1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
|
//===-- HexagonVectorCombine.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// HexagonVectorCombine is a utility class implementing a variety of functions
// that assist in vector-based optimizations.
//
// AlignVectors: replace unaligned vector loads and stores with aligned ones.
// HvxIdioms: recognize various opportunities to generate HVX intrinsic code.
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InstSimplifyFolder.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsHexagon.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/Local.h"
#include "HexagonSubtarget.h"
#include "HexagonTargetMachine.h"
#include <algorithm>
#include <deque>
#include <map>
#include <optional>
#include <set>
#include <utility>
#include <vector>
#define DEBUG_TYPE "hexagon-vc"
using namespace llvm;
namespace {
cl::opt<bool> DumpModule("hvc-dump-module", cl::Hidden);
cl::opt<bool> VAEnabled("hvc-va", cl::Hidden, cl::init(true)); // Align
cl::opt<bool> VIEnabled("hvc-vi", cl::Hidden, cl::init(true)); // Idioms
cl::opt<bool> VADoFullStores("hvc-va-full-stores", cl::Hidden);
cl::opt<unsigned> VAGroupCountLimit("hvc-va-group-count-limit", cl::Hidden,
cl::init(~0));
cl::opt<unsigned> VAGroupSizeLimit("hvc-va-group-size-limit", cl::Hidden,
cl::init(~0));
class HexagonVectorCombine {
public:
HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_,
DominatorTree &DT_, ScalarEvolution &SE_,
TargetLibraryInfo &TLI_, const TargetMachine &TM_)
: F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_),
SE(SE_), TLI(TLI_),
HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {}
bool run();
// Common integer type.
IntegerType *getIntTy(unsigned Width = 32) const;
// Byte type: either scalar (when Length = 0), or vector with given
// element count.
Type *getByteTy(int ElemCount = 0) const;
// Boolean type: either scalar (when Length = 0), or vector with given
// element count.
Type *getBoolTy(int ElemCount = 0) const;
// Create a ConstantInt of type returned by getIntTy with the value Val.
ConstantInt *getConstInt(int Val, unsigned Width = 32) const;
// Get the integer value of V, if it exists.
std::optional<APInt> getIntValue(const Value *Val) const;
// Is Val a constant 0, or a vector of 0s?
bool isZero(const Value *Val) const;
// Is Val an undef value?
bool isUndef(const Value *Val) const;
// Is Val a scalar (i1 true) or a vector of (i1 true)?
bool isTrue(const Value *Val) const;
// Is Val a scalar (i1 false) or a vector of (i1 false)?
bool isFalse(const Value *Val) const;
// Get HVX vector type with the given element type.
VectorType *getHvxTy(Type *ElemTy, bool Pair = false) const;
enum SizeKind {
Store, // Store size
Alloc, // Alloc size
};
int getSizeOf(const Value *Val, SizeKind Kind = Store) const;
int getSizeOf(const Type *Ty, SizeKind Kind = Store) const;
int getTypeAlignment(Type *Ty) const;
size_t length(Value *Val) const;
size_t length(Type *Ty) const;
Constant *getNullValue(Type *Ty) const;
Constant *getFullValue(Type *Ty) const;
Constant *getConstSplat(Type *Ty, int Val) const;
Value *simplify(Value *Val) const;
Value *insertb(IRBuilderBase &Builder, Value *Dest, Value *Src, int Start,
int Length, int Where) const;
Value *vlalignb(IRBuilderBase &Builder, Value *Lo, Value *Hi,
Value *Amt) const;
Value *vralignb(IRBuilderBase &Builder, Value *Lo, Value *Hi,
Value *Amt) const;
Value *concat(IRBuilderBase &Builder, ArrayRef<Value *> Vecs) const;
Value *vresize(IRBuilderBase &Builder, Value *Val, int NewSize,
Value *Pad) const;
Value *rescale(IRBuilderBase &Builder, Value *Mask, Type *FromTy,
Type *ToTy) const;
Value *vlsb(IRBuilderBase &Builder, Value *Val) const;
Value *vbytes(IRBuilderBase &Builder, Value *Val) const;
Value *subvector(IRBuilderBase &Builder, Value *Val, unsigned Start,
unsigned Length) const;
Value *sublo(IRBuilderBase &Builder, Value *Val) const;
Value *subhi(IRBuilderBase &Builder, Value *Val) const;
Value *vdeal(IRBuilderBase &Builder, Value *Val0, Value *Val1) const;
Value *vshuff(IRBuilderBase &Builder, Value *Val0, Value *Val1) const;
Value *createHvxIntrinsic(IRBuilderBase &Builder, Intrinsic::ID IntID,
Type *RetTy, ArrayRef<Value *> Args,
ArrayRef<Type *> ArgTys = std::nullopt,
ArrayRef<Value *> MDSources = std::nullopt) const;
SmallVector<Value *> splitVectorElements(IRBuilderBase &Builder, Value *Vec,
unsigned ToWidth) const;
Value *joinVectorElements(IRBuilderBase &Builder, ArrayRef<Value *> Values,
VectorType *ToType) const;
std::optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const;
unsigned getNumSignificantBits(const Value *V,
const Instruction *CtxI = nullptr) const;
KnownBits getKnownBits(const Value *V,
const Instruction *CtxI = nullptr) const;
bool isSafeToClone(const Instruction &In) const;
template <typename T = std::vector<Instruction *>>
bool isSafeToMoveBeforeInBB(const Instruction &In,
BasicBlock::const_iterator To,
const T &IgnoreInsts = {}) const;
// This function is only used for assertions at the moment.
[[maybe_unused]] bool isByteVecTy(Type *Ty) const;
Function &F;
const DataLayout &DL;
AliasAnalysis &AA;
AssumptionCache &AC;
DominatorTree &DT;
ScalarEvolution &SE;
TargetLibraryInfo &TLI;
const HexagonSubtarget &HST;
private:
Value *getElementRange(IRBuilderBase &Builder, Value *Lo, Value *Hi,
int Start, int Length) const;
};
class AlignVectors {
// This code tries to replace unaligned vector loads/stores with aligned
// ones.
// Consider unaligned load:
// %v = original_load %some_addr, align <bad>
// %user = %v
// It will generate
// = load ..., align <good>
// = load ..., align <good>
// = valign
// etc.
// %synthesize = combine/shuffle the loaded data so that it looks
// exactly like what "original_load" has loaded.
// %user = %synthesize
// Similarly for stores.
public:
AlignVectors(const HexagonVectorCombine &HVC_) : HVC(HVC_) {}
bool run();
private:
using InstList = std::vector<Instruction *>;
using InstMap = DenseMap<Instruction *, Instruction *>;
struct AddrInfo {
AddrInfo(const AddrInfo &) = default;
AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T,
Align H)
: Inst(I), Addr(A), ValTy(T), HaveAlign(H),
NeedAlign(HVC.getTypeAlignment(ValTy)) {}
AddrInfo &operator=(const AddrInfo &) = default;
// XXX: add Size member?
Instruction *Inst;
Value *Addr;
Type *ValTy;
Align HaveAlign;
Align NeedAlign;
int Offset = 0; // Offset (in bytes) from the first member of the
// containing AddrList.
};
using AddrList = std::vector<AddrInfo>;
struct InstrLess {
bool operator()(const Instruction *A, const Instruction *B) const {
return A->comesBefore(B);
}
};
using DepList = std::set<Instruction *, InstrLess>;
struct MoveGroup {
MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load)
: Base(B), Main{AI.Inst}, Clones{}, IsHvx(Hvx), IsLoad(Load) {}
MoveGroup() = default;
Instruction *Base; // Base instruction of the parent address group.
InstList Main; // Main group of instructions.
InstList Deps; // List of dependencies.
InstMap Clones; // Map from original Deps to cloned ones.
bool IsHvx; // Is this group of HVX instructions?
bool IsLoad; // Is this a load group?
};
using MoveList = std::vector<MoveGroup>;
struct ByteSpan {
// A representation of "interesting" bytes within a given span of memory.
// These bytes are those that are loaded or stored, and they don't have
// to cover the entire span of memory.
//
// The representation works by picking a contiguous sequence of bytes
// from somewhere within a llvm::Value, and placing it at a given offset
// within the span.
//
// The sequence of bytes from llvm:Value is represented by Segment.
// Block is Segment, plus where it goes in the span.
//
// An important feature of ByteSpan is being able to make a "section",
// i.e. creating another ByteSpan corresponding to a range of offsets
// relative to the source span.
struct Segment {
// Segment of a Value: 'Len' bytes starting at byte 'Begin'.
Segment(Value *Val, int Begin, int Len)
: Val(Val), Start(Begin), Size(Len) {}
Segment(const Segment &Seg) = default;
Segment &operator=(const Segment &Seg) = default;
Value *Val; // Value representable as a sequence of bytes.
int Start; // First byte of the value that belongs to the segment.
int Size; // Number of bytes in the segment.
};
struct Block {
Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {}
Block(Value *Val, int Off, int Len, int Pos)
: Seg(Val, Off, Len), Pos(Pos) {}
Block(const Block &Blk) = default;
Block &operator=(const Block &Blk) = default;
Segment Seg; // Value segment.
int Pos; // Position (offset) of the block in the span.
};
int extent() const;
ByteSpan section(int Start, int Length) const;
ByteSpan &shift(int Offset);
SmallVector<Value *, 8> values() const;
int size() const { return Blocks.size(); }
Block &operator[](int i) { return Blocks[i]; }
const Block &operator[](int i) const { return Blocks[i]; }
std::vector<Block> Blocks;
using iterator = decltype(Blocks)::iterator;
iterator begin() { return Blocks.begin(); }
iterator end() { return Blocks.end(); }
using const_iterator = decltype(Blocks)::const_iterator;
const_iterator begin() const { return Blocks.begin(); }
const_iterator end() const { return Blocks.end(); }
};
Align getAlignFromValue(const Value *V) const;
std::optional<AddrInfo> getAddrInfo(Instruction &In) const;
bool isHvx(const AddrInfo &AI) const;
// This function is only used for assertions at the moment.
[[maybe_unused]] bool isSectorTy(Type *Ty) const;
Value *getPayload(Value *Val) const;
Value *getMask(Value *Val) const;
Value *getPassThrough(Value *Val) const;
Value *createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy,
int Adjust,
const InstMap &CloneMap = InstMap()) const;
Value *createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy,
int Alignment,
const InstMap &CloneMap = InstMap()) const;
Value *createLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr,
Value *Predicate, int Alignment, Value *Mask,
Value *PassThru,
ArrayRef<Value *> MDSources = std::nullopt) const;
Value *createSimpleLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr,
int Alignment,
ArrayRef<Value *> MDSources = std::nullopt) const;
Value *createStore(IRBuilderBase &Builder, Value *Val, Value *Ptr,
Value *Predicate, int Alignment, Value *Mask,
ArrayRef<Value *> MDSources = std ::nullopt) const;
Value *createSimpleStore(IRBuilderBase &Builder, Value *Val, Value *Ptr,
int Alignment,
ArrayRef<Value *> MDSources = std ::nullopt) const;
Value *createPredicatedLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr,
Value *Predicate, int Alignment,
ArrayRef<Value *> MDSources = std::nullopt) const;
Value *
createPredicatedStore(IRBuilderBase &Builder, Value *Val, Value *Ptr,
Value *Predicate, int Alignment,
ArrayRef<Value *> MDSources = std::nullopt) const;
DepList getUpwardDeps(Instruction *In, Instruction *Base) const;
bool createAddressGroups();
MoveList createLoadGroups(const AddrList &Group) const;
MoveList createStoreGroups(const AddrList &Group) const;
bool moveTogether(MoveGroup &Move) const;
template <typename T> InstMap cloneBefore(Instruction *To, T &&Insts) const;
void realignLoadGroup(IRBuilderBase &Builder, const ByteSpan &VSpan,
int ScLen, Value *AlignVal, Value *AlignAddr) const;
void realignStoreGroup(IRBuilderBase &Builder, const ByteSpan &VSpan,
int ScLen, Value *AlignVal, Value *AlignAddr) const;
bool realignGroup(const MoveGroup &Move) const;
Value *makeTestIfUnaligned(IRBuilderBase &Builder, Value *AlignVal,
int Alignment) const;
friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI);
friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG);
friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan::Block &B);
friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS);
std::map<Instruction *, AddrList> AddrGroups;
const HexagonVectorCombine &HVC;
};
LLVM_ATTRIBUTE_UNUSED
raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) {
OS << "Inst: " << AI.Inst << " " << *AI.Inst << '\n';
OS << "Addr: " << *AI.Addr << '\n';
OS << "Type: " << *AI.ValTy << '\n';
OS << "HaveAlign: " << AI.HaveAlign.value() << '\n';
OS << "NeedAlign: " << AI.NeedAlign.value() << '\n';
OS << "Offset: " << AI.Offset;
return OS;
}
LLVM_ATTRIBUTE_UNUSED
raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) {
OS << "IsLoad:" << (MG.IsLoad ? "yes" : "no");
OS << ", IsHvx:" << (MG.IsHvx ? "yes" : "no") << '\n';
OS << "Main\n";
for (Instruction *I : MG.Main)
OS << " " << *I << '\n';
OS << "Deps\n";
for (Instruction *I : MG.Deps)
OS << " " << *I << '\n';
OS << "Clones\n";
for (auto [K, V] : MG.Clones) {
OS << " ";
K->printAsOperand(OS, false);
OS << "\t-> " << *V << '\n';
}
return OS;
}
LLVM_ATTRIBUTE_UNUSED
raw_ostream &operator<<(raw_ostream &OS,
const AlignVectors::ByteSpan::Block &B) {
OS << " @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] ";
if (B.Seg.Val == reinterpret_cast<const Value *>(&B)) {
OS << "(self:" << B.Seg.Val << ')';
} else if (B.Seg.Val != nullptr) {
OS << *B.Seg.Val;
} else {
OS << "(null)";
}
return OS;
}
LLVM_ATTRIBUTE_UNUSED
raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) {
OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n';
for (const AlignVectors::ByteSpan::Block &B : BS)
OS << B << '\n';
OS << ']';
return OS;
}
class HvxIdioms {
public:
HvxIdioms(const HexagonVectorCombine &HVC_) : HVC(HVC_) {
auto *Int32Ty = HVC.getIntTy(32);
HvxI32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/false);
HvxP32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/true);
}
bool run();
private:
enum Signedness { Positive, Signed, Unsigned };
// Value + sign
// This is to keep track of whether the value should be treated as signed
// or unsigned, or is known to be positive.
