1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
|
//==- ARMScheduleM55.td - Arm Cortex-M55 Scheduling Definitions -*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the scheduling model for the Arm Cortex-M55 processors.
//
//===----------------------------------------------------------------------===//
// ===---------------------------------------------------------------------===//
// Cortex-M55 is a lot like the M4/M33 in terms of scheduling. It technically
// has an extra pipeline stage but that is unimportant for scheduling, just
// starting our model a stage later. The main points of interest over an
// Cortex-M4 are MVE instructions and the ability to dual issue thumb1
// instructions.
//
//
// MVE
//
// The EPU pipelines now include both MVE and FP instructions. It has four
// pipelines across 4 stages (E1-E4). These pipelines are "control",
// "load/store", "integer" and "float/mul". We start the schedule at E2 to line
// up with the rest of the pipeline we model, and take the latency as the time
// between reading registers (almost always in E2) and register write (or
// forward, if it allows it). This mean that a lot of instructions (including
// loads) actually take 1 cycle (amazingly).
//
// Each MVE instruction needs to take 2 beats, each performing 64bits of the
// 128bit vector operation. So long as the beats are to different pipelines,
// the execution of the first-beat-of-the-second-instruction can overlap with
// the second-beat-of-the-first. For example a sequence of VLDR;VADD;VMUL;VSTR
// can look like this is a pipeline:
// 1 2 3 4 5
// LD/ST : VLDR VLDR VSTR VSTR
// INTEGER: VADD VADD
// FP/MUL : VMUL VMUL
//
// But a sequence of VLDR;VLDRB;VADD;VSTR because the loads cannot overlap,
// looks like:
// 1 2 3 4 5 6
// LD/ST : VLDR VLDR VLDRB VLDRB VSTR VSTR
// INTEGER: VADD VADD
//
// For this schedule, we currently model latencies and pipelines well for each
// instruction. MVE instruction take two beats, modelled using
// ResourceCycles=[2].
//
//
// Dual Issue
//
// Cortex-M55 can dual issue two 16-bit T1 instructions providing one is one of
// NOPs, ITs, Brs, ADDri/SUBri, UXTB/H, SXTB/H and MOVri's. NOPs and IT's are
// not relevant (they will not appear when scheduling), Brs are only at the end
// of the block. The others are more useful, and where the problems arise.
//
// The first problem comes from the fact that we will only be seeing Thumb2
// instructions at the point in the pipeline where we do the scheduling. The
// Thumb2SizeReductionPass has not been run yet. Especially pre-ra scheduling
// (where the scheduler has the most freedom) we can only really guess at which
// instructions will become thumb1 instructions. We are quite optimistic, and
// may get some things wrong as a result.
//
// The other problem is one of telling llvm what to do exactly. The way we
// attempt to meld this is:
// Set IssueWidth to 2 to allow 2 instructions per cycle.
// All instructions we cannot dual issue are "SingleIssue=1" (MVE/FP and T2
// instructions)
// We guess at another set of instructions that will become T1 instruction.
// These become the primary instruction in a dual issue pair (the normal
// one). These use normal resources and latencies, but set SingleIssue = 0.
// We guess at another set of instructions that will be shrank down into T1 DI
// instructions (add, sub, mov's, etc), which become the secondary. These
// don't use a resource, and set SingleIssue = 0.
//
// So our guessing is a bit rough. It may be possible to improve this by moving
// T2SizeReduction pass earlier in the pipeline, for example, so that at least
// Post-RA scheduling sees what is T1/T2. It may also be possible to write a
// custom instruction matcher for more accurately guess at T1 instructions.
def CortexM55Model : SchedMachineModel {
let MicroOpBufferSize = 0; // Explicitly set to zero since M55 is in-order.
let IssueWidth = 2; // There is some dual-issue support in M55.
let MispredictPenalty = 3; // Default is 10
let LoadLatency = 4; // Default is 4
let PostRAScheduler = 1;
let FullInstRWOverlapCheck = 1;
let CompleteModel = 0;
let UnsupportedFeatures = [IsARM, HasNEON, HasDotProd, HasMatMulInt8, HasZCZ,
IsNotMClass, HasV8, HasV8_3a, HasTrustZone, HasDFB,
IsWindows];
}
let SchedModel = CortexM55Model in {
//===----------------------------------------------------------------------===//
// Define each kind of processor resource and number available.
