGPU::OPERAND_REG_IMM_FP32:
case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
case AMDGPU::OPERAND_REG_IMM_FP64:
case AMDGPU::OPERAND_REG_IMM_FP16:
case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
case AMDGPU::OPERAND_REG_IMM_V2FP16:
case AMDGPU::OPERAND_REG_IMM_V2INT16:
case AMDGPU::OPERAND_REG_INLINE_C_FP32:
case AMDGPU::OPERAND_REG_INLINE_C_FP64:
case AMDGPU::OPERAND_REG_INLINE_C_FP16:
case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
case AMDGPU::OPERAND_REG_IMM_V2FP32:
case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
return true;
default:
return false;
}
}
bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
assert(OpNo < Desc.NumOperands);
unsigned OpType = Desc.operands()[OpNo].OperandType;
return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
}
// Avoid using MCRegisterClass::getSize, since that function will go away
// (move from MC* level to Target* level). Return size in bits.
unsigned getRegBitWidth(unsigned RCID) {
switch (RCID) {
case AMDGPU::VGPR_LO16RegClassID:
case AMDGPU::VGPR_HI16RegClassID:
case AMDGPU::SGPR_LO16RegClassID:
case AMDGPU::AGPR_LO16RegClassID:
return 16;
case AMDGPU::SGPR_32RegClassID:
case AMDGPU::VGPR_32RegClassID:
case AMDGPU::VRegOrLds_32RegClassID:
case AMDGPU::AGPR_32RegClassID:
case AMDGPU::VS_32RegClassID:
case AMDGPU::AV_32RegClassID:
case AMDGPU::SReg_32RegClassID:
case AMDGPU::SReg_32_XM0RegClassID:
case AMDGPU::SRegOrLds_32RegClassID:
return 32;
case AMDGPU::SGPR_64RegClassID:
case AMDGPU::VS_64RegClassID:
case AMDGPU::SReg_64RegClassID:
case AMDGPU::VReg_64RegClassID:
case AMDGPU::AReg_64RegClassID:
case AMDGPU::SReg_64_XEXECRegClassID:
case AMDGPU::VReg_64_Align2RegClassID:
case AMDGPU::AReg_64_Align2RegClassID:
case AMDGPU::AV_64RegClassID:
case AMDGPU::AV_64_Align2RegClassID:
return 64;
case AMDGPU::SGPR_96RegClassID:
case AMDGPU::SReg_96RegClassID:
case AMDGPU::VReg_96RegClassID:
case AMDGPU::AReg_96RegClassID:
case AMDGPU::VReg_96_Align2RegClassID:
case AMDGPU::AReg_96_Align2RegClassID:
case AMDGPU::AV_96RegClassID:
case AMDGPU::AV_96_Align2RegClassID:
return 96;
case AMDGPU::SGPR_128RegClassID:
case AMDGPU::SReg_128RegClassID:
case AMDGPU::VReg_128RegClassID:
case AMDGPU::AReg_128RegClassID:
case AMDGPU::VReg_128_Align2RegClassID:
case AMDGPU::AReg_128_Align2RegClassID:
case AMDGPU::AV_128RegClassID:
case AMDGPU::AV_128_Align2RegClassID:
return 128;
case AMDGPU::SGPR_160RegClassID:
case AMDGPU::SReg_160RegClassID:
case AMDGPU::VReg_160RegClassID:
case AMDGPU::AReg_160RegClassID:
case AMDGPU::VReg_160_Align2RegClassID:
case AMDGPU::AReg_160_Align2RegClassID:
case AMDGPU::AV_160RegClassID:
case AMDGPU::AV_160_Align2RegClassID:
return 160;
case AMDGPU::SGPR_192RegClassID:
case AMDGPU::SReg_192RegClassID:
case AMDGPU::VReg_192RegClassID:
case AMDGPU::AReg_192RegClassID:
case AMDGPU::VReg_192_Align2RegClassID:
case AMDGPU::AReg_192_Align2RegClassID:
case AMDGPU::AV_192RegClassID:
case AMDGPU::AV_192_Align2RegClassID:
return 192;
case AMDGPU::SGPR_224RegClassID:
case AMDGPU::SReg_224RegClassID:
case AMDGPU::VReg_224RegClassID:
case AMDGPU::AReg_224RegClassID:
case AMDGPU::VReg_224_Align2RegClassID:
case AMDGPU::AReg_224_Align2RegClassID:
case AMDGPU::AV_224RegClassID:
case AMDGPU::AV_224_Align2RegClassID:
return 224;
case AMDGPU::SGPR_256RegClassID:
case AMDGPU::SReg_256RegClassID:
