1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
//===-- NVPTXLowerArgs.cpp - Lower arguments ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//
// Arguments to kernel and device functions are passed via param space,
// which imposes certain restrictions:
// http://docs.nvidia.com/cuda/parallel-thread-execution/#state-spaces
//
// Kernel parameters are read-only and accessible only via ld.param
// instruction, directly or via a pointer. Pointers to kernel
// arguments can't be converted to generic address space.
//
// Device function parameters are directly accessible via
// ld.param/st.param, but taking the address of one returns a pointer
// to a copy created in local space which *can't* be used with
// ld.param/st.param.
//
// Copying a byval struct into local memory in IR allows us to enforce
// the param space restrictions, gives the rest of IR a pointer w/o
// param space restrictions, and gives us an opportunity to eliminate
// the copy.
//
// Pointer arguments to kernel functions need more work to be lowered:
//
// 1. Convert non-byval pointer arguments of CUDA kernels to pointers in the
// global address space. This allows later optimizations to emit
// ld.global.*/st.global.* for accessing these pointer arguments. For
// example,
//
// define void @foo(float* %input) {
// %v = load float, float* %input, align 4
// ...
// }
//
// becomes
//
// define void @foo(float* %input) {
// %input2 = addrspacecast float* %input to float addrspace(1)*
// %input3 = addrspacecast float addrspace(1)* %input2 to float*
// %v = load float, float* %input3, align 4
// ...
// }
//
// Later, NVPTXInferAddressSpaces will optimize it to
//
// define void @foo(float* %input) {
// %input2 = addrspacecast float* %input to float addrspace(1)*
// %v = load float, float addrspace(1)* %input2, align 4
// ...
// }
//
// 2. Convert pointers in a byval kernel parameter to pointers in the global
// address space. As #2, it allows NVPTX to emit more ld/st.global. E.g.,
//
// struct S {
// int *x;
// int *y;
// };
// __global__ void foo(S s) {
// int *b = s.y;
// // use b
// }
//
// "b" points to the global address space. In the IR level,
//
// define void @foo({i32*, i32*}* byval %input) {
// %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
// %b = load i32*, i32** %b_ptr
// ; use %b
// }
//
// becomes
//
// define void @foo({i32*, i32*}* byval %input) {
// %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
// %b = load i32*, i32** %b_ptr
// %b_global = addrspacecast i32* %b to i32 addrspace(1)*
// %b_generic = addrspacecast i32 addrspace(1)* %b_global to i32*
// ; use %b_generic
// }
//
// TODO: merge this pass with NVPTXInferAddressSpaces so that other passes don't
// cancel the addrspacecast pair this pass emits.
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/NVPTXBaseInfo.h"
#include "NVPTX.h"
#include "NVPTXTargetMachine.h"
#include "NVPTXUtilities.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include <numeric>
#include <queue>
#define DEBUG_TYPE "nvptx-lower-args"
using namespace llvm;
namespace llvm {
void initializeNVPTXLowerArgsPass(PassRegistry &);
}
namespace {
class NVPTXLowerArgs : public FunctionPass {
bool runOnFunction(Function &F) override;
bool runOnKernelFunction(const NVPTXTargetMachine &TM, Function &F);
bool runOnDeviceFunction(const NVPTXTargetMachine &TM, Function &F);
// handle byval parameters
void handleByValParam(const NVPTXTargetMachine &TM, Argument *Arg);
// Knowing Ptr must point to the global address space, this function
// addrspacecasts Ptr to global and then back to generic. This allows
// NVPTXInferAddressSpaces to fold the global-to-generic cast into
// loads/stores that appear later.
void markPointerAsGlobal(Value *Ptr);
public:
static char ID; // Pass identification, replacement for typeid
NVPTXLowerArgs() : FunctionPass(ID) {}
StringRef getPassName() const override {
return "Lower pointer arguments of CUDA kernels";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetPassConfig>();
}
};
} // namespace
char NVPTXLowerArgs::ID = 1;
INITIALIZE_PASS_BEGIN(NVPTXLowerArgs, "nvptx-lower-args",
"Lower arguments (NVPTX)", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(NVPTXLowerArgs, "nvptx-lower-args",
"Lower arguments (NVPTX)", false, false)
// =============================================================================
// If the function had a byval struct ptr arg, say foo(%struct.x* byval %d),
// and we can't guarantee that the only accesses are loads,
// then add the following instructions to the first basic block:
//
// %temp = alloca %struct.x, align 8
// %tempd = addrspacecast %struct.x* %d to %struct.x addrspace(101)*
// %tv = load %struct.x addrspace(101)* %tempd
// store %struct.x %tv, %struct.x* %temp, align 8
//
// The above code allocates some space in the stack and copies the incoming
// struct from param space to local space.