// Modeling each pipeline as a ProcResource using the BufferSize = 0 since
// M55 is in-order.
def M55UnitALU : ProcResource<1> { let BufferSize = 0; } // Int ALU
def M55UnitVecALU : ProcResource<1> { let BufferSize = 0; } // MVE integer pipe
def M55UnitVecFPALU : ProcResource<1> { let BufferSize = 0; } // MVE float pipe
def M55UnitLoadStore : ProcResource<1> { let BufferSize = 0; } // MVE load/store pipe
def M55UnitVecSys : ProcResource<1> { let BufferSize = 0; } // MVE control/sys pipe
// Some VMOV's can go down either pipeline. FIXME: This M55Write2IntFPE2 is
// intended to model the VMOV taking either Int or FP for 2 cycles. It is not
// clear if the llvm scheduler is using it like we want though.
def M55UnitVecIntFP: ProcResGroup<[M55UnitVecALU, M55UnitVecFPALU]>;
//===----------------------------------------------------------------------===//
// Subtarget-specific SchedWrite types which both map the ProcResources and
// set the latency.
//=====//
// ALU //
//=====//
// Generic writes for Flags, GRPs and other extra operands (eg post-inc, vadc flags, vaddlv etc)
def M55WriteLat0 : SchedWriteRes<[]> { let Latency = 0; let NumMicroOps = 0; }
def M55WriteLat1 : SchedWriteRes<[]> { let Latency = 1; let NumMicroOps = 0; }
def M55WriteLat2 : SchedWriteRes<[]> { let Latency = 2; let NumMicroOps = 0; }
// DX instructions are ALU instructions that take a single cycle. The
// instructions that may be shrank to T1 (and can be dual issued) are
// SingleIssue = 0. The others are SingleIssue = 1.
let SingleIssue = 0, Latency = 1 in {
def : WriteRes<WriteALU, [M55UnitALU]>;
def : WriteRes<WriteCMP, [M55UnitALU]>;
def : WriteRes<WriteBr, [M55UnitALU]>;
def : WriteRes<WriteBrL, [M55UnitALU]>;
def : WriteRes<WriteBrTbl, [M55UnitALU]>;
def : WriteRes<WriteST, [M55UnitALU]>;
def M55WriteDX_DI : SchedWriteRes<[M55UnitALU]>;
}
let SingleIssue = 1, Latency = 1 in {
def : WriteRes<WritePreLd, [M55UnitALU]>;
def M55WriteDX_SI : SchedWriteRes<[M55UnitALU]>;
}
def : InstRW<[M55WriteDX_SI], (instregex "t2BF[CI]", "t2CPS", "t2DBG",
"t2MRS", "t2MSR", "t2SEL", "t2SG", "t2TT")>;
def : InstRW<[M55WriteDX_SI], (instregex "t2SUBS_PC_LR", "COPY")>;
def : InstRW<[M55WriteDX_SI], (instregex "t2CS(EL|INC|INV|NEG)")>;
// Thumb 2 instructions that could be reduced to a thumb 1 instruction and can
// be dual issued with one of the above. This list is optimistic.
