1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
|
//===-- M68kInstrInfo.td - Main M68k Instruction Definition -*- tablegen -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file describes the M68k instruction set, defining the instructions
/// and properties of the instructions which are needed for code generation,
/// machine code emission, and analysis.
///
//===----------------------------------------------------------------------===//
include "M68kInstrFormats.td"
//===----------------------------------------------------------------------===//
// Profiles
//===----------------------------------------------------------------------===//
def MxSDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def MxSDT_CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def MxSDT_Call : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>;
def MxSDT_Ret : SDTypeProfile<0, -1, [
/* ADJ */ SDTCisVT<0, i32>
]>;
def MxSDT_TCRet : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>;
def MxSDT_Wrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
def MxSDT_UnArithCCROut : SDTypeProfile<2, 1, [
/* RES */ SDTCisInt<0>,
/* CCR */ SDTCisVT<1, i8>,
/* OPD */ SDTCisSameAs<0, 2>
]>;
// RES, CCR <- op LHS, RHS
def MxSDT_BiArithCCROut : SDTypeProfile<2, 2, [
/* RES */ SDTCisInt<0>,
/* CCR */ SDTCisVT<1, i8>,
/* LHS */ SDTCisSameAs<0, 2>,
/* RHS */ SDTCisSameAs<0, 3>
]>;
// RES, CCR <- op LHS, RHS, CCR
def MxSDT_BiArithCCRInOut : SDTypeProfile<2, 3, [
/* RES 1 */ SDTCisInt<0>,
/* CCR */ SDTCisVT<1, i8>,
/* LHS */ SDTCisSameAs<0, 2>,
/* RHS */ SDTCisSameAs<0, 3>,
/* CCR */ SDTCisSameAs<1, 4>
]>;
// RES1, RES2, CCR <- op LHS, RHS
def MxSDT_2BiArithCCROut : SDTypeProfile<3, 2, [
/* RES 1 */ SDTCisInt<0>,
/* RES 2 */ SDTCisSameAs<0, 1>,
/* CCR */ SDTCisVT<1, i8>,
/* LHS */ SDTCisSameAs<0, 2>,
/* RHS */ SDTCisSameAs<0, 3>
]>;
def MxSDT_CmpTest : SDTypeProfile<1, 2, [
/* CCR */ SDTCisVT<0, i8>,
/* Ops */ SDTCisSameAs<1, 2>
]>;
def MxSDT_Cmov : SDTypeProfile<1, 4, [
/* ARG */ SDTCisSameAs<0, 1>,
/* ARG */ SDTCisSameAs<1, 2>,
/* Cond */ SDTCisVT<3, i8>,
/* CCR */ SDTCisVT<4, i8>
]>;
def MxSDT_BrCond : SDTypeProfile<0, 3, [
/* Dest */ SDTCisVT<0, OtherVT>,
/* Cond */ SDTCisVT<1, i8>,
/* CCR */ SDTCisVT<2, i8>
]>;
def MxSDT_SetCC : SDTypeProfile<1, 2, [
/* BOOL */ SDTCisVT<0, i8>,
/* Cond */ SDTCisVT<1, i8>,
/* CCR */ SDTCisVT<2, i8>
]>;
def MxSDT_SetCC_C : SDTypeProfile<1, 2, [
/* BOOL */ SDTCisInt<0>,
/* Cond */ SDTCisVT<1, i8>,
/* CCR */ SDTCisVT<2, i8>
]>;
def MxSDT_SEG_ALLOCA : SDTypeProfile<1, 1,[
/* MEM */ SDTCisVT<0, iPTR>,
/* SIZE */ SDTCisVT<1, iPTR>
]>;
//===----------------------------------------------------------------------===//
// Nodes
//===----------------------------------------------------------------------===//
def MxCallSeqStart : SDNode<"ISD::CALLSEQ_START", MxSDT_CallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def MxCallSeqEnd : SDNode<"ISD::CALLSEQ_END", MxSDT_CallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def MxCall : SDNode<"M68kISD::CALL", MxSDT_Call,
[SDNPHasChain, SDNPOutGlue,
SDNPOptInGlue, SDNPVariadic]>;
def MxRet : SDNode<"M68kISD::RET", MxSDT_Ret,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def MxTCRet : SDNode<"M68kISD::TC_RETURN", MxSDT_TCRet,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def MxWrapper : SDNode<"M68kISD::Wrapper", MxSDT_Wrapper>;
def MxWrapperPC : SDNode<"M68kISD::WrapperPC", MxSDT_Wrapper>;
def MxAdd : SDNode<"M68kISD::ADD", MxSDT_BiArithCCROut, [SDNPCommutative]>;
def MxSub : SDNode<"M68kISD::SUB", MxSDT_BiArithCCROut>;