struct SValue {
Value *Val;
Signedness Sgn;
};
struct FxpOp {
unsigned Opcode;
unsigned Frac; // Number of fraction bits
SValue X, Y;
// If present, add 1 << RoundAt before shift:
std::optional<unsigned> RoundAt;
VectorType *ResTy;
};
auto getNumSignificantBits(Value *V, Instruction *In) const
-> std::pair<unsigned, Signedness>;
auto canonSgn(SValue X, SValue Y) const -> std::pair<SValue, SValue>;
auto matchFxpMul(Instruction &In) const -> std::optional<FxpOp>;
auto processFxpMul(Instruction &In, const FxpOp &Op) const -> Value *;
auto processFxpMulChopped(IRBuilderBase &Builder, Instruction &In,
const FxpOp &Op) const -> Value *;
auto createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y,
bool Rounding) const -> Value *;
auto createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y,
bool Rounding) const -> Value *;
// Return {Result, Carry}, where Carry is a vector predicate.
auto createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y,
Value *CarryIn = nullptr) const
-> std::pair<Value *, Value *>;
auto createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const -> Value *;
auto createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const
-> Value *;
auto createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const
-> std::pair<Value *, Value *>;
auto createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
ArrayRef<Value *> WordY) const -> SmallVector<Value *>;
auto createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
Signedness SgnX, ArrayRef<Value *> WordY,
Signedness SgnY) const -> SmallVector<Value *>;
VectorType *HvxI32Ty;
VectorType *HvxP32Ty;
const HexagonVectorCombine &HVC;
friend raw_ostream &operator<<(raw_ostream &, const FxpOp &);
};
[[maybe_unused]] raw_ostream &operator<<(raw_ostream &OS,
const HvxIdioms::FxpOp &Op) {
static const char *SgnNames[] = {"Positive", "Signed", "Unsigned"};
OS << Instruction::getOpcodeName(Op.Opcode) << '.' << Op.Frac;
if (Op.RoundAt.has_value()) {
if (Op.Frac != 0 && *Op.RoundAt == Op.Frac - 1) {
OS << ":rnd";
} else {
OS << " + 1<<" << *Op.RoundAt;
}
}
OS << "\n X:(" << SgnNames[Op.X.Sgn] << ") " << *Op.X.Val << "\n"
<< " Y:(" << SgnNames[Op.Y.Sgn] << ") " << *Op.Y.Val;
return OS;
}
} // namespace
namespace {
template <typename T> T *getIfUnordered(T *MaybeT) {
return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr;
}
template <typename T> T *isCandidate(Instruction *In) {
return dyn_cast<T>(In);
}
template <> LoadInst *isCandidate<LoadInst>(Instruction *In) {
return getIfUnordered(dyn_cast<LoadInst>(In));
}
template <> StoreInst *isCandidate<StoreInst>(Instruction *In) {
return getIfUnordered(dyn_cast<StoreInst>(In));
}
#if !defined(_MSC_VER) || _MSC_VER >= 1926
// VS2017 and some versions of VS2019 have trouble compiling this:
// error C2976: 'std::map': too few template arguments
// VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925)
template <typename Pred, typename... Ts>
void erase_if(std::map<Ts...> &map, Pred p)
#else
template <typename Pred, typename T, typename U>
void erase_if(std::map<T, U> &map, Pred p)
#endif
{
for (auto i = map.begin(), e = map.end(); i != e;) {
if (p(*i))
i = map.erase(i);
else
i = std::next(i);
}
}
// Forward other erase_ifs to the LLVM implementations.
template <typename Pred, typename T> void erase_if(T &&container, Pred p) {
llvm::erase_if(std::forward<T>(container), p);
}
} // namespace
// --- Begin AlignVectors
// For brevity, only consider loads. We identify a group of loads where we
// know the relative differences between their addresses, so we know how they
// are laid out in memory (relative to one another). These loads can overlap,
// can be shorter or longer than the desired vector length.
// Ultimately we want to generate a sequence of aligned loads that will load
// every byte that the original loads loaded, and have the program use these
// loaded values instead of the original loads.
// We consider the contiguous memory area spanned by all these loads.
//
// Let's say that a single aligned vector load can load 16 bytes at a time.
// If the program wanted to use a byte at offset 13 from the beginning of the
// original span, it will be a byte at offset 13+x in the aligned data for
// some x>=0. This may happen to be in the first aligned load, or in the load
// following it. Since we generally don't know what the that alignment value
// is at compile time, we proactively do valigns on the aligned loads, so that
// byte that was at offset 13 is still at offset 13 after the valigns.
//
// This will be the starting point for making the rest of the program use the
// data loaded by the new loads.
// For each original load, and its users:
// %v = load ...
// ... = %v
// ... = %v
// we create
// %new_v = extract/combine/shuffle data from loaded/valigned vectors so
// it contains the same value as %v did before
// then replace all users of %v with %new_v.
// ... = %new_v
// ... = %new_v
auto AlignVectors::ByteSpan::extent() const -> int {
if (size() == 0)
return 0;
int Min = Blocks[0].Pos;
int Max = Blocks[0].Pos + Blocks[0].Seg.Size;
for (int i = 1, e = size(); i != e; ++i) {
Min = std::min(Min, Blocks[i].Pos);
Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size);
}
return Max - Min;
}
auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan {
ByteSpan Section;
for (const ByteSpan::Block &B : Blocks) {
int L = std::max(B.Pos, Start); // Left end.
int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1.
if (L < R) {
// How much to chop off the beginning of the segment:
int Off = L > B.Pos ? L - B.Pos : 0;
Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L);
}
}
return Section;
}
auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & {
for (Block &B : Blocks)
B.Pos += Offset;
return *this;
}
auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> {
SmallVector<Value *, 8> Values(Blocks.size());
for (int i = 0, e = Blocks.size(); i != e; ++i)
Values[i] = Blocks[i].Seg.Val;
return Values;
}
auto AlignVectors::getAlignFromValue(const Value *V) const -> Align {
const auto *C = dyn_cast<ConstantInt>(V);
assert(C && "Alignment must be a compile-time constant integer");
return C->getAlignValue();
}
auto AlignVectors::getAddrInfo(Instruction &In) const
-> std::optional<AddrInfo> {
if (auto *L = isCandidate<LoadInst>(&In))
return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(),
L->getAlign());
if (auto *S = isCandidate<StoreInst>(&In))
return AddrInfo(HVC, S, S->getPointerOperand(),
S->getValueOperand()->getType(), S->getAlign());
if (auto *II = isCandidate<IntrinsicInst>(&In)) {
Intrinsic::ID ID = II->getIntrinsicID();
switch (ID) {
case Intrinsic::masked_load:
return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(),
getAlignFromValue(II->getArgOperand(1)));
case Intrinsic::masked_store:
return AddrInfo(HVC, II, II->getArgOperand(1),
II->getArgOperand(0)->getType(),
getAlignFromValue(II->getArgOperand(2)));
}
}
return std::nullopt;
}
auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool {
return HVC.HST.isTypeForHVX(AI.ValTy);
}
auto AlignVectors::getPayload(Value *Val) const -> Value * {
if (auto *In = dyn_cast<Instruction>(Val)) {
Intrinsic::ID ID = 0;
if (auto *II = dyn_cast<IntrinsicInst>(In))
ID = II->getIntrinsicID();
if (isa<StoreInst>(In) || ID == Intrinsic::masked_store)
return In->getOperand(0);
}
return Val;
}
auto AlignVectors::getMask(Value *Val) const -> Value * {
if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
switch (II->getIntrinsicID()) {
case Intrinsic::masked_load:
return II->getArgOperand(2);
case Intrinsic::masked_store:
return II->getArgOperand(3);
}
}
Type *ValTy = getPayload(Val)->getType();
if (auto *VecTy = dyn_cast<VectorType>(ValTy))
return HVC.getFullValue(HVC.getBoolTy(HVC.length(VecTy)));
return HVC.getFullValue(HVC.getBoolTy());
}
auto AlignVectors::getPassThrough(Value *Val) const -> Value * {
if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
if (II->getIntrinsicID() == Intrinsic::masked_load)
return II->getArgOperand(3);
}
return UndefValue::get(getPayload(Val)->getType());
}
auto AlignVectors::createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr,
Type *ValTy, int Adjust,
const InstMap &CloneMap) const
-> Value * {
if (auto *I = dyn_cast<Instruction>(Ptr))
if (Instruction *New = CloneMap.lookup(I))
Ptr = New;
return Builder.CreateGEP(Type::getInt8Ty(HVC.F.getContext()), Ptr,
HVC.getConstInt(Adjust), "gep");
}
auto AlignVectors::createAlignedPointer(IRBuilderBase &Builder, Value *Ptr,
Type *ValTy, int Alignment,
const InstMap &CloneMap) const
-> Value * {
auto remap = [&](Value *V) -> Value * {
if (auto *I = dyn_cast<Instruction>(V)) {
for (auto [Old, New] : CloneMap)
I->replaceUsesOfWith(Old, New);
return I;
}
return V;
};
Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy(), "pti");
Value *Mask = HVC.getConstInt(-Alignment);
Value *And = Builder.CreateAnd(remap(AsInt), Mask, "and");
return Builder.CreateIntToPtr(And, ValTy->getPointerTo(), "itp");
}
auto AlignVectors::createLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr,
Value *Predicate, int Alignment, Value *Mask,
Value *PassThru,
ArrayRef<Value *> MDSources) const -> Value * {
bool HvxHasPredLoad = HVC.HST.useHVXV62Ops();
// Predicate is nullptr if not creating predicated load
if (Predicate) {
assert(!Predicate->getType()->isVectorTy() &&
"Expectning scalar predicate");
if (HVC.isFalse(Predicate))
return UndefValue::get(ValTy);
if (!HVC.isTrue(Predicate) && HvxHasPredLoad) {
Value *Load = createPredicatedLoad(Builder, ValTy, Ptr, Predicate,
Alignment, MDSources);
return Builder.CreateSelect(Mask, Load, PassThru);
}
// Predicate == true here.
}
assert(!HVC.isUndef(Mask)); // Should this be allowed?
if (HVC.isZero(Mask))
return PassThru;
if (HVC.isTrue(Mask))
return createSimpleLoad(Builder, ValTy, Ptr, Alignment, MDSources);
Instruction *Load = Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment),
Mask, PassThru, "mld");
propagateMetadata(Load, MDSources);
return Load;
}
auto AlignVectors::createSimpleLoad(IRBuilderBase &Builder, Type *ValTy,
Value *Ptr, int Alignment,
ArrayRef<Value *> MDSources) const
-> Value * {
Instruction *Load =
Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment), "ald");
propagateMetadata(Load, MDSources);
return Load;
}
auto AlignVectors::createPredicatedLoad(IRBuilderBase &Builder, Type *ValTy,
Value *Ptr, Value *Predicate,
int Alignment,
ArrayRef<Value *> MDSources) const
-> Value * {
assert(HVC.HST.isTypeForHVX(ValTy) &&
"Predicates 'scalar' vector loads not yet supported");
assert(Predicate);
assert(!Predicate->getType()->isVectorTy() && "Expectning scalar predicate");
assert(HVC.getSizeOf(ValTy, HVC.Alloc) % Alignment == 0);
if (HVC.isFalse(Predicate))
return UndefValue::get(ValTy);
if (HVC.isTrue(Predicate))
return createSimpleLoad(Builder, ValTy, Ptr, Alignment, MDSources);
auto V6_vL32b_pred_ai = HVC.HST.getIntrinsicId(Hexagon::V6_vL32b_pred_ai);
// FIXME: This may not put the offset from Ptr into the vmem offset.
return HVC.createHvxIntrinsic(Builder, V6_vL32b_pred_ai, ValTy,
{Predicate, Ptr, HVC.getConstInt(0)},
std::nullopt, MDSources);
}
auto AlignVectors::createStore(IRBuilderBase &Builder, Value *Val, Value *Ptr,
Value *Predicate, int Alignment, Value *Mask,
ArrayRef<Value *> MDSources) const -> Value * {
if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask))
return UndefValue::get(Val->getType());
assert(!Predicate || (!Predicate->getType()->isVectorTy() &&
"Expectning scalar predicate"));
if (Predicate) {
if (HVC.isFalse(Predicate))
return UndefValue::get(Val->getType());
if (HVC.isTrue(Predicate))
Predicate = nullptr;
}
// Here both Predicate and Mask are true or unknown.
if (HVC.isTrue(Mask)) {
if (Predicate) { // Predicate unknown
return createPredicatedStore(Builder, Val, Ptr, Predicate, Alignment,
MDSources);
}
// Predicate is true:
return createSimpleStore(Builder, Val, Ptr, Alignment, MDSources);
}
// Mask is unknown
if (!Predicate) {
Instruction *Store =
Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask);
propagateMetadata(Store, MDSources);
return Store;
}
// Both Predicate and Mask are unknown.