// Then replace all occurrences of %d by %temp.
//
// In case we know that all users are GEPs or Loads, replace them with the same
// ones in parameter AS, so we can access them using ld.param.
// =============================================================================
// Replaces the \p OldUser instruction with the same in parameter AS.
// Only Load and GEP are supported.
static void convertToParamAS(Value *OldUser, Value *Param) {
Instruction *I = dyn_cast<Instruction>(OldUser);
assert(I && "OldUser must be an instruction");
struct IP {
Instruction *OldInstruction;
Value *NewParam;
};
SmallVector<IP> ItemsToConvert = {{I, Param}};
SmallVector<Instruction *> InstructionsToDelete;
auto CloneInstInParamAS = [](const IP &I) -> Value * {
if (auto *LI = dyn_cast<LoadInst>(I.OldInstruction)) {
LI->setOperand(0, I.NewParam);
return LI;
}
if (auto *GEP = dyn_cast<GetElementPtrInst>(I.OldInstruction)) {
SmallVector<Value *, 4> Indices(GEP->indices());
auto *NewGEP = GetElementPtrInst::Create(GEP->getSourceElementType(),
I.NewParam, Indices,
GEP->getName(), GEP);
NewGEP->setIsInBounds(GEP->isInBounds());
return NewGEP;
}
if (auto *BC = dyn_cast<BitCastInst>(I.OldInstruction)) {
auto *NewBCType = PointerType::get(BC->getContext(), ADDRESS_SPACE_PARAM);
return BitCastInst::Create(BC->getOpcode(), I.NewParam, NewBCType,
BC->getName(), BC);
}
if (auto *ASC = dyn_cast<AddrSpaceCastInst>(I.OldInstruction)) {
assert(ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM);
(void)ASC;
// Just pass through the argument, the old ASC is no longer needed.
return I.NewParam;
}
llvm_unreachable("Unsupported instruction");
};
while (!ItemsToConvert.empty()) {
IP I = ItemsToConvert.pop_back_val();
Value *NewInst = CloneInstInParamAS(I);
if (NewInst && NewInst != I.OldInstruction) {
// We've created a new instruction. Queue users of the old instruction to
// be converted and the instruction itself to be deleted. We can't delete
// the old instruction yet, because it's still in use by a load somewhere.
for (Value *V : I.OldInstruction->users())
ItemsToConvert.push_back({cast<Instruction>(V), NewInst});
InstructionsToDelete.push_back(I.OldInstruction);
}
}
// Now we know that all argument loads are using addresses in parameter space
// and we can finally remove the old instructions in generic AS. Instructions
// scheduled for removal should be processed in reverse order so the ones
// closest to the load are deleted first. Otherwise they may still be in use.
// E.g if we have Value = Load(BitCast(GEP(arg))), InstructionsToDelete will
// have {GEP,BitCast}. GEP can't be deleted first, because it's still used by
// the BitCast.
for (Instruction *I : llvm::reverse(InstructionsToDelete))
I->eraseFromParent();
}
// Adjust alignment of arguments passed byval in .param address space. We can
// increase alignment of such arguments in a way that ensures that we can
// effectively vectorize their loads. We should also traverse all loads from
// byval pointer and adjust their alignment, if those were using known offset.
// Such alignment changes must be conformed with parameter store and load in
// NVPTXTargetLowering::LowerCall.