def MxOr : SDNode<"M68kISD::OR", MxSDT_BiArithCCROut, [SDNPCommutative]>;
def MxXor : SDNode<"M68kISD::XOR", MxSDT_BiArithCCROut, [SDNPCommutative]>;
def MxAnd : SDNode<"M68kISD::AND", MxSDT_BiArithCCROut, [SDNPCommutative]>;
def MxAddX : SDNode<"M68kISD::ADDX", MxSDT_BiArithCCRInOut>;
def MxSubX : SDNode<"M68kISD::SUBX", MxSDT_BiArithCCRInOut>;
def MxSMul : SDNode<"M68kISD::SMUL", MxSDT_BiArithCCROut, [SDNPCommutative]>;
def MxUMul : SDNode<"M68kISD::UMUL", MxSDT_2BiArithCCROut, [SDNPCommutative]>;
def MxCmp : SDNode<"M68kISD::CMP", MxSDT_CmpTest>;
def MxBtst : SDNode<"M68kISD::BTST", MxSDT_CmpTest>;
def MxCmov : SDNode<"M68kISD::CMOV", MxSDT_Cmov>;
def MxBrCond : SDNode<"M68kISD::BRCOND", MxSDT_BrCond, [SDNPHasChain]>;
def MxSetCC : SDNode<"M68kISD::SETCC", MxSDT_SetCC>;
def MxSetCC_C : SDNode<"M68kISD::SETCC_CARRY", MxSDT_SetCC_C>;
def MxSegAlloca : SDNode<"M68kISD::SEG_ALLOCA", MxSDT_SEG_ALLOCA,
[SDNPHasChain]>;
//===----------------------------------------------------------------------===//
// Operands
//===----------------------------------------------------------------------===//
/// Size is the size of the data, either bits of a register or number of bits
/// addressed in memory. Size id is a letter that identifies size.
class MxSize<int num, string id, string full> {
int Num = num;
string Id = id;
string Full = full;
}
def MxSize8 : MxSize<8, "b", "byte">;
def MxSize16 : MxSize<16, "w", "word">;
def MxSize32 : MxSize<32, "l", "long">;
def MxSizeF32 : MxSize<32, "s", "f32">;
def MxSizeF64 : MxSize<64, "d", "f64">;
def MxSizeF80 : MxSize<80, "x", "f80">;
class MxOpClass<string name,
list<AsmOperandClass> superClasses = []> : AsmOperandClass {
let Name = name;
let ParserMethod = "parseMemOp";
let SuperClasses = superClasses;
}
def MxRegClass : MxOpClass<"Reg">;
// Splitting asm register class to avoid ambiguous on operands'
// MatchClassKind. For instance, without this separation,
// both ADD32dd and ADD32dr has {MCK_RegClass, MCK_RegClass} for
// their operands, which makes AsmParser unable to pick the correct
// one in a deterministic way.
let RenderMethod = "addRegOperands", SuperClasses = [MxRegClass]in {
def MxARegClass : MxOpClass<"AReg">;
def MxDRegClass : MxOpClass<"DReg">;
def MxFPDRegClass : MxOpClass<"FPDReg">;
}
class MxOperand<ValueType vt, MxSize size, string letter, RegisterClass rc, dag pat = (null_frag)> {
ValueType VT = vt;
string Letter = letter;
MxSize Size = size;
RegisterClass RC = rc;
dag Pat = pat;
}
class MxRegOp<ValueType vt,
RegisterClass rc,
MxSize size,
string letter,
string pm = "printOperand">
: RegisterOperand<rc, pm>,
MxOperand<vt, size, letter, rc> {
let ParserMatchClass = MxRegClass;
}
// REGISTER DIRECT. The operand is in the data register specified by
// the effective address register field.
def MxXRD16 : MxRegOp<i16, XR16, MxSize16, "r">;
def MxXRD32 : MxRegOp<i32, XR32, MxSize32, "r">;
def MxXRD16_TC : MxRegOp<i16, XR16_TC, MxSize16, "r">;
def MxXRD32_TC : MxRegOp<i32, XR32_TC, MxSize32, "r">;
// DATA REGISTER DIRECT. The operand is in the data register specified by
// the effective address register field.
let ParserMatchClass = MxDRegClass in {
def MxDRD8 : MxRegOp<i8, DR8, MxSize8, "d">;
def MxDRD16 : MxRegOp<i16, DR16, MxSize16, "d">;
def MxDRD32 : MxRegOp<i32, DR32, MxSize32, "d">;
def MxDRD16_TC : MxRegOp<i16, DR16_TC, MxSize16, "d">;
def MxDRD32_TC : MxRegOp<i32, DR32_TC, MxSize32, "d">;
}
// ADDRESS REGISTER DIRECT. The operand is in the address register specified by
// the effective address register field.