// Emulate masked store with predicated-load + mux + predicated-store.
Value *PredLoad = createPredicatedLoad(Builder, Val->getType(), Ptr,
Predicate, Alignment, MDSources);
Value *Mux = Builder.CreateSelect(Mask, Val, PredLoad);
return createPredicatedStore(Builder, Mux, Ptr, Predicate, Alignment,
MDSources);
}
auto AlignVectors::createSimpleStore(IRBuilderBase &Builder, Value *Val,
Value *Ptr, int Alignment,
ArrayRef<Value *> MDSources) const
-> Value * {
Instruction *Store = Builder.CreateAlignedStore(Val, Ptr, Align(Alignment));
propagateMetadata(Store, MDSources);
return Store;
}
auto AlignVectors::createPredicatedStore(IRBuilderBase &Builder, Value *Val,
Value *Ptr, Value *Predicate,
int Alignment,
ArrayRef<Value *> MDSources) const
-> Value * {
assert(HVC.HST.isTypeForHVX(Val->getType()) &&
"Predicates 'scalar' vector stores not yet supported");
assert(Predicate);
if (HVC.isFalse(Predicate))
return UndefValue::get(Val->getType());
if (HVC.isTrue(Predicate))
return createSimpleStore(Builder, Val, Ptr, Alignment, MDSources);
assert(HVC.getSizeOf(Val, HVC.Alloc) % Alignment == 0);
auto V6_vS32b_pred_ai = HVC.HST.getIntrinsicId(Hexagon::V6_vS32b_pred_ai);
// FIXME: This may not put the offset from Ptr into the vmem offset.
return HVC.createHvxIntrinsic(Builder, V6_vS32b_pred_ai, nullptr,
{Predicate, Ptr, HVC.getConstInt(0), Val},
std::nullopt, MDSources);
}
auto AlignVectors::getUpwardDeps(Instruction *In, Instruction *Base) const
-> DepList {
BasicBlock *Parent = Base->getParent();
assert(In->getParent() == Parent &&
"Base and In should be in the same block");
assert(Base->comesBefore(In) && "Base should come before In");
DepList Deps;
std::deque<Instruction *> WorkQ = {In};
while (!WorkQ.empty()) {
Instruction *D = WorkQ.front();
WorkQ.pop_front();
if (D != In)
Deps.insert(D);
for (Value *Op : D->operands()) {
if (auto *I = dyn_cast<Instruction>(Op)) {
if (I->getParent() == Parent && Base->comesBefore(I))
WorkQ.push_back(I);
}
}
}
return Deps;
}
auto AlignVectors::createAddressGroups() -> bool {
// An address group created here may contain instructions spanning
// multiple basic blocks.
AddrList WorkStack;
auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> {
for (AddrInfo &W : WorkStack) {
if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr))
return std::make_pair(W.Inst, *D);
}
return std::make_pair(nullptr, 0);
};
auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void {
BasicBlock &Block = *DomN->getBlock();
for (Instruction &I : Block) {
auto AI = this->getAddrInfo(I); // Use this-> for gcc6.
if (!AI)
continue;
auto F = findBaseAndOffset(*AI);
Instruction *GroupInst;
if (Instruction *BI = F.first) {
AI->Offset = F.second;
GroupInst = BI;
} else {
WorkStack.push_back(*AI);
GroupInst = AI->Inst;
}
AddrGroups[GroupInst].push_back(*AI);
}
for (DomTreeNode *C : DomN->children())
Visit(C, Visit);
while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block)
WorkStack.pop_back();
};
traverseBlock(HVC.DT.getRootNode(), traverseBlock);
assert(WorkStack.empty());
// AddrGroups are formed.
// Remove groups of size 1.
erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; });
// Remove groups that don't use HVX types.
erase_if(AddrGroups, [&](auto &G) {
return llvm::none_of(
G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); });
});
return !AddrGroups.empty();
}
auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList {
// Form load groups.
// To avoid complications with moving code across basic blocks, only form
// groups that are contained within a single basic block.
unsigned SizeLimit = VAGroupSizeLimit;
if (SizeLimit == 0)
return {};
auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
assert(!Move.Main.empty() && "Move group should have non-empty Main");
if (Move.Main.size() >= SizeLimit)
return false;
// Don't mix HVX and non-HVX instructions.
if (Move.IsHvx != isHvx(Info))
return false;
// Leading instruction in the load group.
Instruction *Base = Move.Main.front();
if (Base->getParent() != Info.Inst->getParent())
return false;
// Check if it's safe to move the load.
if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator()))
return false;
// And if it's safe to clone the dependencies.
auto isSafeToCopyAtBase = [&](const Instruction *I) {
return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator()) &&
HVC.isSafeToClone(*I);
};
DepList Deps = getUpwardDeps(Info.Inst, Base);
if (!llvm::all_of(Deps, isSafeToCopyAtBase))
return false;
Move.Main.push_back(Info.Inst);
llvm::append_range(Move.Deps, Deps);
return true;
};
MoveList LoadGroups;
for (const AddrInfo &Info : Group) {
if (!Info.Inst->mayReadFromMemory())
continue;
if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back()))
LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true);
}
// Erase singleton groups.
erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
// Erase HVX groups on targets < HvxV62 (due to lack of predicated loads).
if (!HVC.HST.useHVXV62Ops())
erase_if(LoadGroups, [](const MoveGroup &G) { return G.IsHvx; });
return LoadGroups;
}
auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList {
// Form store groups.
// To avoid complications with moving code across basic blocks, only form
// groups that are contained within a single basic block.
unsigned SizeLimit = VAGroupSizeLimit;
if (SizeLimit == 0)
return {};
auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
assert(!Move.Main.empty() && "Move group should have non-empty Main");
if (Move.Main.size() >= SizeLimit)
return false;
// For stores with return values we'd have to collect downward depenencies.
// There are no such stores that we handle at the moment, so omit that.
assert(Info.Inst->getType()->isVoidTy() &&
"Not handling stores with return values");
// Don't mix HVX and non-HVX instructions.
if (Move.IsHvx != isHvx(Info))
return false;
// For stores we need to be careful whether it's safe to move them.
// Stores that are otherwise safe to move together may not appear safe
// to move over one another (i.e. isSafeToMoveBefore may return false).
Instruction *Base = Move.Main.front();
if (Base->getParent() != Info.Inst->getParent())
return false;
if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main))
return false;
Move.Main.push_back(Info.Inst);
return true;
};
MoveList StoreGroups;
for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) {
const AddrInfo &Info = *I;
if (!Info.Inst->mayWriteToMemory())
continue;
if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back()))
StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false);
}
// Erase singleton groups.
erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
// Erase HVX groups on targets < HvxV62 (due to lack of predicated loads).
if (!HVC.HST.useHVXV62Ops())
erase_if(StoreGroups, [](const MoveGroup &G) { return G.IsHvx; });
// Erase groups where every store is a full HVX vector. The reason is that
// aligning predicated stores generates complex code that may be less
// efficient than a sequence of unaligned vector stores.
if (!VADoFullStores) {
erase_if(StoreGroups, [this](const MoveGroup &G) {
return G.IsHvx && llvm::all_of(G.Main, [this](Instruction *S) {
auto MaybeInfo = this->getAddrInfo(*S);
assert(MaybeInfo.has_value());
return HVC.HST.isHVXVectorType(
EVT::getEVT(MaybeInfo->ValTy, false));
});
});
}
return StoreGroups;
}
auto AlignVectors::moveTogether(MoveGroup &Move) const -> bool {
// Move all instructions to be adjacent.
assert(!Move.Main.empty() && "Move group should have non-empty Main");
Instruction *Where = Move.Main.front();
if (Move.IsLoad) {
// Move all the loads (and dependencies) to where the first load is.
// Clone all deps to before Where, keeping order.
Move.Clones = cloneBefore(Where, Move.Deps);
// Move all main instructions to after Where, keeping order.
ArrayRef<Instruction *> Main(Move.Main);
for (Instruction *M : Main) {
if (M != Where)
M->moveAfter(Where);
for (auto [Old, New] : Move.Clones)
M->replaceUsesOfWith(Old, New);
Where = M;
}
// Replace Deps with the clones.
for (int i = 0, e = Move.Deps.size(); i != e; ++i)
Move.Deps[i] = Move.Clones[Move.Deps[i]];
} else {
// Move all the stores to where the last store is.
// NOTE: Deps are empty for "store" groups. If they need to be
// non-empty, decide on the order.
assert(Move.Deps.empty());
// Move all main instructions to before Where, inverting order.
ArrayRef<Instruction *> Main(Move.Main);
for (Instruction *M : Main.drop_front(1)) {
M->moveBefore(Where);
Where = M;
}
}
return Move.Main.size() + Move.Deps.size() > 1;
}
template <typename T>
auto AlignVectors::cloneBefore(Instruction *To, T &&Insts) const -> InstMap {
InstMap Map;
for (Instruction *I : Insts) {
assert(HVC.isSafeToClone(*I));
Instruction *C = I->clone();
C->setName(Twine("c.") + I->getName() + ".");
C->insertBefore(To);
for (auto [Old, New] : Map)
C->replaceUsesOfWith(Old, New);
Map.insert(std::make_pair(I, C));
}
return Map;
}
auto AlignVectors::realignLoadGroup(IRBuilderBase &Builder,
const ByteSpan &VSpan, int ScLen,
Value *AlignVal, Value *AlignAddr) const
-> void {
LLVM_DEBUG(dbgs() << __func__ << "\n");
Type *SecTy = HVC.getByteTy(ScLen);
int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
bool DoAlign = !HVC.isZero(AlignVal);
BasicBlock::iterator BasePos = Builder.GetInsertPoint();
BasicBlock *BaseBlock = Builder.GetInsertBlock();
ByteSpan ASpan;
auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen));
auto *Undef = UndefValue::get(SecTy);
// Created load does not have to be "Instruction" (e.g. "undef").
SmallVector<Value *> Loads(NumSectors + DoAlign, nullptr);
// We could create all of the aligned loads, and generate the valigns
// at the location of the first load, but for large load groups, this
// could create highly suboptimal code (there have been groups of 140+
// loads in real code).
// Instead, place the loads/valigns as close to the users as possible.
// In any case we need to have a mapping from the blocks of VSpan (the
// span covered by the pre-existing loads) to ASpan (the span covered
// by the aligned loads). There is a small problem, though: ASpan needs
// to have pointers to the loads/valigns, but we don't have these loads
// because we don't know where to put them yet. We find out by creating
// a section of ASpan that corresponds to values (blocks) from VSpan,
// and checking where the new load should be placed. We need to attach
// this location information to each block in ASpan somehow, so we put
// distincts values for Seg.Val in each ASpan.Blocks[i], and use a map
// to store the location for each Seg.Val.
// The distinct values happen to be Blocks[i].Seg.Val = &Blocks[i],
// which helps with printing ByteSpans without crashing when printing
// Segments with these temporary identifiers in place of Val.
// Populate the blocks first, to avoid reallocations of the vector
// interfering with generating the placeholder addresses.
for (int Index = 0; Index != NumSectors; ++Index)
ASpan.Blocks.emplace_back(nullptr, ScLen, Index * ScLen);
for (int Index = 0; Index != NumSectors; ++Index) {
ASpan.Blocks[Index].Seg.Val =
reinterpret_cast<Value *>(&ASpan.Blocks[Index]);
}
// Multiple values from VSpan can map to the same value in ASpan. Since we
// try to create loads lazily, we need to find the earliest use for each
// value from ASpan.
DenseMap<void *, Instruction *> EarliestUser;
auto isEarlier = [](Instruction *A, Instruction *B) {
if (B == nullptr)
return true;
if (A == nullptr)
return false;
assert(A->getParent() == B->getParent());
return A->comesBefore(B);
};
auto earliestUser = [&](const auto &Uses) {
Instruction *User = nullptr;
for (const Use &U : Uses) {
auto *I = dyn_cast<Instruction>(U.getUser());
assert(I != nullptr && "Load used in a non-instruction?");
// Make sure we only consider users in this block, but we need
// to remember if there were users outside the block too. This is
// because if no users are found, aligned loads will not be created.
if (I->getParent() == BaseBlock) {
if (!isa<PHINode>(I))
User = std::min(User, I, isEarlier);
} else {
User = std::min(User, BaseBlock->getTerminator(), isEarlier);
}
}
return User;
};
for (const ByteSpan::Block &B : VSpan) {
ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size);
for (const ByteSpan::Block &S : ASection) {
EarliestUser[S.Seg.Val] = std::min(
EarliestUser[S.Seg.Val], earliestUser(B.Seg.Val->uses()), isEarlier);
}
}
LLVM_DEBUG({
dbgs() << "ASpan:\n" << ASpan << '\n';
dbgs() << "Earliest users of ASpan:\n";
for (auto &[Val, User] : EarliestUser) {
dbgs() << Val << "\n ->" << *User << '\n';
}
});
auto createLoad = [&](IRBuilderBase &Builder, const ByteSpan &VSpan,
int Index, bool MakePred) {
Value *Ptr =
createAdjustedPointer(Builder, AlignAddr, SecTy, Index * ScLen);
Value *Predicate =
MakePred ? makeTestIfUnaligned(Builder, AlignVal, ScLen) : nullptr;
// If vector shifting is potentially needed, accumulate metadata
// from source sections of twice the load width.
int Start = (Index - DoAlign) * ScLen;
int Width = (1 + DoAlign) * ScLen;
return this->createLoad(Builder, SecTy, Ptr, Predicate, ScLen, True, Undef,
VSpan.section(Start, Width).values());
};
auto moveBefore = [this](Instruction *In, Instruction *To) {
// Move In and its upward dependencies to before To.
assert(In->getParent() == To->getParent());
DepList Deps = getUpwardDeps(In, To);
In->moveBefore(To);
// DepList is sorted with respect to positions in the basic block.
