1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
|
//===- SPIRVBuiltins.cpp - SPIR-V Built-in Functions ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements lowering builtin function calls and types using their
// demangled names and TableGen records.
//
//===----------------------------------------------------------------------===//
#include "SPIRVBuiltins.h"
#include "SPIRV.h"
#include "SPIRVUtils.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/IntrinsicsSPIRV.h"
#include <string>
#include <tuple>
#define DEBUG_TYPE "spirv-builtins"
namespace llvm {
namespace SPIRV {
#define GET_BuiltinGroup_DECL
#include "SPIRVGenTables.inc"
struct DemangledBuiltin {
StringRef Name;
InstructionSet::InstructionSet Set;
BuiltinGroup Group;
uint8_t MinNumArgs;
uint8_t MaxNumArgs;
};
#define GET_DemangledBuiltins_DECL
#define GET_DemangledBuiltins_IMPL
struct IncomingCall {
const std::string BuiltinName;
const DemangledBuiltin *Builtin;
const Register ReturnRegister;
const SPIRVType *ReturnType;
const SmallVectorImpl<Register> &Arguments;
IncomingCall(const std::string BuiltinName, const DemangledBuiltin *Builtin,
const Register ReturnRegister, const SPIRVType *ReturnType,
const SmallVectorImpl<Register> &Arguments)
: BuiltinName(BuiltinName), Builtin(Builtin),
ReturnRegister(ReturnRegister), ReturnType(ReturnType),
Arguments(Arguments) {}
};
struct NativeBuiltin {
StringRef Name;
InstructionSet::InstructionSet Set;
uint32_t Opcode;
};
#define GET_NativeBuiltins_DECL
#define GET_NativeBuiltins_IMPL
struct GroupBuiltin {
StringRef Name;
uint32_t Opcode;
uint32_t GroupOperation;
bool IsElect;
bool IsAllOrAny;
bool IsAllEqual;
bool IsBallot;
bool IsInverseBallot;
bool IsBallotBitExtract;
bool IsBallotFindBit;
bool IsLogical;
bool NoGroupOperation;
bool HasBoolArg;
};
#define GET_GroupBuiltins_DECL
#define GET_GroupBuiltins_IMPL
struct GetBuiltin {
StringRef Name;
InstructionSet::InstructionSet Set;
BuiltIn::BuiltIn Value;
};
using namespace BuiltIn;
#define GET_GetBuiltins_DECL
#define GET_GetBuiltins_IMPL
struct ImageQueryBuiltin {
StringRef Name;
InstructionSet::InstructionSet Set;
uint32_t Component;
};
#define GET_ImageQueryBuiltins_DECL
#define GET_ImageQueryBuiltins_IMPL
struct ConvertBuiltin {
StringRef Name;
InstructionSet::InstructionSet Set;
bool IsDestinationSigned;
bool IsSaturated;
bool IsRounded;
FPRoundingMode::FPRoundingMode RoundingMode;
};
struct VectorLoadStoreBuiltin {
StringRef Name;
InstructionSet::InstructionSet Set;
uint32_t Number;
bool IsRounded;
FPRoundingMode::FPRoundingMode RoundingMode;
};
using namespace FPRoundingMode;
#define GET_ConvertBuiltins_DECL
#define GET_ConvertBuiltins_IMPL
using namespace InstructionSet;
#define GET_VectorLoadStoreBuiltins_DECL
#define GET_VectorLoadStoreBuiltins_IMPL
#define GET_CLMemoryScope_DECL
#define GET_CLSamplerAddressingMode_DECL
#define GET_CLMemoryFenceFlags_DECL
#define GET_ExtendedBuiltins_DECL
#include "SPIRVGenTables.inc"
} // namespace SPIRV
//===----------------------------------------------------------------------===//
// Misc functions for looking up builtins and veryfying requirements using
// TableGen records
//===----------------------------------------------------------------------===//
/// Looks up the demangled builtin call in the SPIRVBuiltins.td records using
/// the provided \p DemangledCall and specified \p Set.
///
/// The lookup follows the following algorithm, returning the first successful
/// match:
/// 1. Search with the plain demangled name (expecting a 1:1 match).
/// 2. Search with the prefix before or suffix after the demangled name
/// signyfying the type of the first argument.