case AMDGPU::VReg_256RegClassID:
case AMDGPU::AReg_256RegClassID:
case AMDGPU::VReg_256_Align2RegClassID:
case AMDGPU::AReg_256_Align2RegClassID:
case AMDGPU::AV_256RegClassID:
case AMDGPU::AV_256_Align2RegClassID:
return 256;
case AMDGPU::SGPR_288RegClassID:
case AMDGPU::SReg_288RegClassID:
case AMDGPU::VReg_288RegClassID:
case AMDGPU::AReg_288RegClassID:
case AMDGPU::VReg_288_Align2RegClassID:
case AMDGPU::AReg_288_Align2RegClassID:
case AMDGPU::AV_288RegClassID:
case AMDGPU::AV_288_Align2RegClassID:
return 288;
case AMDGPU::SGPR_320RegClassID:
case AMDGPU::SReg_320RegClassID:
case AMDGPU::VReg_320RegClassID:
case AMDGPU::AReg_320RegClassID:
case AMDGPU::VReg_320_Align2RegClassID:
case AMDGPU::AReg_320_Align2RegClassID:
case AMDGPU::AV_320RegClassID:
case AMDGPU::AV_320_Align2RegClassID:
return 320;
case AMDGPU::SGPR_352RegClassID:
case AMDGPU::SReg_352RegClassID:
case AMDGPU::VReg_352RegClassID:
case AMDGPU::AReg_352RegClassID:
case AMDGPU::VReg_352_Align2RegClassID:
case AMDGPU::AReg_352_Align2RegClassID:
case AMDGPU::AV_352RegClassID:
case AMDGPU::AV_352_Align2RegClassID:
return 352;
case AMDGPU::SGPR_384RegClassID:
case AMDGPU::SReg_384RegClassID:
case AMDGPU::VReg_384RegClassID:
case AMDGPU::AReg_384RegClassID:
case AMDGPU::VReg_384_Align2RegClassID:
case AMDGPU::AReg_384_Align2RegClassID:
case AMDGPU::AV_384RegClassID:
case AMDGPU::AV_384_Align2RegClassID:
return 384;
case AMDGPU::SGPR_512RegClassID:
case AMDGPU::SReg_512RegClassID:
case AMDGPU::VReg_512RegClassID:
case AMDGPU::AReg_512RegClassID:
case AMDGPU::VReg_512_Align2RegClassID:
case AMDGPU::AReg_512_Align2RegClassID:
case AMDGPU::AV_512RegClassID:
case AMDGPU::AV_512_Align2RegClassID:
return 512;
case AMDGPU::SGPR_1024RegClassID:
case AMDGPU::SReg_1024RegClassID:
case AMDGPU::VReg_1024RegClassID:
case AMDGPU::AReg_1024RegClassID:
case AMDGPU::VReg_1024_Align2RegClassID:
case AMDGPU::AReg_1024_Align2RegClassID:
case AMDGPU::AV_1024RegClassID:
case AMDGPU::AV_1024_Align2RegClassID:
return 1024;
default:
llvm_unreachable("Unexpected register class");
}
}
unsigned getRegBitWidth(const MCRegisterClass &RC) {
return getRegBitWidth(RC.getID());
}
unsigned getRegBitWidth(const TargetRegisterClass &RC) {
return getRegBitWidth(RC.getID());
}
unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
unsigned OpNo) {
assert(OpNo < Desc.NumOperands);
unsigned RCID = Desc.operands()[OpNo].RegClass;
return getRegBitWidth(RCID) / 8;
}
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
if (isInlinableIntLiteral(Literal))
return true;
uint64_t Val = static_cast<uint64_t>(Literal);
return (Val == llvm::bit_cast<uint64_t>(0.0)) ||
(Val == llvm::bit_cast<uint64_t>(1.0)) ||
(Val == llvm::bit_cast<uint64_t>(-1.0)) ||
(Val == llvm::bit_cast<uint64_t>(0.5)) ||
(Val == llvm::bit_cast<uint64_t>(-0.5)) ||
(Val == llvm::bit_cast<uint64_t>(2.0)) ||
(Val == llvm::bit_cast<uint64_t>(-2.0)) ||
(Val == llvm::bit_cast<uint64_t>(4.0)) ||
(Val == llvm::bit_cast<uint64_t>(-4.0)) ||
(Val == 0x3fc45f306dc9c882 && HasInv2Pi);
}
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
if (isInlinableIntLiteral(Literal))
return true;
// The actual type of the operand does not seem to matter as long
// as the bits match one of the inline immediate values. For example:
//
// -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
// so it is a legal inline immediate.