let ParserMatchClass = MxARegClass in {
def MxARD16 : MxRegOp<i16, AR16, MxSize16, "a">;
def MxARD32 : MxRegOp<i32, AR32, MxSize32, "a">;
def MxARD16_TC : MxRegOp<i16, AR16_TC, MxSize16, "a">;
def MxARD32_TC : MxRegOp<i32, AR32_TC, MxSize32, "a">;
}
// FLOATING POINT DATA REGISTER.
let ParserMatchClass = MxFPDRegClass in {
def MxFPR32 : MxRegOp<f32, FPDR32, MxSizeF32, "fp">;
def MxFPR64 : MxRegOp<f64, FPDR64, MxSizeF64, "fp">;
def MxFPR80 : MxRegOp<f80, FPDR80, MxSizeF80, "fp">;
}
class MxMemOp<dag ops, MxSize size, string letter,
string printMethod = "printOperand",
AsmOperandClass parserMatchClass = ImmAsmOperand>
: Operand<iPTR>, MxOperand<iPTR, size, letter, ?> {
let PrintMethod = printMethod;
let MIOperandInfo = ops;
let ParserMatchClass = parserMatchClass;
let OperandType = "OPERAND_MEMORY";
}
// ADDRESS REGISTER INDIRECT. The address of the operand is in the address
// register specified by the register field. The reference is classified as
// a data reference with the exception of the jump and jump-to-subroutine
// instructions.
def MxARI : MxOpClass<"ARI">;
def MxARI8 : MxMemOp<(ops AR32), MxSize8, "j", "printARI8Mem", MxARI>;
def MxARI16 : MxMemOp<(ops AR32), MxSize16, "j", "printARI16Mem", MxARI>;
def MxARI32 : MxMemOp<(ops AR32), MxSize32, "j", "printARI32Mem", MxARI>;
def MxARI8_TC : MxMemOp<(ops AR32_TC), MxSize8, "j", "printARI8Mem", MxARI>;
def MxARI16_TC : MxMemOp<(ops AR32_TC), MxSize16, "j", "printARI16Mem", MxARI>;
def MxARI32_TC : MxMemOp<(ops AR32_TC), MxSize32, "j", "printARI32Mem", MxARI>;
// ADDRESS REGISTER INDIRECT WITH POSTINCREMENT. The address of the operand is
// in the address register specified by the register field. After the operand
// address is used, it is incremented by one, two, or four depending upon whether
// the size of the operand is byte, word, or long word. If the address register
// is the stack pointer and the operand size is byte, the address is incremented
// by two rather than one to keep the stack pointer on a word boundary.
// The reference is classified as a data reference.
def MxARIPI : MxOpClass<"ARIPI">;
def MxARIPI8 : MxMemOp<(ops AR32), MxSize8, "o", "printARIPI8Mem", MxARIPI>;
def MxARIPI16 : MxMemOp<(ops AR32), MxSize16, "o", "printARIPI16Mem", MxARIPI>;
def MxARIPI32 : MxMemOp<(ops AR32), MxSize32, "o", "printARIPI32Mem", MxARIPI>;
def MxARIPI8_TC : MxMemOp<(ops AR32_TC), MxSize8, "o", "printARIPI8Mem", MxARIPI>;
def MxARIPI16_TC : MxMemOp<(ops AR32_TC), MxSize16, "o", "printARIPI16Mem", MxARIPI>;
def MxARIPI32_TC : MxMemOp<(ops AR32_TC), MxSize32, "o", "printARIPI32Mem", MxARIPI>;
// ADDRESS REGISTER INDIRECT WITH PREDECREMENT. The address of the operand is in
// the address register specified by the register field. Before the operand
// address is used, it is decremented by one, two, or four depending upon whether
// the operand size is byte, word, or long word. If the address register is
// the stack pointer and the operand size is byte, the address is decremented by
// two rather than one to keep the stack pointer on a word boundary.
// The reference is classified as a data reference.
def MxARIPD : MxOpClass<"ARIPD">;
def MxARIPD8 : MxMemOp<(ops AR32), MxSize8, "e", "printARIPD8Mem", MxARIPD>;
def MxARIPD16 : MxMemOp<(ops AR32), MxSize16, "e", "printARIPD16Mem", MxARIPD>;
def MxARIPD32 : MxMemOp<(ops AR32), MxSize32, "e", "printARIPD32Mem", MxARIPD>;
def MxARIPD8_TC : MxMemOp<(ops AR32_TC), MxSize8, "e", "printARIPD8Mem", MxARIPD>;
def MxARIPD16_TC : MxMemOp<(ops AR32_TC), MxSize16, "e", "printARIPD16Mem", MxARIPD>;
def MxARIPD32_TC : MxMemOp<(ops AR32_TC), MxSize32, "e", "printARIPD32Mem", MxARIPD>;
// ADDRESS REGISTER INDIRECT WITH DISPLACEMENT. This addressing mode requires one
// word of extension. The address of the operand is the sum of the address in
// the address register and the sign-extended 16-bit displacement integer in the
// extension word. The reference is classified as a data reference with the
// exception of the jump and jump-to-subroutine instructions.