///
/// \returns Wrapper around the demangled call and found builtin definition.
static std::unique_ptr<const SPIRV::IncomingCall>
lookupBuiltin(StringRef DemangledCall,
SPIRV::InstructionSet::InstructionSet Set,
Register ReturnRegister, const SPIRVType *ReturnType,
const SmallVectorImpl<Register> &Arguments) {
// Extract the builtin function name and types of arguments from the call
// skeleton.
std::string BuiltinName =
DemangledCall.substr(0, DemangledCall.find('(')).str();
// Check if the extracted name contains type information between angle
// brackets. If so, the builtin is an instantiated template - needs to have
// the information after angle brackets and return type removed.
if (BuiltinName.find('<') && BuiltinName.back() == '>') {
BuiltinName = BuiltinName.substr(0, BuiltinName.find('<'));
BuiltinName = BuiltinName.substr(BuiltinName.find_last_of(" ") + 1);
}
// Check if the extracted name begins with "__spirv_ImageSampleExplicitLod"
// contains return type information at the end "_R<type>", if so extract the
// plain builtin name without the type information.
if (StringRef(BuiltinName).contains("__spirv_ImageSampleExplicitLod") &&
StringRef(BuiltinName).contains("_R")) {
BuiltinName = BuiltinName.substr(0, BuiltinName.find("_R"));
}
SmallVector<StringRef, 10> BuiltinArgumentTypes;
StringRef BuiltinArgs =
DemangledCall.slice(DemangledCall.find('(') + 1, DemangledCall.find(')'));
BuiltinArgs.split(BuiltinArgumentTypes, ',', -1, false);
// Look up the builtin in the defined set. Start with the plain demangled
// name, expecting a 1:1 match in the defined builtin set.
const SPIRV::DemangledBuiltin *Builtin;
if ((Builtin = SPIRV::lookupBuiltin(BuiltinName, Set)))
return std::make_unique<SPIRV::IncomingCall>(
BuiltinName, Builtin, ReturnRegister, ReturnType, Arguments);
// If the initial look up was unsuccessful and the demangled call takes at
// least 1 argument, add a prefix or suffix signifying the type of the first
// argument and repeat the search.
if (BuiltinArgumentTypes.size() >= 1) {
char FirstArgumentType = BuiltinArgumentTypes[0][0];
// Prefix to be added to the builtin's name for lookup.
// For example, OpenCL "abs" taking an unsigned value has a prefix "u_".
std::string Prefix;
switch (FirstArgumentType) {
// Unsigned:
case 'u':
if (Set == SPIRV::InstructionSet::OpenCL_std)
Prefix = "u_";
else if (Set == SPIRV::InstructionSet::GLSL_std_450)
Prefix = "u";
break;
// Signed:
case 'c':
case 's':
case 'i':
case 'l':
if (Set == SPIRV::InstructionSet::OpenCL_std)
Prefix = "s_";
else if (Set == SPIRV::InstructionSet::GLSL_std_450)
Prefix = "s";
break;
// Floating-point:
case 'f':
case 'd':
case 'h':
if (Set == SPIRV::InstructionSet::OpenCL_std ||
Set == SPIRV::InstructionSet::GLSL_std_450)
Prefix = "f";
break;
}
// If argument-type name prefix was added, look up the builtin again.
if (!Prefix.empty() &&
(Builtin = SPIRV::lookupBuiltin(Prefix + BuiltinName, Set)))
return std::make_unique<SPIRV::IncomingCall>(
BuiltinName, Builtin, ReturnRegister, ReturnType, Arguments);
// If lookup with a prefix failed, find a suffix to be added to the
// builtin's name for lookup. For example, OpenCL "group_reduce_max" taking
// an unsigned value has a suffix "u".
std::string Suffix;
switch (FirstArgumentType) {
// Unsigned:
case 'u':
Suffix = "u";
break;
// Signed:
case 'c':
case 's':
case 'i':
case 'l':
Suffix = "s";
break;
// Floating-point:
case 'f':
case 'd':
case 'h':
Suffix = "f";
break;
}
// If argument-type name suffix was added, look up the builtin again.
if (!Suffix.empty() &&
(Builtin = SPIRV::lookupBuiltin(BuiltinName + Suffix, Set)))
return std::make_unique<SPIRV::IncomingCall>(
BuiltinName, Builtin, ReturnRegister, ReturnType, Arguments);
}
// No builtin with such name was found in the set.
return nullptr;
}
//===----------------------------------------------------------------------===//
// Helper functions for building misc instructions
//===----------------------------------------------------------------------===//
/// Helper function building either a resulting scalar or vector bool register
/// depending on the expected \p ResultType.