InstMap Map = cloneBefore(In, Deps);
for (auto [Old, New] : Map)
In->replaceUsesOfWith(Old, New);
};
// Generate necessary loads at appropriate locations.
LLVM_DEBUG(dbgs() << "Creating loads for ASpan sectors\n");
for (int Index = 0; Index != NumSectors + 1; ++Index) {
// In ASpan, each block will be either a single aligned load, or a
// valign of a pair of loads. In the latter case, an aligned load j
// will belong to the current valign, and the one in the previous
// block (for j > 0).
// Place the load at a location which will dominate the valign, assuming
// the valign will be placed right before the earliest user.
Instruction *PrevAt =
DoAlign && Index > 0 ? EarliestUser[&ASpan[Index - 1]] : nullptr;
Instruction *ThisAt =
Index < NumSectors ? EarliestUser[&ASpan[Index]] : nullptr;
if (auto *Where = std::min(PrevAt, ThisAt, isEarlier)) {
Builder.SetInsertPoint(Where);
Loads[Index] =
createLoad(Builder, VSpan, Index, DoAlign && Index == NumSectors);
// We know it's safe to put the load at BasePos, but we'd prefer to put
// it at "Where". To see if the load is safe to be placed at Where, put
// it there first and then check if it's safe to move it to BasePos.
// If not, then the load needs to be placed at BasePos.
// We can't do this check proactively because we need the load to exist
// in order to check legality.
if (auto *Load = dyn_cast<Instruction>(Loads[Index])) {
if (!HVC.isSafeToMoveBeforeInBB(*Load, BasePos))
moveBefore(Load, &*BasePos);
}
LLVM_DEBUG(dbgs() << "Loads[" << Index << "]:" << *Loads[Index] << '\n');
}
}
// Generate valigns if needed, and fill in proper values in ASpan
LLVM_DEBUG(dbgs() << "Creating values for ASpan sectors\n");
for (int Index = 0; Index != NumSectors; ++Index) {
ASpan[Index].Seg.Val = nullptr;
if (auto *Where = EarliestUser[&ASpan[Index]]) {
Builder.SetInsertPoint(Where);
Value *Val = Loads[Index];
assert(Val != nullptr);
if (DoAlign) {
Value *NextLoad = Loads[Index + 1];
assert(NextLoad != nullptr);
Val = HVC.vralignb(Builder, Val, NextLoad, AlignVal);
}
ASpan[Index].Seg.Val = Val;
LLVM_DEBUG(dbgs() << "ASpan[" << Index << "]:" << *Val << '\n');
}
}
for (const ByteSpan::Block &B : VSpan) {
ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos);
Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size));
Builder.SetInsertPoint(cast<Instruction>(B.Seg.Val));
// We're generating a reduction, where each instruction depends on
// the previous one, so we need to order them according to the position
// of their inputs in the code.
std::vector<ByteSpan::Block *> ABlocks;
for (ByteSpan::Block &S : ASection) {
if (S.Seg.Val != nullptr)
ABlocks.push_back(&S);
}
llvm::sort(ABlocks,
[&](const ByteSpan::Block *A, const ByteSpan::Block *B) {
return isEarlier(cast<Instruction>(A->Seg.Val),
cast<Instruction>(B->Seg.Val));
});
for (ByteSpan::Block *S : ABlocks) {
// The processing of the data loaded by the aligned loads
// needs to be inserted after the data is available.
Instruction *SegI = cast<Instruction>(S->Seg.Val);
Builder.SetInsertPoint(&*std::next(SegI->getIterator()));
Value *Pay = HVC.vbytes(Builder, getPayload(S->Seg.Val));
Accum =
HVC.insertb(Builder, Accum, Pay, S->Seg.Start, S->Seg.Size, S->Pos);
}
// Instead of casting everything to bytes for the vselect, cast to the
// original value type. This will avoid complications with casting masks.
// For example, in cases when the original mask applied to i32, it could
// be converted to a mask applicable to i8 via pred_typecast intrinsic,
// but if the mask is not exactly of HVX length, extra handling would be
// needed to make it work.
Type *ValTy = getPayload(B.Seg.Val)->getType();
Value *Cast = Builder.CreateBitCast(Accum, ValTy, "cst");
Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast,
getPassThrough(B.Seg.Val), "sel");
B.Seg.Val->replaceAllUsesWith(Sel);
}
}
auto AlignVectors::realignStoreGroup(IRBuilderBase &Builder,
const ByteSpan &VSpan, int ScLen,
Value *AlignVal, Value *AlignAddr) const
-> void {
LLVM_DEBUG(dbgs() << __func__ << "\n");
Type *SecTy = HVC.getByteTy(ScLen);
int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
bool DoAlign = !HVC.isZero(AlignVal);
// Stores.
ByteSpan ASpanV, ASpanM;
// Return a vector value corresponding to the input value Val:
// either <1 x Val> for scalar Val, or Val itself for vector Val.
auto MakeVec = [](IRBuilderBase &Builder, Value *Val) -> Value * {
Type *Ty = Val->getType();
if (Ty->isVectorTy())
return Val;
auto *VecTy = VectorType::get(Ty, 1, /*Scalable=*/false);
return Builder.CreateBitCast(Val, VecTy, "cst");
};
// Create an extra "undef" sector at the beginning and at the end.
// They will be used as the left/right filler in the vlalign step.
for (int Index = (DoAlign ? -1 : 0); Index != NumSectors + DoAlign; ++Index) {
// For stores, the size of each section is an aligned vector length.
// Adjust the store offsets relative to the section start offset.
ByteSpan VSection =
VSpan.section(Index * ScLen, ScLen).shift(-Index * ScLen);
Value *Undef = UndefValue::get(SecTy);
Value *Zero = HVC.getNullValue(SecTy);
Value *AccumV = Undef;
Value *AccumM = Zero;
for (ByteSpan::Block &S : VSection) {
Value *Pay = getPayload(S.Seg.Val);
Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)),
Pay->getType(), HVC.getByteTy());
Value *PartM = HVC.insertb(Builder, Zero, HVC.vbytes(Builder, Mask),
S.Seg.Start, S.Seg.Size, S.Pos);
AccumM = Builder.CreateOr(AccumM, PartM);
Value *PartV = HVC.insertb(Builder, Undef, HVC.vbytes(Builder, Pay),
S.Seg.Start, S.Seg.Size, S.Pos);
AccumV = Builder.CreateSelect(
Builder.CreateICmp(CmpInst::ICMP_NE, PartM, Zero), PartV, AccumV);
}
ASpanV.Blocks.emplace_back(AccumV, ScLen, Index * ScLen);
ASpanM.Blocks.emplace_back(AccumM, ScLen, Index * ScLen);
}
LLVM_DEBUG({
dbgs() << "ASpanV before vlalign:\n" << ASpanV << '\n';
dbgs() << "ASpanM before vlalign:\n" << ASpanM << '\n';
});
// vlalign
if (DoAlign) {
for (int Index = 1; Index != NumSectors + 2; ++Index) {
Value *PrevV = ASpanV[Index - 1].Seg.Val, *ThisV = ASpanV[Index].Seg.Val;
Value *PrevM = ASpanM[Index - 1].Seg.Val, *ThisM = ASpanM[Index].Seg.Val;
assert(isSectorTy(PrevV->getType()) && isSectorTy(PrevM->getType()));
ASpanV[Index - 1].Seg.Val = HVC.vlalignb(Builder, PrevV, ThisV, AlignVal);
ASpanM[Index - 1].Seg.Val = HVC.vlalignb(Builder, PrevM, ThisM, AlignVal);
}
}
LLVM_DEBUG({
dbgs() << "ASpanV after vlalign:\n" << ASpanV << '\n';
dbgs() << "ASpanM after vlalign:\n" << ASpanM << '\n';
});
auto createStore = [&](IRBuilderBase &Builder, const ByteSpan &ASpanV,
const ByteSpan &ASpanM, int Index, bool MakePred) {
Value *Val = ASpanV[Index].Seg.Val;
Value *Mask = ASpanM[Index].Seg.Val; // bytes
if (HVC.isUndef(Val) || HVC.isZero(Mask))
return;
Value *Ptr =
createAdjustedPointer(Builder, AlignAddr, SecTy, Index * ScLen);
Value *Predicate =
MakePred ? makeTestIfUnaligned(Builder, AlignVal, ScLen) : nullptr;
// If vector shifting is potentially needed, accumulate metadata
// from source sections of twice the store width.
int Start = (Index - DoAlign) * ScLen;
int Width = (1 + DoAlign) * ScLen;
this->createStore(Builder, Val, Ptr, Predicate, ScLen,
HVC.vlsb(Builder, Mask),
VSpan.section(Start, Width).values());
};
for (int Index = 0; Index != NumSectors + DoAlign; ++Index) {
createStore(Builder, ASpanV, ASpanM, Index, DoAlign && Index == NumSectors);
}
}
auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool {
LLVM_DEBUG(dbgs() << "Realigning group:\n" << Move << '\n');
// TODO: Needs support for masked loads/stores of "scalar" vectors.
if (!Move.IsHvx)
return false;
// Return the element with the maximum alignment from Range,
// where GetValue obtains the value to compare from an element.
auto getMaxOf = [](auto Range, auto GetValue) {
return *std::max_element(
Range.begin(), Range.end(),
[&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); });
};
const AddrList &BaseInfos = AddrGroups.at(Move.Base);
// Conceptually, there is a vector of N bytes covering the addresses
// starting from the minimum offset (i.e. Base.Addr+Start). This vector
// represents a contiguous memory region that spans all accessed memory
// locations.
// The correspondence between loaded or stored values will be expressed
// in terms of this vector. For example, the 0th element of the vector
// from the Base address info will start at byte Start from the beginning
// of this conceptual vector.
//
// This vector will be loaded/stored starting at the nearest down-aligned
// address and the amount od the down-alignment will be AlignVal:
// valign(load_vector(align_down(Base+Start)), AlignVal)
std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end());
AddrList MoveInfos;
llvm::copy_if(
BaseInfos, std::back_inserter(MoveInfos),
[&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); });
// Maximum alignment present in the whole address group.
const AddrInfo &WithMaxAlign =
getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.HaveAlign; });
Align MaxGiven = WithMaxAlign.HaveAlign;
// Minimum alignment present in the move address group.
const AddrInfo &WithMinOffset =
getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; });
const AddrInfo &WithMaxNeeded =
getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; });
Align MinNeeded = WithMaxNeeded.NeedAlign;
// Set the builder's insertion point right before the load group, or
// immediately after the store group. (Instructions in a store group are
// listed in reverse order.)
Instruction *InsertAt = Move.Main.front();
if (!Move.IsLoad) {
// There should be a terminator (which store isn't, but check anyways).
assert(InsertAt->getIterator() != InsertAt->getParent()->end());
InsertAt = &*std::next(InsertAt->getIterator());
}
IRBuilder Builder(InsertAt->getParent(), InsertAt->getIterator(),
InstSimplifyFolder(HVC.DL));
Value *AlignAddr = nullptr; // Actual aligned address.
Value *AlignVal = nullptr; // Right-shift amount (for valign).
if (MinNeeded <= MaxGiven) {
int Start = WithMinOffset.Offset;
int OffAtMax = WithMaxAlign.Offset;
// Shift the offset of the maximally aligned instruction (OffAtMax)
// back by just enough multiples of the required alignment to cover the
// distance from Start to OffAtMax.
// Calculate the address adjustment amount based on the address with the
// maximum alignment. This is to allow a simple gep instruction instead
// of potential bitcasts to i8*.
int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value());
AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr,
WithMaxAlign.ValTy, Adjust, Move.Clones);
int Diff = Start - (OffAtMax + Adjust);
AlignVal = HVC.getConstInt(Diff);
assert(Diff >= 0);
assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value());
} else {
// WithMinOffset is the lowest address in the group,
// WithMinOffset.Addr = Base+Start.
// Align instructions for both HVX (V6_valign) and scalar (S2_valignrb)
// mask off unnecessary bits, so it's ok to just the original pointer as
// the alignment amount.
// Do an explicit down-alignment of the address to avoid creating an
// aligned instruction with an address that is not really aligned.
