File: M68kInstrFormats.td

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (243 lines) | stat: -rw-r--r-- 10,120 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
//===-- M68kInstrFormats.td - M68k Instruction Formats -----*- tablegen -*-===//
//                     The LLVM Compiler Infrastructure
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//===----------------------------------------------------------------------===//
///
/// \file
/// This file contains M68k instruction formats.
///
/// Since M68k has quite a lot memory addressing modes there are more
/// instruction prefixes than just i, r and m:
/// TSF  Since     Form                     Letter  Description
///  00   M68000    Dn or An                 r       any register
///  01   M68000    Dn                       d       data register direct
///  02   M68000    An                       a       address register direct
///  03   M68000    (An)                     j       address register indirect
///  04   M68000    (An)+                    o       address register indirect with postincrement
///  05   M68000    -(An)                    e       address register indirect with predecrement
///  06   M68000    (i,An)                   p       address register indirect with displacement
///  10   M68000    (i,An,Xn.L)              f       address register indirect with index and scale = 1
///  07   M68000    (i,An,Xn.W)              F       address register indirect with index and scale = 1
///  12   M68020    (i,An,Xn.L,SCALE)        g       address register indirect with index
///  11   M68020    (i,An,Xn.W,SCALE)        G       address register indirect with index
///  14   M68020    ([bd,An],Xn.L,SCALE,od)  u       memory indirect postindexed mode
///  13   M68020    ([bd,An],Xn.W,SCALE,od)  U       memory indirect postindexed mode
///  16   M68020    ([bd,An,Xn.L,SCALE],od)  v       memory indirect preindexed mode
///  15   M68020    ([bd,An,Xn.W,SCALE],od)  V       memory indirect preindexed mode
///  20   M68000    abs.L                    b       absolute long address
///  17   M68000    abs.W                    B       absolute short address
///  21   M68000    (i,PC)                   q       program counter with displacement
///  23   M68000    (i,PC,Xn.L)              k       program counter with index and scale = 1
///  22   M68000    (i,PC,Xn.W)              K       program counter with index and scale = 1
///  25   M68020    (i,PC,Xn.L,SCALE)        l       program counter with index
///  24   M68020    (i,PC,Xn.W,SCALE)        L       program counter with index
///  27   M68020    ([bd,PC],Xn.L,SCALE,od)  x       program counter memory indirect postindexed mode
///  26   M68020    ([bd,PC],Xn.W,SCALE,od)  X       program counter memory indirect postindexed mode
///  31   M68020    ([bd,PC,Xn.L,SCALE],od)  y       program counter memory indirect preindexed mode
///  30   M68020    ([bd,PC,Xn.W,SCALE],od)  Y       program counter memory indirect preindexed mode
///  32   M68000    #immediate               i       immediate data
///
/// NOTE that long form is always lowercase, word variants are capitalized
///
/// Operand can be qualified with size where appropriate to force a particular
/// instruction encoding, e.g.:
///    (i8,An,Xn.W)             f8      1 extension word
///    (i16,An,Xn.W)            f16     2 extension words
///    (i32,An,Xn.W)            f32     3 extension words
///
/// Form without size qualifier will adapt to operand size automatically, e.g.:
///    (i,An,Xn.W)              f       1, 2 or 3 extension words
///
/// Some forms already imply a particular size of their operands, e.g.:
///    (i,An)                   p       1 extension word and i is 16bit
///
/// Operand order follows x86 Intel order(destination before source), e.g.:
///    MOV8df                   MOVE (4,A0,D0), D1
///
/// Number after instruction mnemonics determines the size of the data
///
//===----------------------------------------------------------------------===//

/// ??? Is it possible to use this stuff for disassembling?
/// NOTE 1: In case of conditional beads(DA, DAReg), cond part is able to
/// consume any bit, though a more general instructions must be chosen, e.g.
/// d -> r, a -> r

//===----------------------------------------------------------------------===//
// Encoding primitives
//===----------------------------------------------------------------------===//

class MxEncMemOp {
  dag EA = (ascend);
  dag Supplement = (ascend);
}

class MxEncBriefExt<string reg_opnd, string disp_opnd,
                    bit size_w_l = false, int scale = 1,
                    string disp_encoder = ""> {
  dag Value = (descend
    // D/A + REGISTER
    (operand "$"#reg_opnd, 4),
    // W/L
    size_w_l,
    // SCALE
    !cond(
      !eq(scale, 1) : 0b00,
      !eq(scale, 2) : 0b01,
      !eq(scale, 4) : 0b10,
      !eq(scale, 8) : 0b11
    ),
    0b0,
    // Displacement
    (operand "$"#disp_opnd, 8, (encoder disp_encoder))
  );
}

class MxEncAddrMode_d<string reg_opnd> : MxEncMemOp {
  let EA = (descend /*MODE*/0b000,
                    /*REGISTER*/(operand "$"#reg_opnd, 3));
}

class MxEncAddrMode_a<string reg_opnd> : MxEncMemOp {
  let EA = (descend /*MODE*/0b001,
                    /*REGISTER*/(operand "$"#reg_opnd, 3));
}

class MxEncAddrMode_r<string reg_opnd> : MxEncMemOp {
  let EA = (descend /*MODE without the last bit*/0b00,
                    /*REGISTER with D/A bit*/(operand "$"#reg_opnd, 4));
}

class MxEncAddrMode_k<string opnd_name> : MxEncMemOp {
  let EA = (descend /*MODE*/0b111,
                    /*REGISTER*/0b011);

  let Supplement = MxEncBriefExt<opnd_name#".index", opnd_name#".disp",
                                 /*W/L*/true, /*SCALE*/1,
                                 "encodePCRelImm<8>">.Value;
}

class MxEncAddrMode_q<string opnd_name> : MxEncMemOp {
  let EA = (descend /*MODE*/0b111,
                     /*REGISTER*/0b010);

