1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
//===---------------- BPFAdjustOpt.cpp - Adjust Optimization --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Adjust optimization to make the code more kernel verifier friendly.
//
//===----------------------------------------------------------------------===//
#include "BPF.h"
#include "BPFCORE.h"
#include "BPFTargetMachine.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicsBPF.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#define DEBUG_TYPE "bpf-adjust-opt"
using namespace llvm;
using namespace llvm::PatternMatch;
static cl::opt<bool>
DisableBPFserializeICMP("bpf-disable-serialize-icmp", cl::Hidden,
cl::desc("BPF: Disable Serializing ICMP insns."),
cl::init(false));
static cl::opt<bool> DisableBPFavoidSpeculation(
"bpf-disable-avoid-speculation", cl::Hidden,
cl::desc("BPF: Disable Avoiding Speculative Code Motion."),
cl::init(false));
namespace {
class BPFAdjustOptImpl {
struct PassThroughInfo {
Instruction *Input;
Instruction *UsedInst;
uint32_t OpIdx;
PassThroughInfo(Instruction *I, Instruction *U, uint32_t Idx)
: Input(I), UsedInst(U), OpIdx(Idx) {}
};
public:
BPFAdjustOptImpl(Module *M) : M(M) {}
bool run();
private:
Module *M;
SmallVector<PassThroughInfo, 16> PassThroughs;
bool adjustICmpToBuiltin();
void adjustBasicBlock(BasicBlock &BB);
bool serializeICMPCrossBB(BasicBlock &BB);
void adjustInst(Instruction &I);
bool serializeICMPInBB(Instruction &I);
bool avoidSpeculation(Instruction &I);
bool insertPassThrough();
};
} // End anonymous namespace
bool BPFAdjustOptImpl::run() {
bool Changed = adjustICmpToBuiltin();
for (Function &F : *M)
for (auto &BB : F) {
adjustBasicBlock(BB);
for (auto &I : BB)
adjustInst(I);
}
return insertPassThrough() || Changed;
}
// Commit acabad9ff6bf ("[InstCombine] try to canonicalize icmp with
// trunc op into mask and cmp") added a transformation to
// convert "(conv)a < power_2_const" to "a & <const>" in certain
// cases and bpf kernel verifier has to handle the resulted code
// conservatively and this may reject otherwise legitimate program.
// Here, we change related icmp code to a builtin which will
// be restored to original icmp code later to prevent that
// InstCombine transformatin.
bool BPFAdjustOptImpl::adjustICmpToBuiltin() {
bool Changed = false;
ICmpInst *ToBeDeleted = nullptr;
for (Function &F : *M)
for (auto &BB : F)
for (auto &I : BB) {
if (ToBeDeleted) {
ToBeDeleted->eraseFromParent();
ToBeDeleted = nullptr;
}
auto *Icmp = dyn_cast<ICmpInst>(&I);
if (!Icmp)
continue;
Value *Op0 = Icmp->getOperand(0);
if (!isa<TruncInst>(Op0))
continue;
auto ConstOp1 = dyn_cast<ConstantInt>(Icmp->getOperand(1));
if (!ConstOp1)
continue;
auto ConstOp1Val = ConstOp1->getValue().getZExtValue();
auto Op = Icmp->getPredicate();
if (Op == ICmpInst::ICMP_ULT || Op == ICmpInst::ICMP_UGE) {
if ((ConstOp1Val - 1) & ConstOp1Val)
continue;
} else if (Op == ICmpInst::ICMP_ULE || Op == ICmpInst::ICMP_UGT) {
if (ConstOp1Val & (ConstOp1Val + 1))
continue;
} else {
continue;
}
Constant *Opcode =
ConstantInt::get(Type::getInt32Ty(BB.getContext()), Op);
Function *Fn = Intrinsic::getDeclaration(
M, Intrinsic::bpf_compare, {Op0->getType(), ConstOp1->getType()});
auto *NewInst = CallInst::Create(Fn, {Opcode, Op0, ConstOp1});
NewInst->insertBefore(&I);
Icmp->replaceAllUsesWith(NewInst);
Changed = true;
ToBeDeleted = Icmp;
}
return Changed;
}
bool BPFAdjustOptImpl::insertPassThrough() {
for (auto &Info : PassThroughs) {
auto *CI = BPFCoreSharedInfo::insertPassThrough(
M, Info.UsedInst->getParent(), Info.Input, Info.UsedInst);
Info.UsedInst->setOperand(Info.OpIdx, CI);
}
return !PassThroughs.empty();
}
// To avoid combining conditionals in the same basic block by
// instrcombine optimization.