AlignAddr =
createAlignedPointer(Builder, WithMinOffset.Addr, WithMinOffset.ValTy,
MinNeeded.value(), Move.Clones);
AlignVal =
Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy(), "pti");
if (auto *I = dyn_cast<Instruction>(AlignVal)) {
for (auto [Old, New] : Move.Clones)
I->replaceUsesOfWith(Old, New);
}
}
ByteSpan VSpan;
for (const AddrInfo &AI : MoveInfos) {
VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy),
AI.Offset - WithMinOffset.Offset);
}
// The aligned loads/stores will use blocks that are either scalars,
// or HVX vectors. Let "sector" be the unified term for such a block.
// blend(scalar, vector) -> sector...
int ScLen = Move.IsHvx ? HVC.HST.getVectorLength()
: std::max<int>(MinNeeded.value(), 4);
assert(!Move.IsHvx || ScLen == 64 || ScLen == 128);
assert(Move.IsHvx || ScLen == 4 || ScLen == 8);
LLVM_DEBUG({
dbgs() << "ScLen: " << ScLen << "\n";
dbgs() << "AlignVal:" << *AlignVal << "\n";
dbgs() << "AlignAddr:" << *AlignAddr << "\n";
dbgs() << "VSpan:\n" << VSpan << '\n';
});
if (Move.IsLoad)
realignLoadGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr);
else
realignStoreGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr);
for (auto *Inst : Move.Main)
Inst->eraseFromParent();
return true;
}
auto AlignVectors::makeTestIfUnaligned(IRBuilderBase &Builder, Value *AlignVal,
int Alignment) const -> Value * {
auto *AlignTy = AlignVal->getType();
Value *And = Builder.CreateAnd(
AlignVal, ConstantInt::get(AlignTy, Alignment - 1), "and");
Value *Zero = ConstantInt::get(AlignTy, 0);
return Builder.CreateICmpNE(And, Zero, "isz");
}
auto AlignVectors::isSectorTy(Type *Ty) const -> bool {
if (!HVC.isByteVecTy(Ty))
return false;
int Size = HVC.getSizeOf(Ty);
if (HVC.HST.isTypeForHVX(Ty))
return Size == static_cast<int>(HVC.HST.getVectorLength());
return Size == 4 || Size == 8;
}
auto AlignVectors::run() -> bool {
LLVM_DEBUG(dbgs() << "Running HVC::AlignVectors on " << HVC.F.getName()
<< '\n');
if (!createAddressGroups())
return false;
LLVM_DEBUG({
dbgs() << "Address groups(" << AddrGroups.size() << "):\n";
for (auto &[In, AL] : AddrGroups) {
for (const AddrInfo &AI : AL)
dbgs() << "---\n" << AI << '\n';
}
});
bool Changed = false;
MoveList LoadGroups, StoreGroups;
for (auto &G : AddrGroups) {
llvm::append_range(LoadGroups, createLoadGroups(G.second));
llvm::append_range(StoreGroups, createStoreGroups(G.second));
}
LLVM_DEBUG({
dbgs() << "\nLoad groups(" << LoadGroups.size() << "):\n";
for (const MoveGroup &G : LoadGroups)
dbgs() << G << "\n";
dbgs() << "Store groups(" << StoreGroups.size() << "):\n";
for (const MoveGroup &G : StoreGroups)
dbgs() << G << "\n";
});
// Cumulative limit on the number of groups.
unsigned CountLimit = VAGroupCountLimit;
if (CountLimit == 0)
return false;
if (LoadGroups.size() > CountLimit) {
LoadGroups.resize(CountLimit);
StoreGroups.clear();
} else {
unsigned StoreLimit = CountLimit - LoadGroups.size();
if (StoreGroups.size() > StoreLimit)
StoreGroups.resize(StoreLimit);
}
for (auto &M : LoadGroups)
Changed |= moveTogether(M);
for (auto &M : StoreGroups)
Changed |= moveTogether(M);
LLVM_DEBUG(dbgs() << "After moveTogether:\n" << HVC.F);
for (auto &M : LoadGroups)
Changed |= realignGroup(M);
for (auto &M : StoreGroups)
Changed |= realignGroup(M);
return Changed;
}
// --- End AlignVectors
// --- Begin HvxIdioms
auto HvxIdioms::getNumSignificantBits(Value *V, Instruction *In) const
-> std::pair<unsigned, Signedness> {
unsigned Bits = HVC.getNumSignificantBits(V, In);
// The significant bits are calculated including the sign bit. This may
// add an extra bit for zero-extended values, e.g. (zext i32 to i64) may
// result in 33 significant bits. To avoid extra words, skip the extra
// sign bit, but keep information that the value is to be treated as
// unsigned.
KnownBits Known = HVC.getKnownBits(V, In);
Signedness Sign = Signed;
unsigned NumToTest = 0; // Number of bits used in test for unsignedness.
if (isPowerOf2_32(Bits))
NumToTest = Bits;
else if (Bits > 1 && isPowerOf2_32(Bits - 1))
NumToTest = Bits - 1;
if (NumToTest != 0 && Known.Zero.ashr(NumToTest).isAllOnes()) {
Sign = Unsigned;
Bits = NumToTest;
}
// If the top bit of the nearest power-of-2 is zero, this value is
// positive. It could be treated as either signed or unsigned.
if (unsigned Pow2 = PowerOf2Ceil(Bits); Pow2 != Bits) {
if (Known.Zero.ashr(Pow2 - 1).isAllOnes())
Sign = Positive;
}
return {Bits, Sign};
}
auto HvxIdioms::canonSgn(SValue X, SValue Y) const
-> std::pair<SValue, SValue> {
// Canonicalize the signedness of X and Y, so that the result is one of:
// S, S
// U/P, S
// U/P, U/P
if (X.Sgn == Signed && Y.Sgn != Signed)
std::swap(X, Y);
return {X, Y};
}
// Match
// (X * Y) [>> N], or
// ((X * Y) + (1 << M)) >> N
auto HvxIdioms::matchFxpMul(Instruction &In) const -> std::optional<FxpOp> {
using namespace PatternMatch;
auto *Ty = In.getType();
if (!Ty->isVectorTy() || !Ty->getScalarType()->isIntegerTy())
return std::nullopt;
unsigned Width = cast<IntegerType>(Ty->getScalarType())->getBitWidth();
FxpOp Op;
Value *Exp = &In;
// Fixed-point multiplication is always shifted right (except when the
// fraction is 0 bits).
auto m_Shr = [](auto &&V, auto &&S) {
return m_CombineOr(m_LShr(V, S), m_AShr(V, S));
};
const APInt *Qn = nullptr;
if (Value * T; match(Exp, m_Shr(m_Value(T), m_APInt(Qn)))) {
Op.Frac = Qn->getZExtValue();
Exp = T;
} else {
Op.Frac = 0;
}
if (Op.Frac > Width)
return std::nullopt;
// Check if there is rounding added.
const APInt *C = nullptr;
if (Value * T; Op.Frac > 0 && match(Exp, m_Add(m_Value(T), m_APInt(C)))) {
uint64_t CV = C->getZExtValue();
if (CV != 0 && !isPowerOf2_64(CV))
return std::nullopt;
if (CV != 0)
Op.RoundAt = Log2_64(CV);
Exp = T;
}
// Check if the rest is a multiplication.
if (match(Exp, m_Mul(m_Value(Op.X.Val), m_Value(Op.Y.Val)))) {
Op.Opcode = Instruction::Mul;
// FIXME: The information below is recomputed.
Op.X.Sgn = getNumSignificantBits(Op.X.Val, &In).second;
Op.Y.Sgn = getNumSignificantBits(Op.Y.Val, &In).second;
Op.ResTy = cast<VectorType>(Ty);
return Op;
}
return std::nullopt;
}
auto HvxIdioms::processFxpMul(Instruction &In, const FxpOp &Op) const
-> Value * {
assert(Op.X.Val->getType() == Op.Y.Val->getType());
auto *VecTy = dyn_cast<VectorType>(Op.X.Val->getType());
if (VecTy == nullptr)
return nullptr;
auto *ElemTy = cast<IntegerType>(VecTy->getElementType());
unsigned ElemWidth = ElemTy->getBitWidth();
// TODO: This can be relaxed after legalization is done pre-isel.
if ((HVC.length(VecTy) * ElemWidth) % (8 * HVC.HST.getVectorLength()) != 0)
return nullptr;
// There are no special intrinsics that should be used for multiplying
// signed 8-bit values, so just skip them. Normal codegen should handle
// this just fine.
if (ElemWidth <= 8)
return nullptr;
// Similarly, if this is just a multiplication that can be handled without
// intervention, then leave it alone.
if (ElemWidth <= 32 && Op.Frac == 0)
return nullptr;
auto [BitsX, SignX] = getNumSignificantBits(Op.X.Val, &In);
auto [BitsY, SignY] = getNumSignificantBits(Op.Y.Val, &In);
// TODO: Add multiplication of vectors by scalar registers (up to 4 bytes).
Value *X = Op.X.Val, *Y = Op.Y.Val;
IRBuilder Builder(In.getParent(), In.getIterator(),
InstSimplifyFolder(HVC.DL));
auto roundUpWidth = [](unsigned Width) -> unsigned {
if (Width <= 32 && !isPowerOf2_32(Width)) {
// If the element width is not a power of 2, round it up
// to the next one. Do this for widths not exceeding 32.
return PowerOf2Ceil(Width);
}
if (Width > 32 && Width % 32 != 0) {
// For wider elements, round it up to the multiple of 32.
return alignTo(Width, 32u);
}
return Width;
};
BitsX = roundUpWidth(BitsX);
BitsY = roundUpWidth(BitsY);
// For elementwise multiplication vectors must have the same lengths, so
// resize the elements of both inputs to the same width, the max of the
// calculated significant bits.
unsigned Width = std::max(BitsX, BitsY);
auto *ResizeTy = VectorType::get(HVC.getIntTy(Width), VecTy);
if (Width < ElemWidth) {
X = Builder.CreateTrunc(X, ResizeTy, "trn");
Y = Builder.CreateTrunc(Y, ResizeTy, "trn");
} else if (Width > ElemWidth) {
X = SignX == Signed ? Builder.CreateSExt(X, ResizeTy, "sxt")
: Builder.CreateZExt(X, ResizeTy, "zxt");
Y = SignY == Signed ? Builder.CreateSExt(Y, ResizeTy, "sxt")
: Builder.CreateZExt(Y, ResizeTy, "zxt");
};
assert(X->getType() == Y->getType() && X->getType() == ResizeTy);
unsigned VecLen = HVC.length(ResizeTy);
unsigned ChopLen = (8 * HVC.HST.getVectorLength()) / std::min(Width, 32u);
SmallVector<Value *> Results;
FxpOp ChopOp = Op;
ChopOp.ResTy = VectorType::get(Op.ResTy->getElementType(), ChopLen, false);
for (unsigned V = 0; V != VecLen / ChopLen; ++V) {
ChopOp.X.Val = HVC.subvector(Builder, X, V * ChopLen, ChopLen);
ChopOp.Y.Val = HVC.subvector(Builder, Y, V * ChopLen, ChopLen);
Results.push_back(processFxpMulChopped(Builder, In, ChopOp));
if (Results.back() == nullptr)
break;
}
if (Results.empty() || Results.back() == nullptr)
return nullptr;
Value *Cat = HVC.concat(Builder, Results);
Value *Ext = SignX == Signed || SignY == Signed
? Builder.CreateSExt(Cat, VecTy, "sxt")
: Builder.CreateZExt(Cat, VecTy, "zxt");
return Ext;
}
auto HvxIdioms::processFxpMulChopped(IRBuilderBase &Builder, Instruction &In,
const FxpOp &Op) const -> Value * {
assert(Op.X.Val->getType() == Op.Y.Val->getType());
auto *InpTy = cast<VectorType>(Op.X.Val->getType());
unsigned Width = InpTy->getScalarSizeInBits();
bool Rounding = Op.RoundAt.has_value();
if (!Op.RoundAt || *Op.RoundAt == Op.Frac - 1) {
// The fixed-point intrinsics do signed multiplication.
if (Width == Op.Frac + 1 && Op.X.Sgn != Unsigned && Op.Y.Sgn != Unsigned) {
Value *QMul = nullptr;
if (Width == 16) {
QMul = createMulQ15(Builder, Op.X, Op.Y, Rounding);
} else if (Width == 32) {
QMul = createMulQ31(Builder, Op.X, Op.Y, Rounding);
}
if (QMul != nullptr)
return QMul;
}
}
assert(Width >= 32 || isPowerOf2_32(Width)); // Width <= 32 => Width is 2^n
assert(Width < 32 || Width % 32 == 0); // Width > 32 => Width is 32*k
// If Width < 32, then it should really be 16.
if (Width < 32) {
if (Width < 16)
return nullptr;
// Getting here with Op.Frac == 0 isn't wrong, but suboptimal: here we
// generate a full precision products, which is unnecessary if there is
// no shift.
assert(Width == 16);
assert(Op.Frac != 0 && "Unshifted mul should have been skipped");
if (Op.Frac == 16) {
// Multiply high
if (Value *MulH = createMulH16(Builder, Op.X, Op.Y))
return MulH;
}
// Do full-precision multiply and shift.