def : InstRW<[M55WriteDX_DI], (instregex "t2ADDC?rr$", "t2ADDrr$",
"t2ADDSrr$", "t2ANDrr$", "t2ASRr[ir]$", "t2BICrr$", "t2CMNzrr$",
"t2CMPr[ir]$", "t2EORrr$", "t2LSLr[ir]$", "t2LSRr[ir]$", "t2MVNr$",
"t2ORRrr$", "t2REV(16|SH)?$", "t2RORrr$", "t2RSBr[ir]$", "t2RSBSri$",
"t2SBCrr$", "t2SUBS?rr$", "t2TEQrr$", "t2TSTrr$", "t2STRi12$",
"t2STRs$", "t2STRBi12$", "t2STRBs$", "t2STRHi12$", "t2STRHs$",
"t2STR_POST$", "t2STMIA$", "t2STMIA_UPD$", "t2STMDB$", "t2STMDB_UPD$")>;
def : InstRW<[M55WriteDX_DI], (instregex "t2SETPAN$", "tADC$", "tADDhirr$",
"tADDrSP$", "tADDrSPi$", "tADDrr$", "tADDspi$", "tADDspr$", "tADR$",
"tAND$", "tASRri$", "tASRrr$", "tBIC$", "tBKPT$", "tCBNZ$", "tCBZ$",
"tCMNz$", "tCMPhir$", "tCMPi8$", "tCMPr$", "tCPS$", "tEOR$", "tHINT$",
"tHLT$", "tLSLri$", "tLSLrr$", "tLSRri$", "tLSRrr$", "tMOVSr$",
"tMUL$", "tMVN$", "tORR$", "tPICADD$", "tPOP$", "tPUSH$", "tREV$",
"tREV16$", "tREVSH$", "tROR$", "tRSB$", "tSBC$", "tSETEND$",
"tSTMIA_UPD$", "tSTRBi$", "tSTRBr$", "tSTRHi$", "tSTRHr$", "tSTRi$",
"tSTRr$", "tSTRspi$", "tSUBrr$", "tSUBspi$", "tSVC$", "tTRAP$",
"tTST$", "tUDF$")>;
def : InstRW<[M55WriteDX_DI], (instregex "tB$", "tBLXNSr$", "tBLXr$", "tBX$",
"tBXNS$", "tBcc$")>;
// CX instructions take 2 (or more) cycles. Again T1 instructions may be dual
// issues (SingleIssue = 0)
let SingleIssue = 0, Latency = 2 in {
def : WriteRes<WriteLd, [M55UnitALU]>;
def M55WriteCX_DI : SchedWriteRes<[M55UnitALU]>;
}
let SingleIssue = 1, Latency = 2 in {
def : WriteRes<WriteALUsi, [M55UnitALU]>;
def : WriteRes<WriteALUsr, [M55UnitALU]>;
def : WriteRes<WriteALUSsr, [M55UnitALU]>;
def : WriteRes<WriteCMPsi, [M55UnitALU]>;
def : WriteRes<WriteCMPsr, [M55UnitALU]>;
def : WriteRes<WriteDIV, [M55UnitALU]>;
def M55WriteCX_SI : SchedWriteRes<[M55UnitALU]>;
}
def : SchedAlias<WriteMUL16, M55WriteCX_SI>;
def : SchedAlias<WriteMUL32, M55WriteCX_SI>;
def : SchedAlias<WriteMUL64Lo, M55WriteCX_SI>;
def : WriteRes<WriteMUL64Hi, []> { let Latency = 2; }
def : SchedAlias<WriteMAC16, M55WriteCX_SI>;
def : SchedAlias<WriteMAC32, M55WriteCX_SI>;
def : SchedAlias<WriteMAC64Lo, M55WriteCX_SI>;
def : WriteRes<WriteMAC64Hi, []> { let Latency = 2; }
def : InstRW<[M55WriteCX_SI], (instregex "t2CDP", "t2CLREX", "t2[DI][MS]B",
"t2MCR", "t2MOVSs[ir]", "t2MRC", "t2MUL", "t2STC")>;
def : InstRW<[M55WriteCX_SI], (instregex "t2Q", "t2[SU](ADD|ASX|BFX|DIV)",
"t2[SU]H(ADD|ASX|SUB|SAX)", "t2SM[LM]", "t2S(SAT|SUB|SAX)", "t2UQ",
"t2USA", "t2USUB", "t2UXTA[BH]")>;
def : InstRW<[M55WriteCX_SI], (instregex "t2LD[AC]", "t2STL", "t2STRD")>;
def : InstRW<[M55WriteCX_SI], (instregex "MVE_[SU]Q?R?SH[LR]$")>;
def : InstRW<[M55WriteCX_SI, M55WriteLat2], (instregex "MVE_ASRL", "MVE_LSLL",
"MVE_LSRL", "MVE_[SU]Q?R?SH[LR]L")>;
// This may be higher in practice, but that likely doesn't make a difference
// for scheduling
def : InstRW<[M55WriteCX_SI], (instregex "t2CLRM")>;
def : InstRW<[M55WriteCX_DI], (instregex "t2LDR[BH]?i12$", "t2LDRS?[BH]?s$",
"t2LDM")>;
def : InstRW<[M55WriteCX_DI], (instregex "tLDM", "tLDRBi$", "tLDRBr$",
"tLDRHi$", "tLDRHr$", "tLDRSB$", "tLDRSH$", "tLDRi$", "tLDRpci$",
"tLDRr$", "tLDRspi$")>;
// Dual Issue instructions
let Latency = 1, SingleIssue = 0 in {
def : WriteRes<WriteNoop, []>;
def M55WriteDI : SchedWriteRes<[]>;
}
def : InstRW<[M55WriteDI], (instregex "tADDi[38]$", "tSUBi[38]$", "tMOVi8$",
"tMOVr$", "tUXT[BH]$", "tSXT[BH]$")>;
// Thumb 2 instructions that could be reduced to a dual issuable Thumb 1
// instruction above.