//
// 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
// floating-point, so it is a legal inline immediate.
uint32_t Val = static_cast<uint32_t>(Literal);
return (Val == llvm::bit_cast<uint32_t>(0.0f)) ||
(Val == llvm::bit_cast<uint32_t>(1.0f)) ||
(Val == llvm::bit_cast<uint32_t>(-1.0f)) ||
(Val == llvm::bit_cast<uint32_t>(0.5f)) ||
(Val == llvm::bit_cast<uint32_t>(-0.5f)) ||
(Val == llvm::bit_cast<uint32_t>(2.0f)) ||
(Val == llvm::bit_cast<uint32_t>(-2.0f)) ||
(Val == llvm::bit_cast<uint32_t>(4.0f)) ||
(Val == llvm::bit_cast<uint32_t>(-4.0f)) ||
(Val == 0x3e22f983 && HasInv2Pi);
}
bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
if (!HasInv2Pi)
return false;
if (isInlinableIntLiteral(Literal))
return true;
uint16_t Val = static_cast<uint16_t>(Literal);
return Val == 0x3C00 || // 1.0
Val == 0xBC00 || // -1.0
Val == 0x3800 || // 0.5
Val == 0xB800 || // -0.5
Val == 0x4000 || // 2.0
Val == 0xC000 || // -2.0
Val == 0x4400 || // 4.0
Val == 0xC400 || // -4.0
Val == 0x3118; // 1/2pi
}
bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
assert(HasInv2Pi);
if (isInt<16>(Literal) || isUInt<16>(Literal)) {
int16_t Trunc = static_cast<int16_t>(Literal);
return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
}
if (!(Literal & 0xffff))
return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
int16_t Lo16 = static_cast<int16_t>(Literal);
int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
}
bool isInlinableIntLiteralV216(int32_t Literal) {
int16_t Lo16 = static_cast<int16_t>(Literal);
if (isInt<16>(Literal) || isUInt<16>(Literal))
return isInlinableIntLiteral(Lo16);
int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
if (!(Literal & 0xffff))
return isInlinableIntLiteral(Hi16);
return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
}
bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
assert(HasInv2Pi);
int16_t Lo16 = static_cast<int16_t>(Literal);
if (isInt<16>(Literal) || isUInt<16>(Literal))
return true;
int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
if (!(Literal & 0xffff))
return true;
return Lo16 == Hi16;
}
bool isArgPassedInSGPR(const Argument *A) {
const Function *F = A->getParent();
// Arguments to compute shaders are never a source of divergence.
CallingConv::ID CC = F->getCallingConv();
switch (CC) {
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
return true;
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_LS:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
case CallingConv::AMDGPU_CS:
case CallingConv::AMDGPU_Gfx:
// For non-compute shaders, SGPR inputs are marked with either inreg or
// byval. Everything else is in VGPRs.
return A->hasAttribute(Attribute::InReg) ||
A->hasAttribute(Attribute::ByVal);
default:
// TODO: Should calls support inreg for SGPR inputs?
return false;
}
}
bool isArgPassedInSGPR(const CallBase *CB, unsigned ArgNo) {
// Arguments to compute shaders are never a source of divergence.