Value *Prod32 = createMul16(Builder, Op.X, Op.Y);
if (Rounding) {
Value *RoundVal = HVC.getConstSplat(Prod32->getType(), 1 << *Op.RoundAt);
Prod32 = Builder.CreateAdd(Prod32, RoundVal, "add");
}
Value *ShiftAmt = HVC.getConstSplat(Prod32->getType(), Op.Frac);
Value *Shifted = Op.X.Sgn == Signed || Op.Y.Sgn == Signed
? Builder.CreateAShr(Prod32, ShiftAmt, "asr")
: Builder.CreateLShr(Prod32, ShiftAmt, "lsr");
return Builder.CreateTrunc(Shifted, InpTy, "trn");
}
// Width >= 32
// Break up the arguments Op.X and Op.Y into vectors of smaller widths
// in preparation of doing the multiplication by 32-bit parts.
auto WordX = HVC.splitVectorElements(Builder, Op.X.Val, /*ToWidth=*/32);
auto WordY = HVC.splitVectorElements(Builder, Op.Y.Val, /*ToWidth=*/32);
auto WordP = createMulLong(Builder, WordX, Op.X.Sgn, WordY, Op.Y.Sgn);
auto *HvxWordTy = cast<VectorType>(WordP.front()->getType());
// Add the optional rounding to the proper word.
if (Op.RoundAt.has_value()) {
Value *Zero = HVC.getNullValue(WordX[0]->getType());
SmallVector<Value *> RoundV(WordP.size(), Zero);
RoundV[*Op.RoundAt / 32] =
HVC.getConstSplat(HvxWordTy, 1 << (*Op.RoundAt % 32));
WordP = createAddLong(Builder, WordP, RoundV);
}
// createRightShiftLong?
// Shift all products right by Op.Frac.
unsigned SkipWords = Op.Frac / 32;
Constant *ShiftAmt = HVC.getConstSplat(HvxWordTy, Op.Frac % 32);
for (int Dst = 0, End = WordP.size() - SkipWords; Dst != End; ++Dst) {
int Src = Dst + SkipWords;
Value *Lo = WordP[Src];
if (Src + 1 < End) {
Value *Hi = WordP[Src + 1];
WordP[Dst] = Builder.CreateIntrinsic(HvxWordTy, Intrinsic::fshr,
{Hi, Lo, ShiftAmt},
/*FMFSource*/ nullptr, "int");
} else {
// The shift of the most significant word.
WordP[Dst] = Builder.CreateAShr(Lo, ShiftAmt, "asr");
}
}
if (SkipWords != 0)
WordP.resize(WordP.size() - SkipWords);
return HVC.joinVectorElements(Builder, WordP, Op.ResTy);
}
auto HvxIdioms::createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y,
bool Rounding) const -> Value * {
assert(X.Val->getType() == Y.Val->getType());
assert(X.Val->getType()->getScalarType() == HVC.getIntTy(16));
assert(HVC.HST.isHVXVectorType(EVT::getEVT(X.Val->getType(), false)));
// There is no non-rounding intrinsic for i16.
if (!Rounding || X.Sgn == Unsigned || Y.Sgn == Unsigned)
return nullptr;
auto V6_vmpyhvsrs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhvsrs);
return HVC.createHvxIntrinsic(Builder, V6_vmpyhvsrs, X.Val->getType(),
{X.Val, Y.Val});
}
auto HvxIdioms::createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y,
bool Rounding) const -> Value * {
Type *InpTy = X.Val->getType();
assert(InpTy == Y.Val->getType());
assert(InpTy->getScalarType() == HVC.getIntTy(32));
assert(HVC.HST.isHVXVectorType(EVT::getEVT(InpTy, false)));
if (X.Sgn == Unsigned || Y.Sgn == Unsigned)
return nullptr;
auto V6_vmpyewuh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyewuh);
auto V6_vmpyo_acc = Rounding
? HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_rnd_sacc)
: HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_sacc);
Value *V1 =
HVC.createHvxIntrinsic(Builder, V6_vmpyewuh, InpTy, {X.Val, Y.Val});
return HVC.createHvxIntrinsic(Builder, V6_vmpyo_acc, InpTy,
{V1, X.Val, Y.Val});
}
auto HvxIdioms::createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y,
Value *CarryIn) const
-> std::pair<Value *, Value *> {
assert(X->getType() == Y->getType());
auto VecTy = cast<VectorType>(X->getType());
if (VecTy == HvxI32Ty && HVC.HST.useHVXV62Ops()) {
SmallVector<Value *> Args = {X, Y};
Intrinsic::ID AddCarry;
if (CarryIn == nullptr && HVC.HST.useHVXV66Ops()) {
AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarryo);
} else {
AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarry);
if (CarryIn == nullptr)
CarryIn = HVC.getNullValue(HVC.getBoolTy(HVC.length(VecTy)));
Args.push_back(CarryIn);
}
Value *Ret = HVC.createHvxIntrinsic(Builder, AddCarry,
/*RetTy=*/nullptr, Args);
Value *Result = Builder.CreateExtractValue(Ret, {0}, "ext");
Value *CarryOut = Builder.CreateExtractValue(Ret, {1}, "ext");
return {Result, CarryOut};
}
// In other cases, do a regular add, and unsigned compare-less-than.
// The carry-out can originate in two places: adding the carry-in or adding
// the two input values.
Value *Result1 = X; // Result1 = X + CarryIn
if (CarryIn != nullptr) {
unsigned Width = VecTy->getScalarSizeInBits();
uint32_t Mask = 1;
if (Width < 32) {
for (unsigned i = 0, e = 32 / Width; i != e; ++i)
Mask = (Mask << Width) | 1;
}
auto V6_vandqrt = HVC.HST.getIntrinsicId(Hexagon::V6_vandqrt);
Value *ValueIn =
HVC.createHvxIntrinsic(Builder, V6_vandqrt, /*RetTy=*/nullptr,
{CarryIn, HVC.getConstInt(Mask)});
Result1 = Builder.CreateAdd(X, ValueIn, "add");
}
Value *CarryOut1 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result1, X, "cmp");
Value *Result2 = Builder.CreateAdd(Result1, Y, "add");
Value *CarryOut2 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result2, Y, "cmp");
return {Result2, Builder.CreateOr(CarryOut1, CarryOut2, "orb")};
}
auto HvxIdioms::createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const
-> Value * {
Intrinsic::ID V6_vmpyh = 0;
std::tie(X, Y) = canonSgn(X, Y);
if (X.Sgn == Signed) {
V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhv);
} else if (Y.Sgn == Signed) {
// In vmpyhus the second operand is unsigned
V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhus);
} else {
V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhv);
}
// i16*i16 -> i32 / interleaved
Value *P =
HVC.createHvxIntrinsic(Builder, V6_vmpyh, HvxP32Ty, {Y.Val, X.Val});
// Deinterleave
return HVC.vshuff(Builder, HVC.sublo(Builder, P), HVC.subhi(Builder, P));
}
auto HvxIdioms::createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const
-> Value * {
Type *HvxI16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/false);
if (HVC.HST.useHVXV69Ops()) {
if (X.Sgn != Signed && Y.Sgn != Signed) {
auto V6_vmpyuhvs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhvs);
return HVC.createHvxIntrinsic(Builder, V6_vmpyuhvs, HvxI16Ty,
{X.Val, Y.Val});
}
}
Type *HvxP16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/true);
Value *Pair16 =
Builder.CreateBitCast(createMul16(Builder, X, Y), HvxP16Ty, "cst");
unsigned Len = HVC.length(HvxP16Ty) / 2;
SmallVector<int, 128> PickOdd(Len);
for (int i = 0; i != static_cast<int>(Len); ++i)
PickOdd[i] = 2 * i + 1;
return Builder.CreateShuffleVector(
HVC.sublo(Builder, Pair16), HVC.subhi(Builder, Pair16), PickOdd, "shf");
}
auto HvxIdioms::createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const
-> std::pair<Value *, Value *> {
assert(X.Val->getType() == Y.Val->getType());
assert(X.Val->getType() == HvxI32Ty);
Intrinsic::ID V6_vmpy_parts;
std::tie(X, Y) = canonSgn(X, Y);
if (X.Sgn == Signed) {
V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyss_parts;
} else if (Y.Sgn == Signed) {
V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyus_parts;
} else {
V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyuu_parts;
}
Value *Parts = HVC.createHvxIntrinsic(Builder, V6_vmpy_parts, nullptr,
{X.Val, Y.Val}, {HvxI32Ty});
Value *Hi = Builder.CreateExtractValue(Parts, {0}, "ext");
Value *Lo = Builder.CreateExtractValue(Parts, {1}, "ext");
return {Lo, Hi};
}
auto HvxIdioms::createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
ArrayRef<Value *> WordY) const
-> SmallVector<Value *> {
assert(WordX.size() == WordY.size());
unsigned Idx = 0, Length = WordX.size();
SmallVector<Value *> Sum(Length);
while (Idx != Length) {
if (HVC.isZero(WordX[Idx]))
Sum[Idx] = WordY[Idx];
else if (HVC.isZero(WordY[Idx]))
Sum[Idx] = WordX[Idx];
else
break;
++Idx;
}
Value *Carry = nullptr;
for (; Idx != Length; ++Idx) {
std::tie(Sum[Idx], Carry) =
createAddCarry(Builder, WordX[Idx], WordY[Idx], Carry);
}
// This drops the final carry beyond the highest word.
return Sum;
}
auto HvxIdioms::createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
Signedness SgnX, ArrayRef<Value *> WordY,
Signedness SgnY) const -> SmallVector<Value *> {
SmallVector<SmallVector<Value *>> Products(WordX.size() + WordY.size());
// WordX[i] * WordY[j] produces words i+j and i+j+1 of the results,
// that is halves 2(i+j), 2(i+j)+1, 2(i+j)+2, 2(i+j)+3.
for (int i = 0, e = WordX.size(); i != e; ++i) {
for (int j = 0, f = WordY.size(); j != f; ++j) {
// Check the 4 halves that this multiplication can generate.
Signedness SX = (i + 1 == e) ? SgnX : Unsigned;
Signedness SY = (j + 1 == f) ? SgnY : Unsigned;
auto [Lo, Hi] = createMul32(Builder, {WordX[i], SX}, {WordY[j], SY});
Products[i + j + 0].push_back(Lo);
Products[i + j + 1].push_back(Hi);
}
}
Value *Zero = HVC.getNullValue(WordX[0]->getType());
auto pop_back_or_zero = [Zero](auto &Vector) -> Value * {
if (Vector.empty())
return Zero;
auto Last = Vector.back();
Vector.pop_back();
return Last;
};
for (int i = 0, e = Products.size(); i != e; ++i) {
while (Products[i].size() > 1) {
Value *Carry = nullptr; // no carry-in
for (int j = i; j != e; ++j) {
auto &ProdJ = Products[j];
auto [Sum, CarryOut] = createAddCarry(Builder, pop_back_or_zero(ProdJ),
pop_back_or_zero(ProdJ), Carry);
ProdJ.insert(ProdJ.begin(), Sum);
Carry = CarryOut;
}
}
}
SmallVector<Value *> WordP;
for (auto &P : Products) {
assert(P.size() == 1 && "Should have been added together");
WordP.push_back(P.front());
}
return WordP;
}
auto HvxIdioms::run() -> bool {
bool Changed = false;
for (BasicBlock &B : HVC.F) {
for (auto It = B.rbegin(); It != B.rend(); ++It) {
if (auto Fxm = matchFxpMul(*It)) {
Value *New = processFxpMul(*It, *Fxm);
// Always report "changed" for now.
