1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
//===--- HexagonBranchRelaxation.cpp - Identify and relax long jumps ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#define DEBUG_TYPE "hexagon-brelax"
using namespace llvm;
// Since we have no exact knowledge of code layout, allow some safety buffer
// for jump target. This is measured in bytes.
static cl::opt<uint32_t>
BranchRelaxSafetyBuffer("branch-relax-safety-buffer", cl::init(200),
cl::Hidden, cl::desc("safety buffer size"));
namespace llvm {
FunctionPass *createHexagonBranchRelaxation();
void initializeHexagonBranchRelaxationPass(PassRegistry&);
} // end namespace llvm
namespace {
struct HexagonBranchRelaxation : public MachineFunctionPass {
public:
static char ID;
HexagonBranchRelaxation() : MachineFunctionPass(ID) {
initializeHexagonBranchRelaxationPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "Hexagon Branch Relaxation";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
const HexagonInstrInfo *HII;
const HexagonRegisterInfo *HRI;
bool relaxBranches(MachineFunction &MF);
void computeOffset(MachineFunction &MF,
DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset);
bool reGenerateBranch(MachineFunction &MF,
DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset);
bool isJumpOutOfRange(MachineInstr &MI,
DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset);
};
char HexagonBranchRelaxation::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS(HexagonBranchRelaxation, "hexagon-brelax",
"Hexagon Branch Relaxation", false, false)
FunctionPass *llvm::createHexagonBranchRelaxation() {
return new HexagonBranchRelaxation();
}
bool HexagonBranchRelaxation::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "****** Hexagon Branch Relaxation ******\n");
auto &HST = MF.getSubtarget<HexagonSubtarget>();
HII = HST.getInstrInfo();
HRI = HST.getRegisterInfo();
bool Changed = false;
Changed = relaxBranches(MF);
return Changed;
}
void HexagonBranchRelaxation::computeOffset(MachineFunction &MF,
DenseMap<MachineBasicBlock*, unsigned> &OffsetMap) {
// offset of the current instruction from the start.
unsigned InstOffset = 0;
for (auto &B : MF) {
if (B.getAlignment() != Align(1)) {
// Although we don't know the exact layout of the final code, we need
// to account for alignment padding somehow. This heuristic pads each
// aligned basic block according to the alignment value.
InstOffset = alignTo(InstOffset, B.getAlignment());
}
OffsetMap[&B] = InstOffset;
for (auto &MI : B.instrs()) {
InstOffset += HII->getSize(MI);
// Assume that all extendable branches will be extended.
if (MI.isBranch() && HII->isExtendable(MI))
InstOffset += HEXAGON_INSTR_SIZE;
}
}
}
/// relaxBranches - For Hexagon, if the jump target/loop label is too far from
/// the jump/loop instruction then, we need to make sure that we have constant
/// extenders set for jumps and loops.
/// There are six iterations in this phase. It's self explanatory below.
bool HexagonBranchRelaxation::relaxBranches(MachineFunction &MF) {
// Compute the offset of each basic block
// offset of the current instruction from the start.
// map for each instruction to the beginning of the function
DenseMap<MachineBasicBlock*, unsigned> BlockToInstOffset;
computeOffset(MF, BlockToInstOffset);
return reGenerateBranch(MF, BlockToInstOffset);
}
/// Check if a given instruction is:
/// - a jump to a distant target
/// - that exceeds its immediate range
/// If both conditions are true, it requires constant extension.
bool HexagonBranchRelaxation::isJumpOutOfRange(MachineInstr &MI,
DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset) {
MachineBasicBlock &B = *MI.getParent();
auto FirstTerm = B.getFirstInstrTerminator();
if (FirstTerm == B.instr_end())
return false;
if (HII->isExtended(MI))
return false;
unsigned InstOffset = BlockToInstOffset[&B];
unsigned Distance = 0;
// To save time, estimate exact position of a branch instruction
// as one at the end of the MBB.
// Number of instructions times typical instruction size.
InstOffset += HII->nonDbgBBSize(&B) * HEXAGON_INSTR_SIZE;
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
// Try to analyze this branch.
if (HII->analyzeBranch(B, TBB, FBB, Cond, false)) {
// Could not analyze it. See if this is something we can recognize.
// If it is a NVJ, it should always have its target in
// a fixed location.
if (HII->isNewValueJump(*FirstTerm))
TBB = FirstTerm->getOperand(HII->getCExtOpNum(*FirstTerm)).getMBB();
}
if (TBB && &MI == &*FirstTerm) {
Distance = std::abs((long long)InstOffset - BlockToInstOffset[TBB])
+ BranchRelaxSafetyBuffer;
return !HII->isJumpWithinBranchRange(*FirstTerm, Distance);
}
if (FBB) {
// Look for second terminator.
auto SecondTerm = std::next(FirstTerm);
assert(SecondTerm != B.instr_end() &&
(SecondTerm->isBranch() || SecondTerm->isCall()) &&
"Bad second terminator");
if (&MI != &*SecondTerm)
return false;
// Analyze the second branch in the BB.
Distance = std::abs((long long)InstOffset - BlockToInstOffset[FBB])
+ BranchRelaxSafetyBuffer;
return !HII->isJumpWithinBranchRange(*SecondTerm, Distance);
}
return false;
}
bool HexagonBranchRelaxation::reGenerateBranch(MachineFunction &MF,
DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset) {
bool Changed = false;
for (auto &B : MF) {
for (auto &MI : B) {
if (!MI.isBranch() || !isJumpOutOfRange(MI, BlockToInstOffset))
continue;
LLVM_DEBUG(dbgs() << "Long distance jump. isExtendable("
<< HII->isExtendable(MI) << ") isConstExtended("
<< HII->isConstExtended(MI) << ") " << MI);
// Since we have not merged HW loops relaxation into
// this code (yet), soften our approach for the moment.
if (!HII->isExtendable(MI) && !HII->isExtended(MI)) {
LLVM_DEBUG(dbgs() << "\tUnderimplemented relax branch instruction.\n");
} else {
// Find which operand is expandable.
int ExtOpNum = HII->getCExtOpNum(MI);
MachineOperand &MO = MI.getOperand(ExtOpNum);
// This need to be something we understand. So far we assume all
// branches have only MBB address as expandable field.
// If it changes, this will need to be expanded.
assert(MO.isMBB() && "Branch with unknown expandable field type");
// Mark given operand as extended.
MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
Changed = true;
}
}
}
return Changed;
}
|