bool BPFAdjustOptImpl::serializeICMPInBB(Instruction &I) {
// For:
// comp1 = icmp <opcode> ...;
// comp2 = icmp <opcode> ...;
// ... or comp1 comp2 ...
// changed to:
// comp1 = icmp <opcode> ...;
// comp2 = icmp <opcode> ...;
// new_comp1 = __builtin_bpf_passthrough(seq_num, comp1)
// ... or new_comp1 comp2 ...
Value *Op0, *Op1;
// Use LogicalOr (accept `or i1` as well as `select i1 Op0, true, Op1`)
if (!match(&I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
return false;
auto *Icmp1 = dyn_cast<ICmpInst>(Op0);
if (!Icmp1)
return false;
auto *Icmp2 = dyn_cast<ICmpInst>(Op1);
if (!Icmp2)
return false;
Value *Icmp1Op0 = Icmp1->getOperand(0);
Value *Icmp2Op0 = Icmp2->getOperand(0);
if (Icmp1Op0 != Icmp2Op0)
return false;
// Now we got two icmp instructions which feed into
// an "or" instruction.
PassThroughInfo Info(Icmp1, &I, 0);
PassThroughs.push_back(Info);
return true;
}
// To avoid combining conditionals in the same basic block by
// instrcombine optimization.
bool BPFAdjustOptImpl::serializeICMPCrossBB(BasicBlock &BB) {
// For:
// B1:
// comp1 = icmp <opcode> ...;
// if (comp1) goto B2 else B3;
// B2:
// comp2 = icmp <opcode> ...;
// if (comp2) goto B4 else B5;
// B4:
// ...
// changed to:
// B1:
// comp1 = icmp <opcode> ...;
// comp1 = __builtin_bpf_passthrough(seq_num, comp1);
// if (comp1) goto B2 else B3;
// B2:
// comp2 = icmp <opcode> ...;
// if (comp2) goto B4 else B5;
// B4:
// ...
// Check basic predecessors, if two of them (say B1, B2) are using
// icmp instructions to generate conditions and one is the predesessor
// of another (e.g., B1 is the predecessor of B2). Add a passthrough
// barrier after icmp inst of block B1.
BasicBlock *B2 = BB.getSinglePredecessor();
if (!B2)
return false;
BasicBlock *B1 = B2->getSinglePredecessor();
if (!B1)
return false;
Instruction *TI = B2->getTerminator();
auto *BI = dyn_cast<BranchInst>(TI);
if (!BI || !BI->isConditional())
return false;
auto *Cond = dyn_cast<ICmpInst>(BI->getCondition());
if (!Cond || B2->getFirstNonPHI() != Cond)
return false;
Value *B2Op0 = Cond->getOperand(0);
auto Cond2Op = Cond->getPredicate();
TI = B1->getTerminator();
BI = dyn_cast<BranchInst>(TI);
if (!BI || !BI->isConditional())
return false;
Cond = dyn_cast<ICmpInst>(BI->getCondition());
if (!Cond)
return false;
Value *B1Op0 = Cond->getOperand(0);
auto Cond1Op = Cond->getPredicate();
if (B1Op0 != B2Op0)
return false;
if (Cond1Op == ICmpInst::ICMP_SGT || Cond1Op == ICmpInst::ICMP_SGE) {
if (Cond2Op != ICmpInst::ICMP_SLT && Cond2Op != ICmpInst::ICMP_SLE)
return false;
} else if (Cond1Op == ICmpInst::ICMP_SLT || Cond1Op == ICmpInst::ICMP_SLE) {
if (Cond2Op != ICmpInst::ICMP_SGT && Cond2Op != ICmpInst::ICMP_SGE)
return false;
} else if (Cond1Op == ICmpInst::ICMP_ULT || Cond1Op == ICmpInst::ICMP_ULE) {
if (Cond2Op != ICmpInst::ICMP_UGT && Cond2Op != ICmpInst::ICMP_UGE)
return false;
} else if (Cond1Op == ICmpInst::ICMP_UGT || Cond1Op == ICmpInst::ICMP_UGE) {
if (Cond2Op != ICmpInst::ICMP_ULT && Cond2Op != ICmpInst::ICMP_ULE)
return false;
} else {
return false;
}
PassThroughInfo Info(Cond, BI, 0);
PassThroughs.push_back(Info);
return true;
}
// To avoid speculative hoisting certain computations out of
// a basic block.