def MxARID : MxOpClass<"ARID">;
def MxARID8 : MxMemOp<(ops i16imm:$disp, AR32:$reg), MxSize8, "p", "printARID8Mem", MxARID>;
def MxARID16 : MxMemOp<(ops i16imm:$disp, AR32:$reg), MxSize16, "p", "printARID16Mem", MxARID>;
def MxARID32 : MxMemOp<(ops i16imm:$disp, AR32:$reg), MxSize32, "p", "printARID32Mem", MxARID>;
def MxARID8_TC : MxMemOp<(ops i16imm:$disp, AR32_TC:$reg), MxSize8, "p", "printARID8Mem", MxARID>;
def MxARID16_TC : MxMemOp<(ops i16imm:$disp, AR32_TC:$reg), MxSize16, "p", "printARID16Mem", MxARID>;
def MxARID32_TC : MxMemOp<(ops i16imm:$disp, AR32_TC:$reg), MxSize32, "p", "printARID32Mem", MxARID>;
// ADDRESS REGISTER INDIRECT WITH INDEX. This addressing mode requires one word
// of extension. The address of the operand is the sum of the address in the
// address register, the signextended displacement integer in the low order eight
// bits of the extension word, and the contents of the index register.
// The reference is classified as a data reference with the exception of the
// jump and jump-to-subroutine instructions
def MxARII : MxOpClass<"ARII">;
def MxARII8 : MxMemOp<(ops i8imm:$disp, AR32:$reg, XR32:$index),
MxSize8, "f", "printARII8Mem", MxARII>;
def MxARII16 : MxMemOp<(ops i8imm:$disp, AR32:$reg, XR32:$index),
MxSize16, "f", "printARII16Mem", MxARII>;
def MxARII32 : MxMemOp<(ops i8imm:$disp, AR32:$reg, XR32:$index),
MxSize32, "f", "printARII32Mem", MxARII>;
def MxARII8_TC : MxMemOp<(ops i8imm:$disp, AR32_TC:$reg, XR32_TC:$index),
MxSize8, "f", "printARII8Mem", MxARII>;
def MxARII16_TC : MxMemOp<(ops i8imm:$disp, AR32_TC:$reg, XR32_TC:$index),
MxSize16, "f", "printARII16Mem", MxARII>;
def MxARII32_TC : MxMemOp<(ops i8imm:$disp, AR32_TC:$reg, XR32_TC:$index),
MxSize32, "f", "printARII32Mem", MxARII>;
// ABSOLUTE SHORT ADDRESS. This addressing mode requires one word of extension.
// The address of the operand is the extension word. The 16-bit address is sign
// extended before it is used. The reference is classified as a data reference
// with the exception of the jump and jump-tosubroutine instructions.
def MxAddr : MxOpClass<"Addr">;
let RenderMethod = "addAddrOperands" in {
// This hierarchy ensures Addr8 will always be parsed
// before other larger-width variants.
def MxAddr32 : MxOpClass<"Addr32", [MxAddr]>;
def MxAddr16 : MxOpClass<"Addr16", [MxAddr32]>;
def MxAddr8 : MxOpClass<"Addr8", [MxAddr16]>;
}
def MxAS8 : MxMemOp<(ops OtherVT), MxSize8, "B", "printAS8Mem", MxAddr8>;
def MxAS16 : MxMemOp<(ops OtherVT), MxSize16, "B", "printAS16Mem", MxAddr16>;
def MxAS32 : MxMemOp<(ops OtherVT), MxSize32, "B", "printAS32Mem", MxAddr32>;
// ABSOLUTE LONG ADDRESS. This addressing mode requires two words of extension.
// The address of the operand is developed by the concatenation of the extension
// words. The high order part of the address is the first extension word; the low
// order part of the address is the second extension word. The reference is
// classified as a data reference with the exception of the jump and jump
// to-subroutine instructions.
def MxAL8 : MxMemOp<(ops OtherVT), MxSize8, "b", "printAL8Mem", MxAddr8>;
def MxAL16 : MxMemOp<(ops OtherVT), MxSize16, "b", "printAL16Mem", MxAddr16>;
def MxAL32 : MxMemOp<(ops OtherVT), MxSize32, "b", "printAL32Mem", MxAddr32>;
def MxPCD : MxOpClass<"PCD">;
def MxPCI : MxOpClass<"PCI">;
let OperandType = "OPERAND_PCREL" in {
// PROGRAM COUNTER WITH DISPLACEMENT. This addressing mode requires one word of
// extension. The address of the operand is the sum of the address in the program
// counter and the Sign-extended 16-bit displacement integer in the extension
// word. The value in the program counter is the address of the extension word.
