File: AMDGPUMemoryUtils.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (148 lines) | stat: -rw-r--r-- 5,080 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
//===-- AMDGPUMemoryUtils.cpp - -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "AMDGPUMemoryUtils.h"
#include "AMDGPU.h"
#include "AMDGPUBaseInfo.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/ReplaceConstant.h"

#define DEBUG_TYPE "amdgpu-memory-utils"

using namespace llvm;

namespace llvm {

namespace AMDGPU {

Align getAlign(DataLayout const &DL, const GlobalVariable *GV) {
  return DL.getValueOrABITypeAlignment(GV->getPointerAlignment(DL),
                                       GV->getValueType());
}

bool isDynamicLDS(const GlobalVariable &GV) {
  // external zero size addrspace(3) without initializer implies cuda/hip extern
  // __shared__ the semantics for such a variable appears to be that all extern
  // __shared__ variables alias one another. This hits different handling.
  const Module *M = GV.getParent();
  const DataLayout &DL = M->getDataLayout();
  if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
    return false;
  }
  uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType());
  return GV.hasExternalLinkage() && AllocSize == 0;
}

bool isLDSVariableToLower(const GlobalVariable &GV) {
  if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
    return false;
  }
  if (isDynamicLDS(GV)) {
    return true;
  }
  if (GV.isConstant()) {
    // A constant undef variable can't be written to, and any load is
    // undef, so it should be eliminated by the optimizer. It could be
    // dropped by the back end if not. This pass skips over it.
    return false;
  }
  if (GV.hasInitializer() && !isa<UndefValue>(GV.getInitializer())) {
    // Initializers are unimplemented for LDS address space.
    // Leave such variables in place for consistent error reporting.
    return false;
  }
  return true;
}

bool isReallyAClobber(const Value *Ptr, MemoryDef *Def, AAResults *AA) {
  Instruction *DefInst = Def->getMemoryInst();

  if (isa<FenceInst>(DefInst))
    return false;

  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
    switch (II->getIntrinsicID()) {
    case Intrinsic::amdgcn_s_barrier:
    case Intrinsic::amdgcn_wave_barrier:
    case Intrinsic::amdgcn_sched_barrier:
    case Intrinsic::amdgcn_sched_group_barrier:
      return false;
    default:
      break;
    }
  }

  // Ignore atomics not aliasing with the original load, any atomic is a
  // universal MemoryDef from MSSA's point of view too, just like a fence.
  const auto checkNoAlias = [AA, Ptr](auto I) -> bool {
    return I && AA->isNoAlias(I->getPointerOperand(), Ptr);
  };

  if (checkNoAlias(dyn_cast<AtomicCmpXchgInst>(DefInst)) ||
      checkNoAlias(dyn_cast<AtomicRMWInst>(DefInst)))
    return false;

  return true;
}

bool isClobberedInFunction(const LoadInst *Load, MemorySSA *MSSA,
                           AAResults *AA) {
  MemorySSAWalker *Walker = MSSA->getWalker();
  SmallVector<MemoryAccess *> WorkList{Walker->getClobberingMemoryAccess(Load)};
  SmallSet<MemoryAccess *, 8> Visited;
  MemoryLocation Loc(MemoryLocation::get(Load));

  LLVM_DEBUG(dbgs() << "Checking clobbering of: " << *Load << '\n');

  // Start with a nearest dominating clobbering access, it will be either
  // live on entry (nothing to do, load is not clobbered), MemoryDef, or
  // MemoryPhi if several MemoryDefs can define this memory state. In that
  // case add all Defs to WorkList and continue going up and checking all
  // the definitions of this memory location until the root. When all the
  // defs are exhausted and came to the entry state we have no clobber.
  // Along the scan ignore barriers and fences which are considered clobbers
  // by the MemorySSA, but not really writing anything into the memory.
  while (!WorkList.empty()) {
    MemoryAccess *MA = WorkList.pop_back_val();
    if (!Visited.insert(MA).second)
      continue;

    if (MSSA->isLiveOnEntryDef(MA))
      continue;

    if (MemoryDef *Def = dyn_cast<MemoryDef>(MA)) {
      LLVM_DEBUG(dbgs() << "  Def: " << *Def->getMemoryInst() << '\n');

      if (isReallyAClobber(Load->getPointerOperand(), Def, AA)) {
        LLVM_DEBUG(dbgs() << "      -> load is clobbered\n");
        return true;
      }

      WorkList.push_back(
          Walker->getClobberingMemoryAccess(Def->getDefiningAccess(), Loc));
      continue;
    }

    const MemoryPhi *Phi = cast<MemoryPhi>(MA);
    for (const auto &Use : Phi->incoming_values())
      WorkList.push_back(cast<MemoryAccess>(&Use));
  }

  LLVM_DEBUG(dbgs() << "      -> no clobber\n");
  return false;
}

} // end namespace AMDGPU

} // end namespace llvm