static void adjustByValArgAlignment(Argument *Arg, Value *ArgInParamAS,
const NVPTXTargetLowering *TLI) {
Function *Func = Arg->getParent();
Type *StructType = Arg->getParamByValType();
const DataLayout DL(Func->getParent());
uint64_t NewArgAlign =
TLI->getFunctionParamOptimizedAlign(Func, StructType, DL).value();
uint64_t CurArgAlign =
Arg->getAttribute(Attribute::Alignment).getValueAsInt();
if (CurArgAlign >= NewArgAlign)
return;
LLVM_DEBUG(dbgs() << "Try to use alignment " << NewArgAlign << " instead of "
<< CurArgAlign << " for " << *Arg << '\n');
auto NewAlignAttr =
Attribute::get(Func->getContext(), Attribute::Alignment, NewArgAlign);
Arg->removeAttr(Attribute::Alignment);
Arg->addAttr(NewAlignAttr);
struct Load {
LoadInst *Inst;
uint64_t Offset;
};
struct LoadContext {
Value *InitialVal;
uint64_t Offset;
};
SmallVector<Load> Loads;
std::queue<LoadContext> Worklist;
Worklist.push({ArgInParamAS, 0});
while (!Worklist.empty()) {
LoadContext Ctx = Worklist.front();
Worklist.pop();
for (User *CurUser : Ctx.InitialVal->users()) {
if (auto *I = dyn_cast<LoadInst>(CurUser)) {
Loads.push_back({I, Ctx.Offset});
continue;
}
if (auto *I = dyn_cast<BitCastInst>(CurUser)) {
Worklist.push({I, Ctx.Offset});
continue;
}
if (auto *I = dyn_cast<GetElementPtrInst>(CurUser)) {
APInt OffsetAccumulated =
APInt::getZero(DL.getIndexSizeInBits(ADDRESS_SPACE_PARAM));
if (!I->accumulateConstantOffset(DL, OffsetAccumulated))
continue;
uint64_t OffsetLimit = -1;
uint64_t Offset = OffsetAccumulated.getLimitedValue(OffsetLimit);
assert(Offset != OffsetLimit && "Expect Offset less than UINT64_MAX");
Worklist.push({I, Ctx.Offset + Offset});
continue;
}
llvm_unreachable("All users must be one of: load, "
"bitcast, getelementptr.");
}
}
for (Load &CurLoad : Loads) {
Align NewLoadAlign(std::gcd(NewArgAlign, CurLoad.Offset));
Align CurLoadAlign(CurLoad.Inst->getAlign());
CurLoad.Inst->setAlignment(std::max(NewLoadAlign, CurLoadAlign));
}
}
void NVPTXLowerArgs::handleByValParam(const NVPTXTargetMachine &TM,
Argument *Arg) {
Function *Func = Arg->getParent();
Instruction *FirstInst = &(Func->getEntryBlock().front());
Type *StructType = Arg->getParamByValType();
assert(StructType && "Missing byval type");
auto IsALoadChain = [&](Value *Start) {
SmallVector<Value *, 16> ValuesToCheck = {Start};
auto IsALoadChainInstr = [](Value *V) -> bool {
if (isa<GetElementPtrInst>(V) || isa<BitCastInst>(V) || isa<LoadInst>(V))
return true;
// ASC to param space are OK, too -- we'll just strip them.
if (auto *ASC = dyn_cast<AddrSpaceCastInst>(V)) {
if (ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM)
return true;
}
return false;
};
while (!ValuesToCheck.empty()) {
Value *V = ValuesToCheck.pop_back_val();
if (!IsALoadChainInstr(V)) {
LLVM_DEBUG(dbgs() << "Need a copy of " << *Arg << " because of " << *V
<< "\n");
(void)Arg;
return false;
}
if (!isa<LoadInst>(V))
llvm::append_range(ValuesToCheck, V->users());
}
return true;
};
if (llvm::all_of(Arg->users(), IsALoadChain)) {
// Convert all loads and intermediate operations to use parameter AS and
// skip creation of a local copy of the argument.
SmallVector<User *, 16> UsersToUpdate(Arg->users());
Value *ArgInParamAS = new AddrSpaceCastInst(
Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
FirstInst);
for (Value *V : UsersToUpdate)
convertToParamAS(V, ArgInParamAS);
LLVM_DEBUG(dbgs() << "No need to copy " << *Arg << "\n");
const auto *TLI =
cast<NVPTXTargetLowering>(TM.getSubtargetImpl()->getTargetLowering());
adjustByValArgAlignment(Arg, ArgInParamAS, TLI);
return;
}
// Otherwise we have to create a temporary copy.
const DataLayout &DL = Func->getParent()->getDataLayout();
unsigned AS = DL.getAllocaAddrSpace();
AllocaInst *AllocA = new AllocaInst(StructType, AS, Arg->getName(), FirstInst);
// Set the alignment to alignment of the byval parameter. This is because,
// later load/stores assume that alignment, and we are going to replace
// the use of the byval parameter with this alloca instruction.
AllocA->setAlignment(Func->getParamAlign(Arg->getArgNo())
.value_or(DL.getPrefTypeAlign(StructType)));
Arg->replaceAllUsesWith(AllocA);
Value *ArgInParam = new AddrSpaceCastInst(
Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
FirstInst);
// Be sure to propagate alignment to this load; LLVM doesn't know that NVPTX
// addrspacecast preserves alignment. Since params are constant, this load is
// definitely not volatile.