// The reference is classified as a program reference.
def MxPCD8 : MxMemOp<(ops i16imm), MxSize8, "q", "printPCD8Mem", MxPCD>;
def MxPCD16 : MxMemOp<(ops i16imm), MxSize16, "q", "printPCD16Mem", MxPCD>;
def MxPCD32 : MxMemOp<(ops i16imm), MxSize32, "q", "printPCD32Mem", MxPCD>;
// PROGRAM COUNTER WITH INDEX. This addressing mode requires one word of
// extension. The address is the sum of the address in the program counter, the
// sign-extended displacement integer in the lower eight bits of the extension
// word, and the contents of the index register. The value in the program
// counter is the address of the extension word. This reference is classified as
// a program reference.
def MxPCI8 : MxMemOp<(ops i8imm:$disp, XR32:$index), MxSize8, "k", "printPCI8Mem", MxPCI>;
def MxPCI16 : MxMemOp<(ops i8imm:$disp, XR32:$index), MxSize16, "k", "printPCI16Mem", MxPCI>;
def MxPCI32 : MxMemOp<(ops i8imm:$disp, XR32:$index), MxSize32, "k", "printPCI32Mem", MxPCI>;
} // OPERAND_PCREL
def MxImm : AsmOperandClass {
let Name = "MxImm";
let PredicateMethod = "isImm";
let RenderMethod = "addImmOperands";
let ParserMethod = "parseImm";
}
class MxOp<ValueType vt, MxSize size, string letter>
: Operand<vt>,
MxOperand<vt, size, letter, ?> {
let ParserMatchClass = MxImm;
}
let OperandType = "OPERAND_IMMEDIATE",
PrintMethod = "printImmediate" in {
// IMMEDIATE DATA. This addressing mode requires either one or two words of
// extension depending on the size of the operation.
// Byte Operation - operand is low order byte of extension word
// Word Operation - operand is extension word
// Long Word Operation - operand is in the two extension words,
// high order 16 bits are in the first
// extension word, low order 16 bits are
// in the second extension word.
def Mxi8imm : MxOp<i8, MxSize8, "i">;
def Mxi16imm : MxOp<i16, MxSize16, "i">;
def Mxi32imm : MxOp<i32, MxSize32, "i">;
} // OPERAND_IMMEDIATE
class MxBrTargetOperand<int N> : Operand<OtherVT> {
let OperandType = "OPERAND_PCREL";
let PrintMethod = "printPCRelImm";
let ParserMatchClass = !cast<AsmOperandClass>("MxAddr"#N);
}
// Branch targets have OtherVT type and print as pc-relative values.
def MxBrTarget8 : MxBrTargetOperand<8>;
def MxBrTarget16 : MxBrTargetOperand<16>;
def MxBrTarget32 : MxBrTargetOperand<32>;
// Used with MOVEM
def MxMoveMaskClass : MxOpClass<"MoveMask">;
def MxMoveMask : MxOp<i16, MxSize16, "m"> {
let OperandType = "OPERAND_IMMEDIATE";
let PrintMethod = "printMoveMask";
let ParserMatchClass = MxMoveMaskClass;
}
//===----------------------------------------------------------------------===//
// Predicates
//===----------------------------------------------------------------------===//
def SmallCode : Predicate<"TM.getCodeModel() == CodeModel::Small">;
def KernelCode : Predicate<"TM.getCodeModel() == CodeModel::Kernel">;
def FarData : Predicate<"TM.getCodeModel() != CodeModel::Small &&"
"TM.getCodeModel() != CodeModel::Kernel">;
def NearData : Predicate<"TM.getCodeModel() == CodeModel::Small ||"
"TM.getCodeModel() == CodeModel::Kernel">;
def IsPIC : Predicate<"TM.isPositionIndependent()">;
def IsNotPIC : Predicate<"!TM.isPositionIndependent()">;
// ISA versions
foreach i = [0,1,2,4,6] in
def AtLeastM680 # i # "0" : Predicate<"Subtarget->atLeastM680"#i#"0()">,
AssemblerPredicate<(all_of