///
/// \returns Tuple of the resulting register and its type.
static std::tuple<Register, SPIRVType *>
buildBoolRegister(MachineIRBuilder &MIRBuilder, const SPIRVType *ResultType,
SPIRVGlobalRegistry *GR) {
LLT Type;
SPIRVType *BoolType = GR->getOrCreateSPIRVBoolType(MIRBuilder);
if (ResultType->getOpcode() == SPIRV::OpTypeVector) {
unsigned VectorElements = ResultType->getOperand(2).getImm();
BoolType =
GR->getOrCreateSPIRVVectorType(BoolType, VectorElements, MIRBuilder);
const FixedVectorType *LLVMVectorType =
cast<FixedVectorType>(GR->getTypeForSPIRVType(BoolType));
Type = LLT::vector(LLVMVectorType->getElementCount(), 1);
} else {
Type = LLT::scalar(1);
}
Register ResultRegister =
MIRBuilder.getMRI()->createGenericVirtualRegister(Type);
MIRBuilder.getMRI()->setRegClass(ResultRegister, &SPIRV::IDRegClass);
GR->assignSPIRVTypeToVReg(BoolType, ResultRegister, MIRBuilder.getMF());
return std::make_tuple(ResultRegister, BoolType);
}
/// Helper function for building either a vector or scalar select instruction
/// depending on the expected \p ResultType.
static bool buildSelectInst(MachineIRBuilder &MIRBuilder,
Register ReturnRegister, Register SourceRegister,
const SPIRVType *ReturnType,
SPIRVGlobalRegistry *GR) {
Register TrueConst, FalseConst;
if (ReturnType->getOpcode() == SPIRV::OpTypeVector) {
unsigned Bits = GR->getScalarOrVectorBitWidth(ReturnType);
uint64_t AllOnes = APInt::getAllOnes(Bits).getZExtValue();
TrueConst = GR->getOrCreateConsIntVector(AllOnes, MIRBuilder, ReturnType);
FalseConst = GR->getOrCreateConsIntVector(0, MIRBuilder, ReturnType);
} else {
TrueConst = GR->buildConstantInt(1, MIRBuilder, ReturnType);
FalseConst = GR->buildConstantInt(0, MIRBuilder, ReturnType);
}
return MIRBuilder.buildSelect(ReturnRegister, SourceRegister, TrueConst,
FalseConst);
}
/// Helper function for building a load instruction loading into the
/// \p DestinationReg.
static Register buildLoadInst(SPIRVType *BaseType, Register PtrRegister,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR, LLT LowLevelType,
Register DestinationReg = Register(0)) {
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
if (!DestinationReg.isValid()) {
DestinationReg = MRI->createVirtualRegister(&SPIRV::IDRegClass);
MRI->setType(DestinationReg, LLT::scalar(32));
GR->assignSPIRVTypeToVReg(BaseType, DestinationReg, MIRBuilder.getMF());
}
// TODO: consider using correct address space and alignment (p0 is canonical
// type for selection though).
MachinePointerInfo PtrInfo = MachinePointerInfo();
MIRBuilder.buildLoad(DestinationReg, PtrRegister, PtrInfo, Align());
return DestinationReg;
}
/// Helper function for building a load instruction for loading a builtin global
/// variable of \p BuiltinValue value.
static Register buildBuiltinVariableLoad(MachineIRBuilder &MIRBuilder,
SPIRVType *VariableType,
SPIRVGlobalRegistry *GR,
SPIRV::BuiltIn::BuiltIn BuiltinValue,
LLT LLType,
Register Reg = Register(0)) {
Register NewRegister =
MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::IDRegClass);
MIRBuilder.getMRI()->setType(NewRegister,
LLT::pointer(0, GR->getPointerSize()));
SPIRVType *PtrType = GR->getOrCreateSPIRVPointerType(
VariableType, MIRBuilder, SPIRV::StorageClass::Input);
GR->assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
// Set up the global OpVariable with the necessary builtin decorations.
Register Variable = GR->buildGlobalVariable(
NewRegister, PtrType, getLinkStringForBuiltIn(BuiltinValue), nullptr,
SPIRV::StorageClass::Input, nullptr, true, true,
SPIRV::LinkageType::Import, MIRBuilder, false);
// Load the value from the global variable.
Register LoadedRegister =
buildLoadInst(VariableType, Variable, MIRBuilder, GR, LLType, Reg);
MIRBuilder.getMRI()->setType(LoadedRegister, LLType);
return LoadedRegister;
}
/// Helper external function for inserting ASSIGN_TYPE instuction between \p Reg
/// and its definition, set the new register as a destination of the definition,
/// assign SPIRVType to both registers. If SpirvTy is provided, use it as
/// SPIRVType in ASSIGN_TYPE, otherwise create it from \p Ty. Defined in
/// SPIRVPreLegalizer.cpp.
extern Register insertAssignInstr(Register Reg, Type *Ty, SPIRVType *SpirvTy,
SPIRVGlobalRegistry *GR,
MachineIRBuilder &MIB,
MachineRegisterInfo &MRI);
// TODO: Move to TableGen.