def : InstRW<[M55WriteDI], (instregex "t2ADDS?ri$", "t2MOV[ir]$", "t2MOVi16$",
"t2MOVr$", "t2SUBS?ri$", "t2[US]XT[BH]$")>;
def : InstRW<[M55WriteDI], (instregex "t2IT", "IT")>;
def : InstRW<[M55WriteLat0], (instregex "t2LoopDec")>;
// Forwarding
// No forwarding in the ALU normally
def : ReadAdvance<ReadALU, 0>;
def : ReadAdvance<ReadALUsr, 0>;
def : ReadAdvance<ReadMUL, 0>;
def : ReadAdvance<ReadMAC, 0>;
//=============//
// MVE and VFP //
//=============//
// The Writes that take ResourceCycles=[2] are MVE instruction, the others VFP.
let SingleIssue = 1, Latency = 1 in {
def M55WriteLSE2 : SchedWriteRes<[M55UnitLoadStore]>;
def M55WriteIntE2 : SchedWriteRes<[M55UnitVecALU]>;
def M55WriteFloatE2 : SchedWriteRes<[M55UnitVecFPALU]>;
def M55WriteSysE2 : SchedWriteRes<[M55UnitVecSys]>;
def M55Write2LSE2 : SchedWriteRes<[M55UnitLoadStore]> { let ResourceCycles=[2]; }
def M55Write2IntE2 : SchedWriteRes<[M55UnitVecALU]> { let ResourceCycles=[2]; }
def M55Write2FloatE2 : SchedWriteRes<[M55UnitVecFPALU]> { let ResourceCycles=[2]; }
def M55Write2IntFPE2 : SchedWriteRes<[M55UnitVecIntFP]> { let ResourceCycles=[2]; }
}
let SingleIssue = 1, Latency = 2 in {
def M55WriteLSE3 : SchedWriteRes<[M55UnitLoadStore]>;
def M55WriteIntE3 : SchedWriteRes<[M55UnitVecALU]>;
def M55WriteFloatE3 : SchedWriteRes<[M55UnitVecFPALU]>;
def M55Write2LSE3 : SchedWriteRes<[M55UnitLoadStore]> { let ResourceCycles=[2]; }
def M55Write2IntE3 : SchedWriteRes<[M55UnitVecALU]> { let ResourceCycles=[2]; }
def M55Write2FloatE3 : SchedWriteRes<[M55UnitVecFPALU]> { let ResourceCycles=[2]; }
}
let SingleIssue = 1, Latency = 3 in {
def M55Write2IntE3Plus1 : SchedWriteRes<[M55UnitVecALU]> { let ResourceCycles=[2]; }
// Same as M55Write2IntE3/M55Write2FloatE3 above, but longer latency and no forwarding into stores
def M55Write2IntE4NoFwd : SchedWriteRes<[M55UnitVecALU]> { let ResourceCycles=[2]; }
def M55Write2FloatE4NoFwd : SchedWriteRes<[M55UnitVecFPALU]> { let ResourceCycles=[2]; }
}
let SingleIssue = 1, Latency = 4 in {
def M55Write2IntE3Plus2 : SchedWriteRes<[M55UnitVecALU]> { let ResourceCycles=[2]; }
def M55WriteFloatE3Plus2 : SchedWriteRes<[M55UnitVecFPALU]>;
}
let SingleIssue = 1, Latency = 9 in {
def M55WriteFloatE3Plus7 : SchedWriteRes<[M55UnitVecFPALU]>;
}
let SingleIssue = 1, Latency = 15 in {
def M55WriteFloatE3Plus13 : SchedWriteRes<[M55UnitVecFPALU]>;
}
let SingleIssue = 1, Latency = 16 in {
def M55WriteFloatE3Plus14 : SchedWriteRes<[M55UnitVecFPALU]>;
}
let SingleIssue = 1, Latency = 21 in {
def M55WriteFloatE3Plus19 : SchedWriteRes<[M55UnitVecFPALU]>;
}
// VMUL (Double precision) + VADD (Double precision)
let SingleIssue = 1, Latency = 24 in {
def M55WriteFloatE3Plus22 : SchedWriteRes<[M55UnitVecFPALU]>;
}
let SingleIssue = 1, Latency = 30 in {
def M55WriteFloatE3Plus28 : SchedWriteRes<[M55UnitVecFPALU]>;
}
let SingleIssue = 1, Latency = 36 in {
def M55WriteFloatE3Plus34 : SchedWriteRes<[M55UnitVecFPALU]>;
}
def M55Read0 : SchedReadAdvance<0>;
def M55Read1 : SchedReadAdvance<1, [M55Write2LSE3, M55Write2IntE3, M55Write2FloatE3]>;
def M55GatherQRead : SchedReadAdvance<-4>;
// MVE instructions
// Loads and Stores of different kinds
// Normal loads