!cast<SubtargetFeature>("FeatureISA"#i#"0"))>;
def AtLeastM68881 : Predicate<"Subtarget->atLeastM68881()">,
AssemblerPredicate<(all_of FeatureISA881)>;
def AtLeastM68882 : Predicate<"Subtarget->atLeastM68882()">,
AssemblerPredicate<(all_of FeatureISA882)>;
//===----------------------------------------------------------------------===//
// Condition Codes
//
// These MUST be kept in sync with codes enum in M68kInstrInfo.h
//===----------------------------------------------------------------------===//
def MxCONDt : PatLeaf<(i8 0)>; // True
def MxCONDf : PatLeaf<(i8 1)>; // False
def MxCONDhi : PatLeaf<(i8 2)>; // High
def MxCONDls : PatLeaf<(i8 3)>; // Less or Same
def MxCONDcc : PatLeaf<(i8 4)>; // Carry Clear
def MxCONDcs : PatLeaf<(i8 5)>; // Carry Set
def MxCONDne : PatLeaf<(i8 6)>; // Not Equal
def MxCONDeq : PatLeaf<(i8 7)>; // Equal
def MxCONDvc : PatLeaf<(i8 8)>; // Overflow Clear
def MxCONDvs : PatLeaf<(i8 9)>; // Overflow Set
def MxCONDpl : PatLeaf<(i8 10)>; // Plus
def MxCONDmi : PatLeaf<(i8 11)>; // Minus
def MxCONDge : PatLeaf<(i8 12)>; // Greater or Equal
def MxCONDlt : PatLeaf<(i8 13)>; // Less Than
def MxCONDgt : PatLeaf<(i8 14)>; // Greater Than
def MxCONDle : PatLeaf<(i8 15)>; // Less or Equal
//===----------------------------------------------------------------------===//
// Complex Patterns
//===----------------------------------------------------------------------===//
// NOTE Though this CP is not strictly necessarily it will simplify instruciton
// definitions
def MxCP_ARI : ComplexPattern<iPTR, 1, "SelectARI",
[], [SDNPWantParent]>;
def MxCP_ARIPI : ComplexPattern<iPTR, 1, "SelectARIPI",
[], [SDNPWantParent]>;
def MxCP_ARIPD : ComplexPattern<iPTR, 1, "SelectARIPD",
[], [SDNPWantParent]>;
def MxCP_ARID : ComplexPattern<iPTR, 2, "SelectARID",
[add, sub, mul, or, shl, frameindex],
[SDNPWantParent]>;
def MxCP_ARII : ComplexPattern<iPTR, 3, "SelectARII",
[add, sub, mul, or, shl, frameindex],
[SDNPWantParent]>;
def MxCP_AL : ComplexPattern<iPTR, 1, "SelectAL",
[add, sub, mul, or, shl],
[SDNPWantParent]>;
def MxCP_PCD : ComplexPattern<iPTR, 1, "SelectPCD",
[add, sub, mul, or, shl],
[SDNPWantParent]>;
def MxCP_PCI : ComplexPattern<iPTR, 2, "SelectPCI",
[add, sub, mul, or, shl], [SDNPWantParent]>;
//===----------------------------------------------------------------------===//
// Pattern Fragments
//===----------------------------------------------------------------------===//
def MximmSExt8 : PatLeaf<(i8 imm)>;
def MximmSExt16 : PatLeaf<(i16 imm)>;
def MximmSExt32 : PatLeaf<(i32 imm)>;
// Used for Shifts and Rotations, since M68k immediates in these instructions
// are 1 <= i <= 8. Generally, if immediate is bigger than 8 it will be moved
// to a register and then an operation is performed.
//
// TODO Need to evaluate whether splitting one big shift(or rotate)
// into a few smaller is faster than doing a move, if so do custom lowering
def Mximm8_1to8 : ImmLeaf<i8, [{ return Imm >= 1 && Imm <= 8; }]>;
def Mximm16_1to8 : ImmLeaf<i16, [{ return Imm >= 1 && Imm <= 8; }]>;
def Mximm32_1to8 : ImmLeaf<i32, [{ return Imm >= 1 && Imm <= 8; }]>;
// Helper fragments for loads.
// It's always safe to treat a anyext i16 load as a i32 load if the i16 is
// known to be 32-bit aligned or better. Ditto for i8 to i16.