static SPIRV::MemorySemantics::MemorySemantics
getSPIRVMemSemantics(std::memory_order MemOrder) {
switch (MemOrder) {
case std::memory_order::memory_order_relaxed:
return SPIRV::MemorySemantics::None;
case std::memory_order::memory_order_acquire:
return SPIRV::MemorySemantics::Acquire;
case std::memory_order::memory_order_release:
return SPIRV::MemorySemantics::Release;
case std::memory_order::memory_order_acq_rel:
return SPIRV::MemorySemantics::AcquireRelease;
case std::memory_order::memory_order_seq_cst:
return SPIRV::MemorySemantics::SequentiallyConsistent;
default:
llvm_unreachable("Unknown CL memory scope");
}
}
static SPIRV::Scope::Scope getSPIRVScope(SPIRV::CLMemoryScope ClScope) {
switch (ClScope) {
case SPIRV::CLMemoryScope::memory_scope_work_item:
return SPIRV::Scope::Invocation;
case SPIRV::CLMemoryScope::memory_scope_work_group:
return SPIRV::Scope::Workgroup;
case SPIRV::CLMemoryScope::memory_scope_device:
return SPIRV::Scope::Device;
case SPIRV::CLMemoryScope::memory_scope_all_svm_devices:
return SPIRV::Scope::CrossDevice;
case SPIRV::CLMemoryScope::memory_scope_sub_group:
return SPIRV::Scope::Subgroup;
}
llvm_unreachable("Unknown CL memory scope");
}
static Register buildConstantIntReg(uint64_t Val, MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR,
unsigned BitWidth = 32) {
SPIRVType *IntType = GR->getOrCreateSPIRVIntegerType(BitWidth, MIRBuilder);
return GR->buildConstantInt(Val, MIRBuilder, IntType);
}
static Register buildScopeReg(Register CLScopeRegister,
SPIRV::Scope::Scope Scope,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR,
MachineRegisterInfo *MRI) {
if (CLScopeRegister.isValid()) {
auto CLScope =
static_cast<SPIRV::CLMemoryScope>(getIConstVal(CLScopeRegister, MRI));
Scope = getSPIRVScope(CLScope);
if (CLScope == static_cast<unsigned>(Scope)) {
MRI->setRegClass(CLScopeRegister, &SPIRV::IDRegClass);
return CLScopeRegister;
}
}
return buildConstantIntReg(Scope, MIRBuilder, GR);
}
static Register buildMemSemanticsReg(Register SemanticsRegister,
Register PtrRegister, unsigned &Semantics,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
if (SemanticsRegister.isValid()) {
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
std::memory_order Order =
static_cast<std::memory_order>(getIConstVal(SemanticsRegister, MRI));
Semantics =
getSPIRVMemSemantics(Order) |
getMemSemanticsForStorageClass(GR->getPointerStorageClass(PtrRegister));
if (Order == Semantics) {
MRI->setRegClass(SemanticsRegister, &SPIRV::IDRegClass);
return SemanticsRegister;
}
}
return buildConstantIntReg(Semantics, MIRBuilder, GR);
}
/// Helper function for translating atomic init to OpStore.
static bool buildAtomicInitInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder) {
assert(Call->Arguments.size() == 2 &&
"Need 2 arguments for atomic init translation");
MIRBuilder.getMRI()->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
MIRBuilder.getMRI()->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
MIRBuilder.buildInstr(SPIRV::OpStore)
.addUse(Call->Arguments[0])
.addUse(Call->Arguments[1]);
return true;
}
/// Helper function for building an atomic load instruction.
static bool buildAtomicLoadInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
Register PtrRegister = Call->Arguments[0];
MIRBuilder.getMRI()->setRegClass(PtrRegister, &SPIRV::IDRegClass);
// TODO: if true insert call to __translate_ocl_memory_sccope before
// OpAtomicLoad and the function implementation. We can use Translator's
// output for transcoding/atomic_explicit_arguments.cl as an example.
Register ScopeRegister;
if (Call->Arguments.size() > 1) {
ScopeRegister = Call->Arguments[1];
MIRBuilder.getMRI()->setRegClass(ScopeRegister, &SPIRV::IDRegClass);
} else
ScopeRegister = buildConstantIntReg(SPIRV::Scope::Device, MIRBuilder, GR);
Register MemSemanticsReg;
if (Call->Arguments.size() > 2) {
// TODO: Insert call to __translate_ocl_memory_order before OpAtomicLoad.