def : InstRW<[M55Write2LSE2], (instregex "MVE_VLDR(B|H|W)(S|U)(8|16|32)$")>;
// Pre/post inc loads
def : InstRW<[M55WriteLat1, M55Write2LSE2], (instregex "MVE_VLDR(B|H|W)(S|U)(8|16|32)_(post|pre)$")>;
// Gather loads
def : InstRW<[M55Write2LSE3, M55Read0, M55GatherQRead], (instregex "MVE_VLDR(B|H|W|D)(S|U)(8|16|32|64)_rq")>;
def : InstRW<[M55Write2LSE3, M55GatherQRead], (instregex "MVE_VLDR(B|H|W|D)(S|U)(8|16|32|64)_qi$")>;
def : InstRW<[M55WriteLat1, M55Write2LSE3, M55GatherQRead], (instregex "MVE_VLDR(W|D)U(32|64)_qi_pre$")>;
// Interleaving loads
def : InstRW<[M55Write2LSE2], (instregex "MVE_VLD[24][0-3]_(8|16|32)$")>;
// Interleaving loads with wb
def : InstRW<[M55Write2LSE2, M55WriteLat1], (instregex "MVE_VLD[24][0-3]_(8|16|32)_wb$")>;
// Normal stores
def : InstRW<[M55Write2LSE2, M55Read1], (instregex "MVE_VSTR(B|H|W)U?(8|16|32)$")>;
// Pre/post inc stores
def : InstRW<[M55Write2LSE2, M55Read1], (instregex "MVE_VSTR(B|H|W)U?(8|16|32)_(post|pre)$")>;
// Scatter stores
def : InstRW<[M55Write2LSE2, M55Read0, M55Read0, M55GatherQRead], (instregex "MVE_VSTR(B|H|W|D)(8|16|32|64)_rq")>;
def : InstRW<[M55Write2LSE2, M55Read0, M55GatherQRead], (instregex "MVE_VSTR(B|H|W|D)(8|16|32|64)_qi")>;
// Interleaving stores
def : InstRW<[M55Write2LSE2], (instregex "MVE_VST(2|4)")>;
// Integer pipe operations
def : InstRW<[M55Write2IntE3Plus1], (instregex "MVE_VABAV")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VABD(u|s)")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VABS(u|s)")>;
def : InstRW<[M55Write2IntE3], (instregex "MVE_VADC")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VADD(_qr_)?i")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VAND")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VBIC")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VBRSR")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VCADDi")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VCLS")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VCLZ")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_V(D|I)?W?DUP")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VEOR")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VHADD")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VHCADD")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VHSUB")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_V(MAX|MIN)A?(s|u)")>;
def : InstRW<[M55Write2IntE3], (instregex "MVE_V(MAX|MIN)A?V(s|u)8")>;
def : InstRW<[M55Write2IntE3Plus1], (instregex "MVE_V(MAX|MIN)A?V(s|u)16")>;
def : InstRW<[M55Write2IntE3Plus2], (instregex "MVE_V(MAX|MIN)A?V(s|u)32")>;
def : InstRW<[M55Write2IntE4NoFwd], (instregex "MVE_VMOVN")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VMOVL")>;
def : InstRW<[M55Write2IntE3], (instregex "MVE_VMULL[BT]p")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VMVN")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VNEG(u|s)")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VORN")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VORR")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VPSEL")>;
def : InstRW<[M55Write2IntE2], (instregex "MQPRCopy")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VQABS")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VQADD")>;