def Mxloadi16 : PatFrag<(ops node:$ptr), (i16 (unindexedload node:$ptr)), [{
LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::LoadExtType ExtType = LD->getExtensionType();
if (ExtType == ISD::NON_EXTLOAD)
return true;
if (ExtType == ISD::EXTLOAD)
return LD->getAlign() >= 2 && !LD->isSimple();
return false;
}]>;
def Mxloadi32 : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)), [{
LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::LoadExtType ExtType = LD->getExtensionType();
if (ExtType == ISD::NON_EXTLOAD)
return true;
if (ExtType == ISD::EXTLOAD)
return LD->getAlign() >= 4 && !LD->isSimple();
return false;
}]>;
def Mxloadi8 : PatFrag<(ops node:$ptr), (i8 (load node:$ptr))>;
def MxSExtLoadi16i8 : PatFrag<(ops node:$ptr), (i16 (sextloadi8 node:$ptr))>;
def MxSExtLoadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextloadi8 node:$ptr))>;
def MxSExtLoadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>;
def MxZExtLoadi8i1 : PatFrag<(ops node:$ptr), (i8 (zextloadi1 node:$ptr))>;
def MxZExtLoadi16i1 : PatFrag<(ops node:$ptr), (i16 (zextloadi1 node:$ptr))>;
def MxZExtLoadi32i1 : PatFrag<(ops node:$ptr), (i32 (zextloadi1 node:$ptr))>;
def MxZExtLoadi16i8 : PatFrag<(ops node:$ptr), (i16 (zextloadi8 node:$ptr))>;
def MxZExtLoadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextloadi8 node:$ptr))>;
def MxZExtLoadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>;
def MxExtLoadi8i1 : PatFrag<(ops node:$ptr), (i8 (extloadi1 node:$ptr))>;
def MxExtLoadi16i1 : PatFrag<(ops node:$ptr), (i16 (extloadi1 node:$ptr))>;
def MxExtLoadi32i1 : PatFrag<(ops node:$ptr), (i32 (extloadi1 node:$ptr))>;
def MxExtLoadi16i8 : PatFrag<(ops node:$ptr), (i16 (extloadi8 node:$ptr))>;
def MxExtLoadi32i8 : PatFrag<(ops node:$ptr), (i32 (extloadi8 node:$ptr))>;
def MxExtLoadi32i16 : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>;
//===----------------------------------------------------------------------===//
// Type Fixtures
//
// Type Fixtures are ValueType related information sets that usually go together
//===----------------------------------------------------------------------===//
// TODO make it folded like MxType8.F.Op nad MxType8.F.Pat
// TODO move strings into META subclass
// vt: Type of data this fixture refers to
// prefix: Prefix used to identify type
// postfix: Prefix used to qualify type
class MxType<ValueType vt, string prefix, string postfix,
// rLet: Register letter
// rOp: Supported any register operand
string rLet, MxOperand rOp,
// jOp: Supported ARI operand
// jPat: What ARI pattern to use
MxOperand jOp, ComplexPattern jPat,
// oOp: Supported ARIPI operand
// oPat: What ARIPI pattern is used
MxOperand oOp, ComplexPattern oPat,
// eOp: Supported ARIPD operand
// ePat: What ARIPD pattern is used
MxOperand eOp, ComplexPattern ePat,
// pOp: Supported ARID operand
// pPat: What ARID pattern is used
MxOperand pOp, ComplexPattern pPat,
// fOp: Supported ARII operand
// fPat: What ARII pattern is used
MxOperand fOp, ComplexPattern fPat,
// bOp: Supported absolute operand
// bPat: What absolute pattern is used
MxOperand bOp, ComplexPattern bPat,
// qOp: Supported PCD operand
// qPat: What PCD pattern is used
MxOperand qOp, ComplexPattern qPat,
// kOp: Supported PCI operand
// kPat: What PCI pattern is used
MxOperand kOp, ComplexPattern kPat,
// iOp: Supported immediate operand
// iPat: What immediate pattern is used
MxOperand iOp, PatFrag iPat,
// load: What load operation is used with MEM
PatFrag load> {
int Size = vt.Size;
ValueType VT = vt;
string Prefix = prefix;
string Postfix = postfix;
string RLet = rLet;
MxOperand ROp = rOp;
MxOperand JOp = jOp;
ComplexPattern JPat = jPat;
MxOperand OOp = oOp;
ComplexPattern OPat = oPat;
MxOperand EOp = eOp;
ComplexPattern EPat = ePat;
MxOperand POp = pOp;
ComplexPattern PPat = pPat;
MxOperand FOp = fOp;
ComplexPattern FPat = fPat;
MxOperand BOp = bOp;
ComplexPattern BPat = bPat;
MxOperand QOp = qOp;
ComplexPattern QPat = qPat;
MxOperand KOp = kOp;
ComplexPattern KPat = kPat;
MxOperand IOp = iOp;
PatFrag IPat = iPat;
PatFrag Load = load;
}
// Provides an alternative way to access the MxOperand and
// patterns w.r.t a specific addressing mode.
class MxOpBundle<int size, MxOperand op, ComplexPattern pat> {
int Size = size;
MxOperand Op = op;
ComplexPattern Pat = pat;
}
class MxImmOpBundle<int size, MxOperand op, PatFrag pat>
: MxOpBundle<size, op, ?> {
PatFrag ImmPat = pat;
}
// TODO: We can use MxOp<S>AddrMode_<AM> in more places to
// replace MxType-based operand factoring.