MemSemanticsReg = Call->Arguments[2];
MIRBuilder.getMRI()->setRegClass(MemSemanticsReg, &SPIRV::IDRegClass);
} else {
int Semantics =
SPIRV::MemorySemantics::SequentiallyConsistent |
getMemSemanticsForStorageClass(GR->getPointerStorageClass(PtrRegister));
MemSemanticsReg = buildConstantIntReg(Semantics, MIRBuilder, GR);
}
MIRBuilder.buildInstr(SPIRV::OpAtomicLoad)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType))
.addUse(PtrRegister)
.addUse(ScopeRegister)
.addUse(MemSemanticsReg);
return true;
}
/// Helper function for building an atomic store instruction.
static bool buildAtomicStoreInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
Register ScopeRegister =
buildConstantIntReg(SPIRV::Scope::Device, MIRBuilder, GR);
Register PtrRegister = Call->Arguments[0];
MIRBuilder.getMRI()->setRegClass(PtrRegister, &SPIRV::IDRegClass);
int Semantics =
SPIRV::MemorySemantics::SequentiallyConsistent |
getMemSemanticsForStorageClass(GR->getPointerStorageClass(PtrRegister));
Register MemSemanticsReg = buildConstantIntReg(Semantics, MIRBuilder, GR);
MIRBuilder.getMRI()->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
MIRBuilder.buildInstr(SPIRV::OpAtomicStore)
.addUse(PtrRegister)
.addUse(ScopeRegister)
.addUse(MemSemanticsReg)
.addUse(Call->Arguments[1]);
return true;
}
/// Helper function for building an atomic compare-exchange instruction.
static bool buildAtomicCompareExchangeInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
unsigned Opcode =
SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
bool IsCmpxchg = Call->Builtin->Name.contains("cmpxchg");
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
Register ObjectPtr = Call->Arguments[0]; // Pointer (volatile A *object.)
Register ExpectedArg = Call->Arguments[1]; // Comparator (C* expected).
Register Desired = Call->Arguments[2]; // Value (C Desired).
MRI->setRegClass(ObjectPtr, &SPIRV::IDRegClass);
MRI->setRegClass(ExpectedArg, &SPIRV::IDRegClass);
MRI->setRegClass(Desired, &SPIRV::IDRegClass);
SPIRVType *SpvDesiredTy = GR->getSPIRVTypeForVReg(Desired);
LLT DesiredLLT = MRI->getType(Desired);
assert(GR->getSPIRVTypeForVReg(ObjectPtr)->getOpcode() ==
SPIRV::OpTypePointer);
unsigned ExpectedType = GR->getSPIRVTypeForVReg(ExpectedArg)->getOpcode();
assert(IsCmpxchg ? ExpectedType == SPIRV::OpTypeInt
: ExpectedType == SPIRV::OpTypePointer);
assert(GR->isScalarOfType(Desired, SPIRV::OpTypeInt));
SPIRVType *SpvObjectPtrTy = GR->getSPIRVTypeForVReg(ObjectPtr);
assert(SpvObjectPtrTy->getOperand(2).isReg() && "SPIRV type is expected");
auto StorageClass = static_cast<SPIRV::StorageClass::StorageClass>(
SpvObjectPtrTy->getOperand(1).getImm());
auto MemSemStorage = getMemSemanticsForStorageClass(StorageClass);
Register MemSemEqualReg;
Register MemSemUnequalReg;
uint64_t MemSemEqual =
IsCmpxchg
? SPIRV::MemorySemantics::None
: SPIRV::MemorySemantics::SequentiallyConsistent | MemSemStorage;
uint64_t MemSemUnequal =
IsCmpxchg
? SPIRV::MemorySemantics::None
: SPIRV::MemorySemantics::SequentiallyConsistent | MemSemStorage;
if (Call->Arguments.size() >= 4) {
assert(Call->Arguments.size() >= 5 &&
"Need 5+ args for explicit atomic cmpxchg");
auto MemOrdEq =
static_cast<std::memory_order>(getIConstVal(Call->Arguments[3], MRI));
auto MemOrdNeq =
static_cast<std::memory_order>(getIConstVal(Call->Arguments[4], MRI));
MemSemEqual = getSPIRVMemSemantics(MemOrdEq) | MemSemStorage;
MemSemUnequal = getSPIRVMemSemantics(MemOrdNeq) | MemSemStorage;
if (MemOrdEq == MemSemEqual)
MemSemEqualReg = Call->Arguments[3];
if (MemOrdNeq == MemSemEqual)
MemSemUnequalReg = Call->Arguments[4];
MRI->setRegClass(Call->Arguments[3], &SPIRV::IDRegClass);
MRI->setRegClass(Call->Arguments[4], &SPIRV::IDRegClass);
}
if (!MemSemEqualReg.isValid())
MemSemEqualReg = buildConstantIntReg(MemSemEqual, MIRBuilder, GR);