def : InstRW<[M55Write2IntE4NoFwd], (instregex "MVE_VQMOV")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VQNEG")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VSHL")>;
def : InstRW<[M55Write2IntE3], (instregex "MVE_V[QR]SHL")>;
def : InstRW<[M55Write2IntE3], (instregex "MVE_VQRSHL")>;
def : InstRW<[M55Write2IntE4NoFwd], (instregex "MVE_VQ?R?SHRU?N")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VSHR_")>;
def : InstRW<[M55Write2IntE3], (instregex "MVE_VRSHR_")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VQSUB")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VREV")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VRHADD")>;
def : InstRW<[M55Write2IntE3], (instregex "MVE_VSBC")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VSLI")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VSRI")>;
def : InstRW<[M55Write2IntE2], (instregex "MVE_VSUB(_qr_)?i")>;
// FP/Mul pipe operations.
def : InstRW<[M55Write2FloatE2], (instregex "MVE_VABDf")>;
def : InstRW<[M55Write2FloatE2], (instregex "MVE_VABSf")>;
def : InstRW<[M55Write2FloatE2], (instregex "MVE_VADDf")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VADD_qr_f")>;
def : InstRW<[M55Write2FloatE3, M55WriteLat1], (instregex "MVE_VADDLV")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VADDV")>;
def : InstRW<[M55Write2FloatE2], (instregex "MVE_VCADDf")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VCMLA")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VCMUL")>;
def : InstRW<[M55Write2FloatE2], (instregex "MVE_VCMP(i|s|u)", "MVE_VPTv(4|8|16)(i|s|u)")>;
def : InstRW<[M55Write2FloatE2], (instregex "MVE_VCMPf", "MVE_VPTv(4|8)f")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VCVTf16(u|s)16")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VCVTf32(u|s)32")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VCVT(u|s)16f16")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VCVT(u|s)32f32")>;
def : InstRW<[M55Write2FloatE4NoFwd], (instregex "MVE_VCVTf16f32")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VCVTf32f16")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VFM(A|S)")>;
def : InstRW<[M55Write2FloatE2], (instregex "MVE_V(MIN|MAX)NM")>;
def : InstRW<[M55Write2FloatE2], (instregex "MVE_VMOV_from_lane")>;
def : InstRW<[M55Write2FloatE2], (instregex "MVE_VMOV_rr_q")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VMOVi")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VMUL(_qr_)?[if]")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VQ?R?D?MULH")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VQ?D?MULL[TB]?[su]")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VQDMULL_qr_")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VQ?R?D?ML(A|S)[^L]")>;
def : InstRW<[M55Write2FloatE3, M55WriteLat1], (instregex "MVE_VR?ML(A|S)L")>;
def : InstRW<[M55Write2FloatE2], (instregex "MVE_VNEGf")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VRINTf")>;
def : InstRW<[M55Write2FloatE2], (instregex "MVE_VSUBf")>;
def : InstRW<[M55Write2FloatE3], (instregex "MVE_VSUB_qr_f")>;
// Some VMOV's can go down either pipeline.