Changed = true;
if (!New)
continue;
bool StartOver = !isa<Instruction>(New);
It->replaceAllUsesWith(New);
RecursivelyDeleteTriviallyDeadInstructions(&*It, &HVC.TLI);
It = StartOver ? B.rbegin()
: cast<Instruction>(New)->getReverseIterator();
Changed = true;
}
}
}
return Changed;
}
// --- End HvxIdioms
auto HexagonVectorCombine::run() -> bool {
if (DumpModule)
dbgs() << "Module before HexagonVectorCombine\n" << *F.getParent();
bool Changed = false;
if (HST.useHVXOps()) {
if (VAEnabled)
Changed |= AlignVectors(*this).run();
if (VIEnabled)
Changed |= HvxIdioms(*this).run();
}
if (DumpModule) {
dbgs() << "Module " << (Changed ? "(modified)" : "(unchanged)")
<< " after HexagonVectorCombine\n"
<< *F.getParent();
}
return Changed;
}
auto HexagonVectorCombine::getIntTy(unsigned Width) const -> IntegerType * {
return IntegerType::get(F.getContext(), Width);
}
auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * {
assert(ElemCount >= 0);
IntegerType *ByteTy = Type::getInt8Ty(F.getContext());
if (ElemCount == 0)
return ByteTy;
return VectorType::get(ByteTy, ElemCount, /*Scalable=*/false);
}
auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * {
assert(ElemCount >= 0);
IntegerType *BoolTy = Type::getInt1Ty(F.getContext());
if (ElemCount == 0)
return BoolTy;
return VectorType::get(BoolTy, ElemCount, /*Scalable=*/false);
}
auto HexagonVectorCombine::getConstInt(int Val, unsigned Width) const
-> ConstantInt * {
return ConstantInt::getSigned(getIntTy(Width), Val);
}
auto HexagonVectorCombine::isZero(const Value *Val) const -> bool {
if (auto *C = dyn_cast<Constant>(Val))
return C->isZeroValue();
return false;
}
auto HexagonVectorCombine::getIntValue(const Value *Val) const
-> std::optional<APInt> {
if (auto *CI = dyn_cast<ConstantInt>(Val))
return CI->getValue();
return std::nullopt;
}
auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool {
return isa<UndefValue>(Val);
}
auto HexagonVectorCombine::isTrue(const Value *Val) const -> bool {
return Val == ConstantInt::getTrue(Val->getType());
}
auto HexagonVectorCombine::isFalse(const Value *Val) const -> bool {
return isZero(Val);
}
auto HexagonVectorCombine::getHvxTy(Type *ElemTy, bool Pair) const
-> VectorType * {
EVT ETy = EVT::getEVT(ElemTy, false);
assert(ETy.isSimple() && "Invalid HVX element type");
// Do not allow boolean types here: they don't have a fixed length.
assert(HST.isHVXElementType(ETy.getSimpleVT(), /*IncludeBool=*/false) &&
"Invalid HVX element type");
unsigned HwLen = HST.getVectorLength();
unsigned NumElems = (8 * HwLen) / ETy.getSizeInBits();
return VectorType::get(ElemTy, Pair ? 2 * NumElems : NumElems,
/*Scalable=*/false);
}
auto HexagonVectorCombine::getSizeOf(const Value *Val, SizeKind Kind) const
-> int {
return getSizeOf(Val->getType(), Kind);
}
auto HexagonVectorCombine::getSizeOf(const Type *Ty, SizeKind Kind) const
-> int {
auto *NcTy = const_cast<Type *>(Ty);
switch (Kind) {
case Store:
return DL.getTypeStoreSize(NcTy).getFixedValue();
case Alloc:
return DL.getTypeAllocSize(NcTy).getFixedValue();
}
llvm_unreachable("Unhandled SizeKind enum");
}
auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int {
// The actual type may be shorter than the HVX vector, so determine
// the alignment based on subtarget info.
if (HST.isTypeForHVX(Ty))
return HST.getVectorLength();
return DL.getABITypeAlign(Ty).value();
}
auto HexagonVectorCombine::length(Value *Val) const -> size_t {
return length(Val->getType());
}
auto HexagonVectorCombine::length(Type *Ty) const -> size_t {
auto *VecTy = dyn_cast<VectorType>(Ty);
assert(VecTy && "Must be a vector type");
return VecTy->getElementCount().getFixedValue();
}
auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * {
assert(Ty->isIntOrIntVectorTy());
auto Zero = ConstantInt::get(Ty->getScalarType(), 0);
if (auto *VecTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VecTy->getElementCount(), Zero);
return Zero;
}
auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * {
assert(Ty->isIntOrIntVectorTy());
auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1);
if (auto *VecTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VecTy->getElementCount(), Minus1);
return Minus1;
}
auto HexagonVectorCombine::getConstSplat(Type *Ty, int Val) const
-> Constant * {
assert(Ty->isVectorTy());
auto VecTy = cast<VectorType>(Ty);
Type *ElemTy = VecTy->getElementType();
// Add support for floats if needed.
auto *Splat = ConstantVector::getSplat(VecTy->getElementCount(),
ConstantInt::get(ElemTy, Val));
return Splat;
}
auto HexagonVectorCombine::simplify(Value *V) const -> Value * {
if (auto *In = dyn_cast<Instruction>(V)) {
SimplifyQuery Q(DL, &TLI, &DT, &AC, In);
return simplifyInstruction(In, Q);
}
return nullptr;
}
// Insert bytes [Start..Start+Length) of Src into Dst at byte Where.
auto HexagonVectorCombine::insertb(IRBuilderBase &Builder, Value *Dst,
Value *Src, int Start, int Length,
int Where) const -> Value * {
assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType()));
int SrcLen = getSizeOf(Src);
int DstLen = getSizeOf(Dst);
assert(0 <= Start && Start + Length <= SrcLen);
assert(0 <= Where && Where + Length <= DstLen);
int P2Len = PowerOf2Ceil(SrcLen | DstLen);
auto *Undef = UndefValue::get(getByteTy());
Value *P2Src = vresize(Builder, Src, P2Len, Undef);
Value *P2Dst = vresize(Builder, Dst, P2Len, Undef);
SmallVector<int, 256> SMask(P2Len);
for (int i = 0; i != P2Len; ++i) {
// If i is in [Where, Where+Length), pick Src[Start+(i-Where)].
// Otherwise, pick Dst[i];
SMask[i] =
(Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i;
}
Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask, "shf");
return vresize(Builder, P2Insert, DstLen, Undef);
}
auto HexagonVectorCombine::vlalignb(IRBuilderBase &Builder, Value *Lo,
Value *Hi, Value *Amt) const -> Value * {
assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
if (isZero(Amt))
return Hi;
int VecLen = getSizeOf(Hi);
if (auto IntAmt = getIntValue(Amt))
return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(),
VecLen);
if (HST.isTypeForHVX(Hi->getType())) {
assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() &&
"Expecting an exact HVX type");
return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_vlalignb),
Hi->getType(), {Hi, Lo, Amt});
}
if (VecLen == 4) {
Value *Pair = concat(Builder, {Lo, Hi});
Value *Shift =
Builder.CreateLShr(Builder.CreateShl(Pair, Amt, "shl"), 32, "lsr");
Value *Trunc =
Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()), "trn");
return Builder.CreateBitCast(Trunc, Hi->getType(), "cst");
}
if (VecLen == 8) {
Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt, "sub");
return vralignb(Builder, Lo, Hi, Sub);
}
llvm_unreachable("Unexpected vector length");
}
auto HexagonVectorCombine::vralignb(IRBuilderBase &Builder, Value *Lo,
Value *Hi, Value *Amt) const -> Value * {
assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
if (isZero(Amt))
return Lo;
int VecLen = getSizeOf(Lo);
if (auto IntAmt = getIntValue(Amt))
return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen);
if (HST.isTypeForHVX(Lo->getType())) {
assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() &&
"Expecting an exact HVX type");
return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_valignb),
Lo->getType(), {Hi, Lo, Amt});
}
if (VecLen == 4) {
Value *Pair = concat(Builder, {Lo, Hi});
Value *Shift = Builder.CreateLShr(Pair, Amt, "lsr");
Value *Trunc =
Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()), "trn");
return Builder.CreateBitCast(Trunc, Lo->getType(), "cst");
}
if (VecLen == 8) {
Type *Int64Ty = Type::getInt64Ty(F.getContext());
Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty, "cst");
Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty, "cst");
Function *FI = Intrinsic::getDeclaration(F.getParent(),
Intrinsic::hexagon_S2_valignrb);
Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt}, "cup");
return Builder.CreateBitCast(Call, Lo->getType(), "cst");
}
llvm_unreachable("Unexpected vector length");
}
// Concatenates a sequence of vectors of the same type.
auto HexagonVectorCombine::concat(IRBuilderBase &Builder,
ArrayRef<Value *> Vecs) const -> Value * {
assert(!Vecs.empty());
SmallVector<int, 256> SMask;
std::vector<Value *> Work[2];
int ThisW = 0, OtherW = 1;
Work[ThisW].assign(Vecs.begin(), Vecs.end());
while (Work[ThisW].size() > 1) {
auto *Ty = cast<VectorType>(Work[ThisW].front()->getType());
SMask.resize(length(Ty) * 2);
std::iota(SMask.begin(), SMask.end(), 0);
Work[OtherW].clear();
if (Work[ThisW].size() % 2 != 0)
Work[ThisW].push_back(UndefValue::get(Ty));
for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) {
Value *Joined = Builder.CreateShuffleVector(
Work[ThisW][i], Work[ThisW][i + 1], SMask, "shf");
Work[OtherW].push_back(Joined);
}
std::swap(ThisW, OtherW);
}
// Since there may have been some undefs appended to make shuffle operands
// have the same type, perform the last shuffle to only pick the original
// elements.
SMask.resize(Vecs.size() * length(Vecs.front()->getType()));
std::iota(SMask.begin(), SMask.end(), 0);
Value *Total = Work[ThisW].front();
return Builder.CreateShuffleVector(Total, SMask, "shf");
}
auto HexagonVectorCombine::vresize(IRBuilderBase &Builder, Value *Val,
int NewSize, Value *Pad) const -> Value * {
assert(isa<VectorType>(Val->getType()));
auto *ValTy = cast<VectorType>(Val->getType());
assert(ValTy->getElementType() == Pad->getType());
int CurSize = length(ValTy);
if (CurSize == NewSize)
return Val;
// Truncate?
if (CurSize > NewSize)
return getElementRange(Builder, Val, /*Ignored*/ Val, 0, NewSize);
// Extend.
SmallVector<int, 128> SMask(NewSize);
std::iota(SMask.begin(), SMask.begin() + CurSize, 0);
std::fill(SMask.begin() + CurSize, SMask.end(), CurSize);
Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad, "spt");
return Builder.CreateShuffleVector(Val, PadVec, SMask, "shf");
}
auto HexagonVectorCombine::rescale(IRBuilderBase &Builder, Value *Mask,
Type *FromTy, Type *ToTy) const -> Value * {
// Mask is a vector <N x i1>, where each element corresponds to an
// element of FromTy. Remap it so that each element will correspond
// to an element of ToTy.
assert(isa<VectorType>(Mask->getType()));
Type *FromSTy = FromTy->getScalarType();
Type *ToSTy = ToTy->getScalarType();
if (FromSTy == ToSTy)
return Mask;
int FromSize = getSizeOf(FromSTy);
int ToSize = getSizeOf(ToSTy);
assert(FromSize % ToSize == 0 || ToSize % FromSize == 0);
auto *MaskTy = cast<VectorType>(Mask->getType());
int FromCount = length(MaskTy);
int ToCount = (FromCount * FromSize) / ToSize;
assert((FromCount * FromSize) % ToSize == 0);
auto *FromITy = getIntTy(FromSize * 8);
auto *ToITy = getIntTy(ToSize * 8);
// Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> ->
// -> trunc to <M x i1>.
Value *Ext = Builder.CreateSExt(
Mask, VectorType::get(FromITy, FromCount, /*Scalable=*/false), "sxt");
Value *Cast = Builder.CreateBitCast(
Ext, VectorType::get(ToITy, ToCount, /*Scalable=*/false), "cst");
return Builder.CreateTrunc(
Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable=*/false), "trn");
}
// Bitcast to bytes, and return least significant bits.
auto HexagonVectorCombine::vlsb(IRBuilderBase &Builder, Value *Val) const
-> Value * {
Type *ScalarTy = Val->getType()->getScalarType();
if (ScalarTy == getBoolTy())
return Val;
Value *Bytes = vbytes(Builder, Val);
if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType()))
return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy)), "trn");
// If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not
// <1 x i1>.
return Builder.CreateTrunc(Bytes, getBoolTy(), "trn");
}
// Bitcast to bytes for non-bool. For bool, convert i1 -> i8.
auto HexagonVectorCombine::vbytes(IRBuilderBase &Builder, Value *Val) const
-> Value * {
Type *ScalarTy = Val->getType()->getScalarType();
if (ScalarTy == getByteTy())
return Val;
if (ScalarTy != getBoolTy())
return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val)), "cst");
// For bool, return a sext from i1 to i8.
if (auto *VecTy = dyn_cast<VectorType>(Val->getType()))
return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy), "sxt");
return Builder.CreateSExt(Val, getByteTy(), "sxt");
}
auto HexagonVectorCombine::subvector(IRBuilderBase &Builder, Value *Val,
unsigned Start, unsigned Length) const
-> Value * {
assert(Start + Length <= length(Val));
return getElementRange(Builder, Val, /*Ignored*/ Val, Start, Length);
}
auto HexagonVectorCombine::sublo(IRBuilderBase &Builder, Value *Val) const
-> Value * {
size_t Len = length(Val);
assert(Len % 2 == 0 && "Length should be even");
return subvector(Builder, Val, 0, Len / 2);
}
auto HexagonVectorCombine::subhi(IRBuilderBase &Builder, Value *Val) const
-> Value * {
size_t Len = length(Val);
assert(Len % 2 == 0 && "Length should be even");
return subvector(Builder, Val, Len / 2, Len / 2);
}
auto HexagonVectorCombine::vdeal(IRBuilderBase &Builder, Value *Val0,
Value *Val1) const -> Value * {
assert(Val0->getType() == Val1->getType());
int Len = length(Val0);
SmallVector<int, 128> Mask(2 * Len);
for (int i = 0; i != Len; ++i) {
Mask[i] = 2 * i; // Even
Mask[i + Len] = 2 * i + 1; // Odd
}
return Builder.CreateShuffleVector(Val0, Val1, Mask, "shf");
}
auto HexagonVectorCombine::vshuff(IRBuilderBase &Builder, Value *Val0,
Value *Val1) const -> Value * { //
assert(Val0->getType() == Val1->getType());
int Len = length(Val0);
SmallVector<int, 128> Mask(2 * Len);
for (int i = 0; i != Len; ++i) {
Mask[2 * i + 0] = i; // Val0
Mask[2 * i + 1] = i + Len; // Val1
}
return Builder.CreateShuffleVector(Val0, Val1, Mask, "shf");
}
auto HexagonVectorCombine::createHvxIntrinsic(IRBuilderBase &Builder,
Intrinsic::ID IntID, Type *RetTy,
ArrayRef<Value *> Args,
ArrayRef<Type *> ArgTys,
ArrayRef<Value *> MDSources) const
-> Value * {
auto getCast = [&](IRBuilderBase &Builder, Value *Val,
Type *DestTy) -> Value * {
Type *SrcTy = Val->getType();
if (SrcTy == DestTy)
return Val;
// Non-HVX type. It should be a scalar, and it should already have
// a valid type.