if (!MemSemUnequalReg.isValid())
MemSemUnequalReg = buildConstantIntReg(MemSemUnequal, MIRBuilder, GR);
Register ScopeReg;
auto Scope = IsCmpxchg ? SPIRV::Scope::Workgroup : SPIRV::Scope::Device;
if (Call->Arguments.size() >= 6) {
assert(Call->Arguments.size() == 6 &&
"Extra args for explicit atomic cmpxchg");
auto ClScope = static_cast<SPIRV::CLMemoryScope>(
getIConstVal(Call->Arguments[5], MRI));
Scope = getSPIRVScope(ClScope);
if (ClScope == static_cast<unsigned>(Scope))
ScopeReg = Call->Arguments[5];
MRI->setRegClass(Call->Arguments[5], &SPIRV::IDRegClass);
}
if (!ScopeReg.isValid())
ScopeReg = buildConstantIntReg(Scope, MIRBuilder, GR);
Register Expected = IsCmpxchg
? ExpectedArg
: buildLoadInst(SpvDesiredTy, ExpectedArg, MIRBuilder,
GR, LLT::scalar(32));
MRI->setType(Expected, DesiredLLT);
Register Tmp = !IsCmpxchg ? MRI->createGenericVirtualRegister(DesiredLLT)
: Call->ReturnRegister;
if (!MRI->getRegClassOrNull(Tmp))
MRI->setRegClass(Tmp, &SPIRV::IDRegClass);
GR->assignSPIRVTypeToVReg(SpvDesiredTy, Tmp, MIRBuilder.getMF());
SPIRVType *IntTy = GR->getOrCreateSPIRVIntegerType(32, MIRBuilder);
MIRBuilder.buildInstr(Opcode)
.addDef(Tmp)
.addUse(GR->getSPIRVTypeID(IntTy))
.addUse(ObjectPtr)
.addUse(ScopeReg)
.addUse(MemSemEqualReg)
.addUse(MemSemUnequalReg)
.addUse(Desired)
.addUse(Expected);
if (!IsCmpxchg) {
MIRBuilder.buildInstr(SPIRV::OpStore).addUse(ExpectedArg).addUse(Tmp);
MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Call->ReturnRegister, Tmp, Expected);
}
return true;
}
/// Helper function for building an atomic load instruction.
static bool buildAtomicRMWInst(const SPIRV::IncomingCall *Call, unsigned Opcode,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
Register ScopeRegister =
Call->Arguments.size() >= 4 ? Call->Arguments[3] : Register();
assert(Call->Arguments.size() <= 4 &&
"Too many args for explicit atomic RMW");
ScopeRegister = buildScopeReg(ScopeRegister, SPIRV::Scope::Workgroup,
MIRBuilder, GR, MRI);
Register PtrRegister = Call->Arguments[0];
unsigned Semantics = SPIRV::MemorySemantics::None;
MRI->setRegClass(PtrRegister, &SPIRV::IDRegClass);
Register MemSemanticsReg =
Call->Arguments.size() >= 3 ? Call->Arguments[2] : Register();
MemSemanticsReg = buildMemSemanticsReg(MemSemanticsReg, PtrRegister,
Semantics, MIRBuilder, GR);
MRI->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
MIRBuilder.buildInstr(Opcode)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType))
.addUse(PtrRegister)
.addUse(ScopeRegister)
.addUse(MemSemanticsReg)
.addUse(Call->Arguments[1]);
return true;
}
/// Helper function for building atomic flag instructions (e.g.
/// OpAtomicFlagTestAndSet).
static bool buildAtomicFlagInst(const SPIRV::IncomingCall *Call,
unsigned Opcode, MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
Register PtrRegister = Call->Arguments[0];
unsigned Semantics = SPIRV::MemorySemantics::SequentiallyConsistent;
Register MemSemanticsReg =
Call->Arguments.size() >= 2 ? Call->Arguments[1] : Register();
MemSemanticsReg = buildMemSemanticsReg(MemSemanticsReg, PtrRegister,
Semantics, MIRBuilder, GR);
assert((Opcode != SPIRV::OpAtomicFlagClear ||
(Semantics != SPIRV::MemorySemantics::Acquire &&
Semantics != SPIRV::MemorySemantics::AcquireRelease)) &&
"Invalid memory order argument!");
Register ScopeRegister =
Call->Arguments.size() >= 3 ? Call->Arguments[2] : Register();
ScopeRegister =
buildScopeReg(ScopeRegister, SPIRV::Scope::Device, MIRBuilder, GR, MRI);
auto MIB = MIRBuilder.buildInstr(Opcode);
if (Opcode == SPIRV::OpAtomicFlagTestAndSet)
MIB.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType));
MIB.addUse(PtrRegister).addUse(ScopeRegister).addUse(MemSemanticsReg);
return true;
}
/// Helper function for building barriers, i.e., memory/control ordering
/// operations.