def : InstRW<[M55Write2IntFPE2], (instregex "MVE_VMOV_to_lane", "MVE_VMOV_q_rr")>;
def : InstRW<[M55WriteSysE2], (instregex "MVE_VCTP")>;
def : InstRW<[M55WriteSysE2], (instregex "MVE_VPNOT")>;
def : InstRW<[M55WriteSysE2], (instregex "MVE_VPST")>;
// VFP instructions
def : SchedAlias<WriteFPCVT, M55WriteFloatE3>;
def : SchedAlias<WriteFPMOV, M55WriteFloatE3>;
def : SchedAlias<WriteFPALU32, M55WriteFloatE3>;
def : SchedAlias<WriteFPALU64, M55WriteFloatE3Plus13>;
def : SchedAlias<WriteFPMUL32, M55WriteFloatE3>;
def : SchedAlias<WriteFPMUL64, M55WriteFloatE3Plus19>;
def : SchedAlias<WriteFPMAC32, M55WriteFloatE3Plus2>;
def : SchedAlias<WriteFPMAC64, M55WriteFloatE3Plus34>;
def : SchedAlias<WriteFPDIV32, M55WriteFloatE3Plus14>;
def : SchedAlias<WriteFPDIV64, M55WriteFloatE3Plus28>;
def : SchedAlias<WriteFPSQRT32, M55WriteFloatE3Plus14>;
def : SchedAlias<WriteFPSQRT64, M55WriteFloatE3Plus28>;
def : ReadAdvance<ReadFPMUL, 0>;
def : ReadAdvance<ReadFPMAC, 0>;
def : InstRW<[M55WriteLSE3], (instregex "VLD")>;
def : InstRW<[M55WriteLSE2], (instregex "VST")>;
def : InstRW<[M55WriteLSE3], (instregex "VLLD", "VLST")>;
def : InstRW<[M55WriteFloatE3], (instregex "VABS(H|S|D)")>;
def : InstRW<[M55WriteFloatE3], (instregex "VCVT(A|M|N|P|R|X|Z)(S|U)(H|S|D)")>;
def : InstRW<[M55WriteFloatE3], (instregex "VCVT(B|T)(DH|HD)")>;
def : InstRW<[M55WriteFloatE2], (instregex "VCMPZ?(E|H|S|D)")>;
def : InstRW<[M55WriteFloatE3Plus7], (instregex "VDIVH")>;
def : InstRW<[M55WriteFloatE3], (instregex "VFN?M(A|S)(H|S)")>; // VFMA
def : InstRW<[M55WriteFloatE3Plus22], (instregex "VFN?M(A|S)D")>; // VFMA
def : InstRW<[M55WriteFloatE3], (instregex "VFP_V(MAX|MIN)NM")>;
def : InstRW<[M55WriteFloatE3], (instregex "VINSH$", "VMOVH$", "VMOVHR$", "VMOVSR$", "VMOVDRR$")>; // VINS, VMOVX, to-FP reg movs
def : InstRW<[M55WriteFloatE2], (instregex "VMOVD$", "VMOVS$", "VMOVR")>; // Other VMOV's
def : InstRW<[M55WriteFloatE2], (instregex "FCONSTH", "FCONSTS", "FCONSTD")>;
def : InstRW<[M55WriteFloatE2], (instregex "VGETLNi32", "VSETLNi32")>;
def : InstRW<[M55WriteFloatE2], (instregex "VMSR", "VMRS")>;
def : InstRW<[M55WriteFloatE3Plus2], (instregex "VN?ML(A|S)H")>; // VMLA
def : InstRW<[M55WriteFloatE3], (instregex "VNEG(H|S|D)")>;
def : InstRW<[M55WriteFloatE3], (instregex "VRINT(A|M|N|P|R|X|Z)(H|S|D)")>;
def : InstRW<[M55WriteFloatE3], (instregex "VSEL..(H|S|D)")>;
def : InstRW<[M55WriteFloatE3Plus7], (instregex "VSQRTH")>;
def : WriteRes<WriteVLD1, []>;
def : WriteRes<WriteVLD2, []>;
def : WriteRes<WriteVLD3, []>;
def : WriteRes<WriteVLD4, []>;
def : WriteRes<WriteVST1, []>;
def : WriteRes<WriteVST2, []>;
def : WriteRes<WriteVST3, []>;
def : WriteRes<WriteVST4, []>;
}
|