foreach size = [8, 16, 32] in {
// Dn
def MxOp#size#AddrMode_d
: MxOpBundle<size, !cast<MxOperand>("MxDRD"#size), ?>;
// (An)
def MxOp#size#AddrMode_j
: MxOpBundle<size, !cast<MxOperand>("MxARI"#size), MxCP_ARI>;
// (An)+
def MxOp#size#AddrMode_o
: MxOpBundle<size, !cast<MxOperand>("MxARIPI"#size), MxCP_ARIPI>;
// -(An)
def MxOp#size#AddrMode_e
: MxOpBundle<size, !cast<MxOperand>("MxARIPD"#size), MxCP_ARIPD>;
// (i,An)
def MxOp#size#AddrMode_p
: MxOpBundle<size, !cast<MxOperand>("MxARID"#size), MxCP_ARID>;
// (i,An,Xn)
def MxOp#size#AddrMode_f
: MxOpBundle<size, !cast<MxOperand>("MxARII"#size), MxCP_ARII>;
// (ABS).L
def MxOp#size#AddrMode_b
: MxOpBundle<size, !cast<MxOperand>("MxAL"#size), MxCP_AL>;
// (i,PC)
def MxOp#size#AddrMode_q
: MxOpBundle<size, !cast<MxOperand>("MxPCD"#size), MxCP_PCD>;
// (i,PC,Xn)
def MxOp#size#AddrMode_k
: MxOpBundle<size, !cast<MxOperand>("MxPCI"#size), MxCP_PCI>;
// #imm
def MxOp#size#AddrMode_i
: MxImmOpBundle<size, !cast<MxOperand>("Mxi"#size#"imm"),
!cast<PatFrag>("MximmSExt"#size)>;
} // foreach size = [8, 16, 32]
foreach size = [16, 32] in {
// An
def MxOp#size#AddrMode_a
: MxOpBundle<size, !cast<MxOperand>("MxARD"#size), ?>;
// Xn
def MxOp#size#AddrMode_r
: MxOpBundle<size, !cast<MxOperand>("MxXRD"#size), ?>;
} // foreach size = [16, 32]
foreach size = [32, 64, 80] in
def MxOp#size#AddrMode_fpr
: MxOpBundle<size, !cast<MxOperand>("MxFPR"#size), ?>;
class MxType8Class<string rLet, MxOperand reg>
: MxType<i8, "b", "", rLet, reg,
MxARI8, MxCP_ARI,
MxARIPI8, MxCP_ARIPI,
MxARIPD8, MxCP_ARIPD,
MxARID8, MxCP_ARID,
MxARII8, MxCP_ARII,
MxAL8, MxCP_AL,
MxPCD8, MxCP_PCD,
MxPCI8, MxCP_PCI,
Mxi8imm, MximmSExt8,
Mxloadi8>;
def MxType8 : MxType8Class<?,?>;
class MxType16Class<string rLet, MxOperand reg>
: MxType<i16, "w", "", rLet, reg,
MxARI16, MxCP_ARI,
MxARIPI16, MxCP_ARIPI,
MxARIPD16, MxCP_ARIPD,
MxARID16, MxCP_ARID,
MxARII16, MxCP_ARII,
MxAL16, MxCP_AL,
MxPCD16, MxCP_PCD,
MxPCI16, MxCP_PCI,
Mxi16imm, MximmSExt16,
Mxloadi16>;
def MxType16 : MxType16Class<?,?>;
class MxType32Class<string rLet, MxOperand reg>
: MxType<i32, "l", "", rLet, reg,
MxARI32, MxCP_ARI,
MxARIPI32, MxCP_ARIPI,
MxARIPD32, MxCP_ARIPD,
MxARID32, MxCP_ARID,
MxARII32, MxCP_ARII,
MxAL32, MxCP_AL,
MxPCD32, MxCP_PCD,
MxPCI32, MxCP_PCI,
Mxi32imm, MximmSExt32,
Mxloadi32>;
def MxType32 : MxType32Class<?,?>;
def MxType8d : MxType8Class<"d", MxDRD8>;
def MxType16d : MxType16Class<"d", MxDRD16>;
def MxType16a : MxType16Class<"a", MxARD16>;
def MxType16r : MxType16Class<"r", MxXRD16>;
def MxType32d : MxType32Class<"d", MxDRD32>;
def MxType32a : MxType32Class<"a", MxARD32>;
def MxType32r : MxType32Class<"r", MxXRD32>;
let Postfix = "_TC" in {
def MxType16d_TC : MxType16Class<"d", MxDRD16_TC>;
def MxType16a_TC : MxType16Class<"a", MxARD16_TC>;
def MxType16r_TC : MxType16Class<"r", MxXRD16_TC>;
def MxType32d_TC : MxType32Class<"d", MxDRD32_TC>;
def MxType32a_TC : MxType32Class<"a", MxARD32_TC>;
def MxType32r_TC : MxType32Class<"r", MxXRD32_TC>;
}
//===----------------------------------------------------------------------===//
// Subsystems
//===----------------------------------------------------------------------===//
include "M68kInstrData.td"
include "M68kInstrShiftRotate.td"
include "M68kInstrBits.td"
include "M68kInstrArithmetic.td"
include "M68kInstrControl.td"
include "M68kInstrAtomics.td"
include "M68kInstrCompiler.td"
|