  // 16-bit Displacement
  let Supplement = (operand "$"#opnd_name, 16,
                            (encoder "encodePCRelImm<16>"));
}

class MxEncAddrMode_p<string opnd_name> : MxEncMemOp {
  let EA = (descend /*MODE*/0b101,
                     /*REGISTER*/(operand "$"#opnd_name#".reg", 3));

  // 16-bit Displacement
  let Supplement = (operand "$"#opnd_name#".disp", 16,
                            (encoder "encodeRelocImm<16>"));
}

class MxEncAddrMode_f<string opnd_name> : MxEncMemOp {
  let EA = (descend /*MODE*/0b110,
                     /*REGISTER*/(operand "$"#opnd_name#".reg", 3));

  let Supplement = MxEncBriefExt<opnd_name#".index", opnd_name#".disp",
                                 /*W/L*/true, /*SCALE*/1,
                                 "encodeRelocImm<8>">.Value;
}

class MxEncAddrMode_j<string reg_opnd> : MxEncMemOp {
  let EA = (descend /*MODE*/0b010,
                     /*REGISTER*/(operand "$"#reg_opnd, 3));
}

class MxEncAddrMode_i<string opnd_name, int size> : MxEncMemOp {
  let EA = (descend /*MODE*/0b111,
                     /*REGISTER*/0b100);

  // Immediate
  let Supplement =
    !cond(
      !eq(size, 8)  : (descend 0b00000000, (operand "$"#opnd_name, 8,
	                   (encoder "encodeRelocImm<8>"))),
      !eq(size, 16) : (operand "$"#opnd_name, 16,
                           (encoder "encodeRelocImm<16>")),
      !eq(size, 32) : (operand "$"#opnd_name, 32,
                           (encoder "encodeRelocImm<32>"),
                           (decoder "DecodeImm32"))
    );
}

// abs.W -> size_w_l = false
// abs.L -> size_w_l = true
class MxEncAddrMode_abs<string opnd_name, bit size_w_l = false> : MxEncMemOp {
  let EA = (descend /*MODE*/0b111,
                    // Wrap the REGISTER part in another dag to make sure
                    // the dag assigned to EA only has two arguments. Such
                    // that it's easier for MOV instructions to reverse
                    // on its destination part.
                    /*REGISTER*/(descend 0b00, size_w_l));

  // Absolute address
  let Supplement = !if(size_w_l,
    // abs.L
    (operand "$"#opnd_name, 32, (encoder "encodeRelocImm<32>"),
                                (decoder "DecodeImm32")),
    // abs.W
    (operand "$"#opnd_name, 16, (encoder "encodeRelocImm<16>"))
  );
}

class MxEncAddrMode_o<string reg_opnd> : MxEncMemOp {
  let EA = (descend /*MODE*/0b011,
                    /*REGISTER*/(operand "$"#reg_opnd, 3));
}

class MxEncAddrMode_e<string reg_opnd> : MxEncMemOp {
  let EA = (descend /*MODE*/0b100,
                    /*REGISTER*/(operand "$"#reg_opnd, 3));
}

class MxEncSize<bits<2> value> {
  bits<2> Value = value;
}
def MxEncSize8  : MxEncSize<0b00>;
def MxEncSize16 : MxEncSize<0b01>;
def MxEncSize32 : MxEncSize<0b10>;
def MxEncSize64 : MxEncSize<0b11>;

// M68k INSTRUCTION. Most instructions specify the location of an operand by
// using the effective address field in the operation word. The effective address
// is composed of two 3-bit fields: the mode field and the register field. The
// value in the mode field selects the different address modes. The register
// field contains the number of a register.  The effective address field may
// require additional information to fully specify the operand. This additional
// information, called the effective address extension, is contained in the
// following word or words and is considered part of the instruction. The
// effective address modes are grouped into three categories: register direct,
// memory addressing, and special.
class MxInst<dag outs, dag ins,
             string asmStr = "",
             list<dag> pattern = [],
             InstrItinClass itin = NoItinerary>
    : Instruction {
  let Namespace      = "M68k";
  let OutOperandList = outs;
  let InOperandList  = ins;
  let AsmString      = asmStr;
  let Pattern        = pattern;
  let Itinerary      = itin;

  dag Inst = (ascend);

  // Number of bytes
  let Size = 0;

  let UseLogicalOperandMappings = 1;
}

// M68k PSEUDO INSTRUCTION
class MxPseudo<dag outs, dag ins, list<dag> pattern = []>
    : MxInst<outs, ins, "; error: this should not be emitted", pattern> {
  let isPseudo = 1;
}