static bool buildBarrierInst(const SPIRV::IncomingCall *Call, unsigned Opcode,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
unsigned MemFlags = getIConstVal(Call->Arguments[0], MRI);
unsigned MemSemantics = SPIRV::MemorySemantics::None;
if (MemFlags & SPIRV::CLK_LOCAL_MEM_FENCE)
MemSemantics |= SPIRV::MemorySemantics::WorkgroupMemory;
if (MemFlags & SPIRV::CLK_GLOBAL_MEM_FENCE)
MemSemantics |= SPIRV::MemorySemantics::CrossWorkgroupMemory;
if (MemFlags & SPIRV::CLK_IMAGE_MEM_FENCE)
MemSemantics |= SPIRV::MemorySemantics::ImageMemory;
if (Opcode == SPIRV::OpMemoryBarrier) {
std::memory_order MemOrder =
static_cast<std::memory_order>(getIConstVal(Call->Arguments[1], MRI));
MemSemantics = getSPIRVMemSemantics(MemOrder) | MemSemantics;
} else {
MemSemantics |= SPIRV::MemorySemantics::SequentiallyConsistent;
}
Register MemSemanticsReg;
if (MemFlags == MemSemantics) {
MemSemanticsReg = Call->Arguments[0];
MRI->setRegClass(MemSemanticsReg, &SPIRV::IDRegClass);
} else
MemSemanticsReg = buildConstantIntReg(MemSemantics, MIRBuilder, GR);
Register ScopeReg;
SPIRV::Scope::Scope Scope = SPIRV::Scope::Workgroup;
SPIRV::Scope::Scope MemScope = Scope;
if (Call->Arguments.size() >= 2) {
assert(
((Opcode != SPIRV::OpMemoryBarrier && Call->Arguments.size() == 2) ||
(Opcode == SPIRV::OpMemoryBarrier && Call->Arguments.size() == 3)) &&
"Extra args for explicitly scoped barrier");
Register ScopeArg = (Opcode == SPIRV::OpMemoryBarrier) ? Call->Arguments[2]
: Call->Arguments[1];
SPIRV::CLMemoryScope CLScope =
static_cast<SPIRV::CLMemoryScope>(getIConstVal(ScopeArg, MRI));
MemScope = getSPIRVScope(CLScope);
if (!(MemFlags & SPIRV::CLK_LOCAL_MEM_FENCE) ||
(Opcode == SPIRV::OpMemoryBarrier))
Scope = MemScope;
if (CLScope == static_cast<unsigned>(Scope)) {
ScopeReg = Call->Arguments[1];
MRI->setRegClass(ScopeReg, &SPIRV::IDRegClass);
}
}
if (!ScopeReg.isValid())
ScopeReg = buildConstantIntReg(Scope, MIRBuilder, GR);
auto MIB = MIRBuilder.buildInstr(Opcode).addUse(ScopeReg);
if (Opcode != SPIRV::OpMemoryBarrier)
MIB.addUse(buildConstantIntReg(MemScope, MIRBuilder, GR));
MIB.addUse(MemSemanticsReg);
return true;
}
static unsigned getNumComponentsForDim(SPIRV::Dim::Dim dim) {
switch (dim) {
case SPIRV::Dim::DIM_1D:
case SPIRV::Dim::DIM_Buffer:
return 1;
case SPIRV::Dim::DIM_2D:
case SPIRV::Dim::DIM_Cube:
case SPIRV::Dim::DIM_Rect:
return 2;
case SPIRV::Dim::DIM_3D:
return 3;
default:
llvm_unreachable("Cannot get num components for given Dim");
}
}
/// Helper function for obtaining the number of size components.
static unsigned getNumSizeComponents(SPIRVType *imgType) {
assert(imgType->getOpcode() == SPIRV::OpTypeImage);
auto dim = static_cast<SPIRV::Dim::Dim>(imgType->getOperand(2).getImm());
unsigned numComps = getNumComponentsForDim(dim);
bool arrayed = imgType->getOperand(4).getImm() == 1;
return arrayed ? numComps + 1 : numComps;
}
//===----------------------------------------------------------------------===//
// Implementation functions for each builtin group
//===----------------------------------------------------------------------===//
static bool generateExtInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
// Lookup the extended instruction number in the TableGen records.
const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
uint32_t Number =
SPIRV::lookupExtendedBuiltin(Builtin->Name, Builtin->Set)->Number;
// Build extended instruction.