bool BPFAdjustOptImpl::avoidSpeculation(Instruction &I) {
if (auto *LdInst = dyn_cast<LoadInst>(&I)) {
if (auto *GV = dyn_cast<GlobalVariable>(LdInst->getOperand(0))) {
if (GV->hasAttribute(BPFCoreSharedInfo::AmaAttr) ||
GV->hasAttribute(BPFCoreSharedInfo::TypeIdAttr))
return false;
}
}
if (!isa<LoadInst>(&I) && !isa<CallInst>(&I))
return false;
// For:
// B1:
// var = ...
// ...
// /* icmp may not be in the same block as var = ... */
// comp1 = icmp <opcode> var, <const>;
// if (comp1) goto B2 else B3;
// B2:
// ... var ...
// change to:
// B1:
// var = ...
// ...
// /* icmp may not be in the same block as var = ... */
// comp1 = icmp <opcode> var, <const>;
// if (comp1) goto B2 else B3;
// B2:
// var = __builtin_bpf_passthrough(seq_num, var);
// ... var ...
bool isCandidate = false;
SmallVector<PassThroughInfo, 4> Candidates;
for (User *U : I.users()) {
Instruction *Inst = dyn_cast<Instruction>(U);
if (!Inst)
continue;
// May cover a little bit more than the
// above pattern.
if (auto *Icmp1 = dyn_cast<ICmpInst>(Inst)) {
Value *Icmp1Op1 = Icmp1->getOperand(1);
if (!isa<Constant>(Icmp1Op1))
return false;
isCandidate = true;
continue;
}
// Ignore the use in the same basic block as the definition.
if (Inst->getParent() == I.getParent())
continue;
// use in a different basic block, If there is a call or
// load/store insn before this instruction in this basic
// block. Most likely it cannot be hoisted out. Skip it.
for (auto &I2 : *Inst->getParent()) {
if (isa<CallInst>(&I2))
return false;
if (isa<LoadInst>(&I2) || isa<StoreInst>(&I2))
return false;
if (&I2 == Inst)
break;
}
// It should be used in a GEP or a simple arithmetic like
// ZEXT/SEXT which is used for GEP.
if (Inst->getOpcode() == Instruction::ZExt ||
Inst->getOpcode() == Instruction::SExt) {
PassThroughInfo Info(&I, Inst, 0);
Candidates.push_back(Info);
} else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
// traverse GEP inst to find Use operand index
unsigned i, e;
for (i = 1, e = GI->getNumOperands(); i != e; ++i) {
Value *V = GI->getOperand(i);
if (V == &I)
break;
}
if (i == e)
continue;
PassThroughInfo Info(&I, GI, i);
Candidates.push_back(Info);
}
}
if (!isCandidate || Candidates.empty())
return false;
llvm::append_range(PassThroughs, Candidates);
return true;
}
void BPFAdjustOptImpl::adjustBasicBlock(BasicBlock &BB) {
if (!DisableBPFserializeICMP && serializeICMPCrossBB(BB))
return;
}
void BPFAdjustOptImpl::adjustInst(Instruction &I) {
if (!DisableBPFserializeICMP && serializeICMPInBB(I))
return;
if (!DisableBPFavoidSpeculation && avoidSpeculation(I))
return;
}
PreservedAnalyses BPFAdjustOptPass::run(Module &M, ModuleAnalysisManager &AM) {
return BPFAdjustOptImpl(&M).run() ? PreservedAnalyses::none()
: PreservedAnalyses::all();
}
|