CallingConv::ID CC = CB->getCallingConv();
switch (CC) {
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
return true;
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_LS:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
case CallingConv::AMDGPU_CS:
case CallingConv::AMDGPU_Gfx:
// For non-compute shaders, SGPR inputs are marked with either inreg or
// byval. Everything else is in VGPRs.
return CB->paramHasAttr(ArgNo, Attribute::InReg) ||
CB->paramHasAttr(ArgNo, Attribute::ByVal);
default:
// TODO: Should calls support inreg for SGPR inputs?
return false;
}
}
static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
return isGCN3Encoding(ST) || isGFX10Plus(ST);
}
static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
return isGFX9Plus(ST);
}
bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
int64_t EncodedOffset) {
return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
: isUInt<8>(EncodedOffset);
}
bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
int64_t EncodedOffset,
bool IsBuffer) {
return !IsBuffer &&
hasSMRDSignedImmOffset(ST) &&
isInt<21>(EncodedOffset);
}
static bool isDwordAligned(uint64_t ByteOffset) {
return (ByteOffset & 3) == 0;
}
uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
uint64_t ByteOffset) {
if (hasSMEMByteOffset(ST))
return ByteOffset;
assert(isDwordAligned(ByteOffset));
return ByteOffset >> 2;
}
std::optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
int64_t ByteOffset, bool IsBuffer) {
// The signed version is always a byte offset.
if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
assert(hasSMEMByteOffset(ST));
return isInt<20>(ByteOffset) ? std::optional<int64_t>(ByteOffset)
: std::nullopt;
}
if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
return std::nullopt;
int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
? std::optional<int64_t>(EncodedOffset)
: std::nullopt;
}
std::optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
int64_t ByteOffset) {
if (!isCI(ST) || !isDwordAligned(ByteOffset))
return std::nullopt;
int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
return isUInt<32>(EncodedOffset) ? std::optional<int64_t>(EncodedOffset)
: std::nullopt;
}
unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST) {
// Address offset is 12-bit signed for GFX10, 13-bit for GFX9 and GFX11+.
if (AMDGPU::isGFX10(ST))
return 12;
return 13;
}
namespace {
struct SourceOfDivergence {
unsigned Intr;
};
const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
struct AlwaysUniform {
unsigned Intr;
};
const AlwaysUniform *lookupAlwaysUniform(unsigned Intr);
#define GET_SourcesOfDivergence_IMPL
#define GET_UniformIntrinsics_IMPL
#define GET_Gfx9BufferFormat_IMPL
#define GET_Gfx10BufferFormat_IMPL
#define GET_Gfx11PlusBufferFormat_IMPL
#include "AMDGPUGenSearchableTables.inc"
} // end anonymous namespace
bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
return lookupSourceOfDivergence(IntrID);
}
bool isIntrinsicAlwaysUniform(unsigned IntrID) {
return lookupAlwaysUniform(IntrID);
}
const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
uint8_t NumComponents,
uint8_t NumFormat,
const MCSubtargetInfo &STI) {
return isGFX11Plus(STI)
? getGfx11PlusBufferFormatInfo(BitsPerComp, NumComponents,
NumFormat)
: isGFX10(STI) ? getGfx10BufferFormatInfo(BitsPerComp,
NumComponents, NumFormat)
: getGfx9BufferFormatInfo(BitsPerComp,
NumComponents, NumFormat);
}
const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
const MCSubtargetInfo &STI) {
return isGFX11Plus(STI) ? getGfx11PlusBufferFormatInfo(Format)
: isGFX10(STI) ? getGfx10BufferFormatInfo(Format)
: getGfx9BufferFormatInfo(Format);
}
} // namespace AMDGPU
raw_ostream &operator<<(raw_ostream &OS,
const AMDGPU::IsaInfo::TargetIDSetting S) {
switch (S) {
case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
OS << "Unsupported";
break;
case (AMDGPU::IsaInfo::TargetIDSetting::Any):
OS << "Any";
break;
case (AMDGPU::IsaInfo::TargetIDSetting::Off):
OS << "Off";
break;
case (AMDGPU::IsaInfo::TargetIDSetting::On):
OS << "On";
break;
}
return OS;
}
} // namespace llvm
|