assert(HST.isTypeForHVX(SrcTy, /*IncludeBool=*/true));
Type *BoolTy = Type::getInt1Ty(F.getContext());
if (cast<VectorType>(SrcTy)->getElementType() != BoolTy)
return Builder.CreateBitCast(Val, DestTy, "cst");
// Predicate HVX vector.
unsigned HwLen = HST.getVectorLength();
Intrinsic::ID TC = HwLen == 64 ? Intrinsic::hexagon_V6_pred_typecast
: Intrinsic::hexagon_V6_pred_typecast_128B;
Function *FI =
Intrinsic::getDeclaration(F.getParent(), TC, {DestTy, Val->getType()});
return Builder.CreateCall(FI, {Val}, "cup");
};
Function *IntrFn = Intrinsic::getDeclaration(F.getParent(), IntID, ArgTys);
FunctionType *IntrTy = IntrFn->getFunctionType();
SmallVector<Value *, 4> IntrArgs;
for (int i = 0, e = Args.size(); i != e; ++i) {
Value *A = Args[i];
Type *T = IntrTy->getParamType(i);
if (A->getType() != T) {
IntrArgs.push_back(getCast(Builder, A, T));
} else {
IntrArgs.push_back(A);
}
}
StringRef MaybeName = !IntrTy->getReturnType()->isVoidTy() ? "cup" : "";
CallInst *Call = Builder.CreateCall(IntrFn, IntrArgs, MaybeName);
MemoryEffects ME = Call->getAttributes().getMemoryEffects();
if (!ME.doesNotAccessMemory() && !ME.onlyAccessesInaccessibleMem())
propagateMetadata(Call, MDSources);
Type *CallTy = Call->getType();
if (RetTy == nullptr || CallTy == RetTy)
return Call;
// Scalar types should have RetTy matching the call return type.
assert(HST.isTypeForHVX(CallTy, /*IncludeBool=*/true));
return getCast(Builder, Call, RetTy);
}
auto HexagonVectorCombine::splitVectorElements(IRBuilderBase &Builder,
Value *Vec,
unsigned ToWidth) const
-> SmallVector<Value *> {
// Break a vector of wide elements into a series of vectors with narrow
// elements:
// (...c0:b0:a0, ...c1:b1:a1, ...c2:b2:a2, ...)
// -->
// (a0, a1, a2, ...) // lowest "ToWidth" bits
// (b0, b1, b2, ...) // the next lowest...
// (c0, c1, c2, ...) // ...
// ...
//
// The number of elements in each resulting vector is the same as
// in the original vector.
auto *VecTy = cast<VectorType>(Vec->getType());
assert(VecTy->getElementType()->isIntegerTy());
unsigned FromWidth = VecTy->getScalarSizeInBits();
assert(isPowerOf2_32(ToWidth) && isPowerOf2_32(FromWidth));
assert(ToWidth <= FromWidth && "Breaking up into wider elements?");
unsigned NumResults = FromWidth / ToWidth;
SmallVector<Value *> Results(NumResults);
Results[0] = Vec;
unsigned Length = length(VecTy);
// Do it by splitting in half, since those operations correspond to deal
// instructions.
auto splitInHalf = [&](unsigned Begin, unsigned End, auto splitFunc) -> void {
// Take V = Results[Begin], split it in L, H.
// Store Results[Begin] = L, Results[(Begin+End)/2] = H
// Call itself recursively split(Begin, Half), split(Half+1, End)
if (Begin + 1 == End)
return;
Value *Val = Results[Begin];
unsigned Width = Val->getType()->getScalarSizeInBits();
auto *VTy = VectorType::get(getIntTy(Width / 2), 2 * Length, false);
Value *VVal = Builder.CreateBitCast(Val, VTy, "cst");
Value *Res = vdeal(Builder, sublo(Builder, VVal), subhi(Builder, VVal));
unsigned Half = (Begin + End) / 2;
Results[Begin] = sublo(Builder, Res);
Results[Half] = subhi(Builder, Res);
splitFunc(Begin, Half, splitFunc);
splitFunc(Half, End, splitFunc);
};
splitInHalf(0, NumResults, splitInHalf);
return Results;
}
auto HexagonVectorCombine::joinVectorElements(IRBuilderBase &Builder,
ArrayRef<Value *> Values,
VectorType *ToType) const
-> Value * {
assert(ToType->getElementType()->isIntegerTy());
// If the list of values does not have power-of-2 elements, append copies
// of the sign bit to it, to make the size be 2^n.
// The reason for this is that the values will be joined in pairs, because
// otherwise the shuffles will result in convoluted code. With pairwise
// joins, the shuffles will hopefully be folded into a perfect shuffle.
// The output will need to be sign-extended to a type with element width
// being a power-of-2 anyways.
SmallVector<Value *> Inputs(Values.begin(), Values.end());
unsigned ToWidth = ToType->getScalarSizeInBits();
unsigned Width = Inputs.front()->getType()->getScalarSizeInBits();
assert(Width <= ToWidth);
assert(isPowerOf2_32(Width) && isPowerOf2_32(ToWidth));
unsigned Length = length(Inputs.front()->getType());
unsigned NeedInputs = ToWidth / Width;
if (Inputs.size() != NeedInputs) {
// Having too many inputs is ok: drop the high bits (usual wrap-around).
// If there are too few, fill them with the sign bit.
Value *Last = Inputs.back();
Value *Sign = Builder.CreateAShr(
Last, getConstSplat(Last->getType(), Width - 1), "asr");
Inputs.resize(NeedInputs, Sign);
}
while (Inputs.size() > 1) {
Width *= 2;
auto *VTy = VectorType::get(getIntTy(Width), Length, false);
for (int i = 0, e = Inputs.size(); i < e; i += 2) {
Value *Res = vshuff(Builder, Inputs[i], Inputs[i + 1]);
Inputs[i / 2] = Builder.CreateBitCast(Res, VTy, "cst");
}
Inputs.resize(Inputs.size() / 2);
}
assert(Inputs.front()->getType() == ToType);
return Inputs.front();
}
auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0,
Value *Ptr1) const
-> std::optional<int> {
// Try SCEV first.
const SCEV *Scev0 = SE.getSCEV(Ptr0);
const SCEV *Scev1 = SE.getSCEV(Ptr1);
const SCEV *ScevDiff = SE.getMinusSCEV(Scev0, Scev1);
if (auto *Const = dyn_cast<SCEVConstant>(ScevDiff)) {
APInt V = Const->getAPInt();
if (V.isSignedIntN(8 * sizeof(int)))
return static_cast<int>(V.getSExtValue());
}
struct Builder : IRBuilder<> {
Builder(BasicBlock *B) : IRBuilder<>(B->getTerminator()) {}
~Builder() {
for (Instruction *I : llvm::reverse(ToErase))
I->eraseFromParent();
}
SmallVector<Instruction *, 8> ToErase;
};
#define CallBuilder(B, F) \
[&](auto &B_) { \
Value *V = B_.F; \
if (auto *I = dyn_cast<Instruction>(V)) \
B_.ToErase.push_back(I); \
return V; \
}(B)
auto Simplify = [this](Value *V) {
if (Value *S = simplify(V))
return S;
return V;
};
auto StripBitCast = [](Value *V) {
while (auto *C = dyn_cast<BitCastInst>(V))
V = C->getOperand(0);
return V;
};
Ptr0 = StripBitCast(Ptr0);
Ptr1 = StripBitCast(Ptr1);
if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1))
return std::nullopt;
auto *Gep0 = cast<GetElementPtrInst>(Ptr0);
auto *Gep1 = cast<GetElementPtrInst>(Ptr1);
if (Gep0->getPointerOperand() != Gep1->getPointerOperand())
return std::nullopt;
if (Gep0->getSourceElementType() != Gep1->getSourceElementType())
return std::nullopt;
Builder B(Gep0->getParent());
int Scale = getSizeOf(Gep0->getSourceElementType(), Alloc);
// FIXME: for now only check GEPs with a single index.
if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2)
return std::nullopt;
Value *Idx0 = Gep0->getOperand(1);
Value *Idx1 = Gep1->getOperand(1);
// First, try to simplify the subtraction directly.
if (auto *Diff = dyn_cast<ConstantInt>(
Simplify(CallBuilder(B, CreateSub(Idx0, Idx1)))))
return Diff->getSExtValue() * Scale;
KnownBits Known0 = getKnownBits(Idx0, Gep0);
KnownBits Known1 = getKnownBits(Idx1, Gep1);
APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One);
if (Unknown.isAllOnes())
return std::nullopt;
Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown);
Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU)));
Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU)));
Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1)));
int Diff0 = 0;
if (auto *C = dyn_cast<ConstantInt>(SubU)) {
Diff0 = C->getSExtValue();
} else {
return std::nullopt;
}
Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown);
Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK)));
Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK)));
Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1)));
int Diff1 = 0;
if (auto *C = dyn_cast<ConstantInt>(SubK)) {
Diff1 = C->getSExtValue();
} else {
return std::nullopt;
}
return (Diff0 + Diff1) * Scale;
#undef CallBuilder
}
auto HexagonVectorCombine::getNumSignificantBits(const Value *V,
const Instruction *CtxI) const
-> unsigned {
return ComputeMaxSignificantBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT);
}
auto HexagonVectorCombine::getKnownBits(const Value *V,
const Instruction *CtxI) const
-> KnownBits {
return computeKnownBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT);
}
auto HexagonVectorCombine::isSafeToClone(const Instruction &In) const -> bool {
if (In.mayHaveSideEffects() || In.isAtomic() || In.isVolatile() ||
In.isFenceLike() || In.mayReadOrWriteMemory()) {
return false;
}
if (isa<CallBase>(In) || isa<AllocaInst>(In))
return false;
return true;
}
template <typename T>
auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In,
BasicBlock::const_iterator To,
const T &IgnoreInsts) const
-> bool {
auto getLocOrNone =
[this](const Instruction &I) -> std::optional<MemoryLocation> {
if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
switch (II->getIntrinsicID()) {
case Intrinsic::masked_load:
return MemoryLocation::getForArgument(II, 0, TLI);
case Intrinsic::masked_store:
return MemoryLocation::getForArgument(II, 1, TLI);
}
}
return MemoryLocation::getOrNone(&I);
};
// The source and the destination must be in the same basic block.
const BasicBlock &Block = *In.getParent();
assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block);
// No PHIs.
if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To)))
return false;
if (!mayHaveNonDefUseDependency(In))
return true;
bool MayWrite = In.mayWriteToMemory();
auto MaybeLoc = getLocOrNone(In);
auto From = In.getIterator();
if (From == To)
return true;
bool MoveUp = (To != Block.end() && To->comesBefore(&In));
auto Range =
MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To);
for (auto It = Range.first; It != Range.second; ++It) {
const Instruction &I = *It;
if (llvm::is_contained(IgnoreInsts, &I))
continue;
// assume intrinsic can be ignored
if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
if (II->getIntrinsicID() == Intrinsic::assume)
continue;
}
// Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp.
if (I.mayThrow())
return false;
if (auto *CB = dyn_cast<CallBase>(&I)) {
if (!CB->hasFnAttr(Attribute::WillReturn))
return false;
if (!CB->hasFnAttr(Attribute::NoSync))
return false;
}
if (I.mayReadOrWriteMemory()) {
auto MaybeLocI = getLocOrNone(I);
if (MayWrite || I.mayWriteToMemory()) {
if (!MaybeLoc || !MaybeLocI)
return false;
if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI))
return false;
}
}
}
return true;
}
auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool {
if (auto *VecTy = dyn_cast<VectorType>(Ty))
return VecTy->getElementType() == getByteTy();
return false;
}
auto HexagonVectorCombine::getElementRange(IRBuilderBase &Builder, Value *Lo,
Value *Hi, int Start,
int Length) const -> Value * {
assert(0 <= Start && size_t(Start + Length) < length(Lo) + length(Hi));
SmallVector<int, 128> SMask(Length);
std::iota(SMask.begin(), SMask.end(), Start);
return Builder.CreateShuffleVector(Lo, Hi, SMask, "shf");
}
// Pass management.
namespace llvm {
void initializeHexagonVectorCombineLegacyPass(PassRegistry &);
FunctionPass *createHexagonVectorCombineLegacyPass();
} // namespace llvm
namespace {
class HexagonVectorCombineLegacy : public FunctionPass {
public:
static char ID;
HexagonVectorCombineLegacy() : FunctionPass(ID) {}
StringRef getPassName() const override { return "Hexagon Vector Combine"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<TargetPassConfig>();
FunctionPass::getAnalysisUsage(AU);
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
AssumptionCache &AC =
getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
TargetLibraryInfo &TLI =
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>();
HexagonVectorCombine HVC(F, AA, AC, DT, SE, TLI, TM);
return HVC.run();
}
};
} // namespace
char HexagonVectorCombineLegacy::ID = 0;
INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE,
"Hexagon Vector Combine", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE,
"Hexagon Vector Combine", false, false)
FunctionPass *llvm::createHexagonVectorCombineLegacyPass() {
return new HexagonVectorCombineLegacy();
}
|