LoadInst *LI =
new LoadInst(StructType, ArgInParam, Arg->getName(),
/*isVolatile=*/false, AllocA->getAlign(), FirstInst);
new StoreInst(LI, AllocA, FirstInst);
}
void NVPTXLowerArgs::markPointerAsGlobal(Value *Ptr) {
if (Ptr->getType()->getPointerAddressSpace() != ADDRESS_SPACE_GENERIC)
return;
// Deciding where to emit the addrspacecast pair.
BasicBlock::iterator InsertPt;
if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
// Insert at the functon entry if Ptr is an argument.
InsertPt = Arg->getParent()->getEntryBlock().begin();
} else {
// Insert right after Ptr if Ptr is an instruction.
InsertPt = ++cast<Instruction>(Ptr)->getIterator();
assert(InsertPt != InsertPt->getParent()->end() &&
"We don't call this function with Ptr being a terminator.");
}
Instruction *PtrInGlobal = new AddrSpaceCastInst(
Ptr, PointerType::get(Ptr->getContext(), ADDRESS_SPACE_GLOBAL),
Ptr->getName(), &*InsertPt);
Value *PtrInGeneric = new AddrSpaceCastInst(PtrInGlobal, Ptr->getType(),
Ptr->getName(), &*InsertPt);
// Replace with PtrInGeneric all uses of Ptr except PtrInGlobal.
Ptr->replaceAllUsesWith(PtrInGeneric);
PtrInGlobal->setOperand(0, Ptr);
}
// =============================================================================
// Main function for this pass.
// =============================================================================
bool NVPTXLowerArgs::runOnKernelFunction(const NVPTXTargetMachine &TM,
Function &F) {
// Copying of byval aggregates + SROA may result in pointers being loaded as
// integers, followed by intotoptr. We may want to mark those as global, too,
// but only if the loaded integer is used exclusively for conversion to a
// pointer with inttoptr.
auto HandleIntToPtr = [this](Value &V) {
if (llvm::all_of(V.users(), [](User *U) { return isa<IntToPtrInst>(U); })) {
SmallVector<User *, 16> UsersToUpdate(V.users());
llvm::for_each(UsersToUpdate, [&](User *U) { markPointerAsGlobal(U); });
}
};
if (TM.getDrvInterface() == NVPTX::CUDA) {
// Mark pointers in byval structs as global.
for (auto &B : F) {
for (auto &I : B) {
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
if (LI->getType()->isPointerTy() || LI->getType()->isIntegerTy()) {
Value *UO = getUnderlyingObject(LI->getPointerOperand());
if (Argument *Arg = dyn_cast<Argument>(UO)) {
if (Arg->hasByValAttr()) {
// LI is a load from a pointer within a byval kernel parameter.
if (LI->getType()->isPointerTy())
markPointerAsGlobal(LI);
else
HandleIntToPtr(*LI);
}
}
}
}
}
}
}
LLVM_DEBUG(dbgs() << "Lowering kernel args of " << F.getName() << "\n");
for (Argument &Arg : F.args()) {
if (Arg.getType()->isPointerTy()) {
if (Arg.hasByValAttr())
handleByValParam(TM, &Arg);
else if (TM.getDrvInterface() == NVPTX::CUDA)
markPointerAsGlobal(&Arg);
} else if (Arg.getType()->isIntegerTy() &&
TM.getDrvInterface() == NVPTX::CUDA) {
HandleIntToPtr(Arg);
}
}
return true;
}
// Device functions only need to copy byval args into local memory.
bool NVPTXLowerArgs::runOnDeviceFunction(const NVPTXTargetMachine &TM,
Function &F) {
LLVM_DEBUG(dbgs() << "Lowering function args of " << F.getName() << "\n");
for (Argument &Arg : F.args())
if (Arg.getType()->isPointerTy() && Arg.hasByValAttr())
handleByValParam(TM, &Arg);
return true;
}
bool NVPTXLowerArgs::runOnFunction(Function &F) {
auto &TM = getAnalysis<TargetPassConfig>().getTM<NVPTXTargetMachine>();
return isKernelFunction(F) ? runOnKernelFunction(TM, F)
: runOnDeviceFunction(TM, F);
}
FunctionPass *llvm::createNVPTXLowerArgsPass() { return new NVPTXLowerArgs(); }
|