auto MIB =
MIRBuilder.buildInstr(SPIRV::OpExtInst)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType))
.addImm(static_cast<uint32_t>(SPIRV::InstructionSet::OpenCL_std))
.addImm(Number);
for (auto Argument : Call->Arguments)
MIB.addUse(Argument);
return true;
}
static bool generateRelationalInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
// Lookup the instruction opcode in the TableGen records.
const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
unsigned Opcode =
SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
Register CompareRegister;
SPIRVType *RelationType;
std::tie(CompareRegister, RelationType) =
buildBoolRegister(MIRBuilder, Call->ReturnType, GR);
// Build relational instruction.
auto MIB = MIRBuilder.buildInstr(Opcode)
.addDef(CompareRegister)
.addUse(GR->getSPIRVTypeID(RelationType));
for (auto Argument : Call->Arguments)
MIB.addUse(Argument);
// Build select instruction.
return buildSelectInst(MIRBuilder, Call->ReturnRegister, CompareRegister,
Call->ReturnType, GR);
}
static bool generateGroupInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
const SPIRV::GroupBuiltin *GroupBuiltin =
SPIRV::lookupGroupBuiltin(Builtin->Name);
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
Register Arg0;
if (GroupBuiltin->HasBoolArg) {
Register ConstRegister = Call->Arguments[0];
auto ArgInstruction = getDefInstrMaybeConstant(ConstRegister, MRI);
// TODO: support non-constant bool values.
assert(ArgInstruction->getOpcode() == TargetOpcode::G_CONSTANT &&
"Only constant bool value args are supported");
if (GR->getSPIRVTypeForVReg(Call->Arguments[0])->getOpcode() !=
SPIRV::OpTypeBool)
Arg0 = GR->buildConstantInt(getIConstVal(ConstRegister, MRI), MIRBuilder,
GR->getOrCreateSPIRVBoolType(MIRBuilder));
}
Register GroupResultRegister = Call->ReturnRegister;
SPIRVType *GroupResultType = Call->ReturnType;
// TODO: maybe we need to check whether the result type is already boolean
// and in this case do not insert select instruction.
const bool HasBoolReturnTy =
GroupBuiltin->IsElect || GroupBuiltin->IsAllOrAny ||
GroupBuiltin->IsAllEqual || GroupBuiltin->IsLogical ||
GroupBuiltin->IsInverseBallot || GroupBuiltin->IsBallotBitExtract;
if (HasBoolReturnTy)
std::tie(GroupResultRegister, GroupResultType) =
buildBoolRegister(MIRBuilder, Call->ReturnType, GR);
auto Scope = Builtin->Name.startswith("sub_group") ? SPIRV::Scope::Subgroup
: SPIRV::Scope::Workgroup;
Register ScopeRegister = buildConstantIntReg(Scope, MIRBuilder, GR);
// Build work/sub group instruction.
auto MIB = MIRBuilder.buildInstr(GroupBuiltin->Opcode)
.addDef(GroupResultRegister)
.addUse(GR->getSPIRVTypeID(GroupResultType))
.addUse(ScopeRegister);
if (!GroupBuiltin->NoGroupOperation)
MIB.addImm(GroupBuiltin->GroupOperation);
if (Call->Arguments.size() > 0) {
MIB.addUse(Arg0.isValid() ? Arg0 : Call->Arguments[0]);
MRI->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
for (unsigned i = 1; i < Call->Arguments.size(); i++) {
MIB.addUse(Call->Arguments[i]);
MRI->setRegClass(Call->Arguments[i], &SPIRV::IDRegClass);
}
}
// Build select instruction.
if (HasBoolReturnTy)
buildSelectInst(MIRBuilder, Call->ReturnRegister, GroupResultRegister,
Call->ReturnType, GR);
return true;
}
// These queries ask for a single size_t result for a given dimension index, e.g
// size_t get_global_id(uint dimindex). In SPIR-V, the builtins corresonding to
// these values are all vec3 types, so we need to extract the correct index or
// return defaultVal (0 or 1 depending on the query). We also handle extending
// or tuncating in case size_t does not match the expected result type's
// bitwidth.
//
// For a constant index >= 3 we generate:
// %res = OpConstant %SizeT 0
//
// For other indices we generate:
// %g = OpVariable %ptr_V3_SizeT Input
// OpDecorate %g BuiltIn XXX
// OpDecorate %g LinkageAttributes "__spirv_BuiltInXXX"
// OpDecorate %g Constant
// %loadedVec = OpLoad %V3_SizeT %g
//
// Then, if the index is constant < 3, we generate:
// %res = OpCompositeExtract %SizeT %loadedVec idx
// If the index is dynamic, we generate:
// %tmp = OpVectorExtractDynamic %SizeT %loadedVec %idx
// %cmp = OpULessThan %bool %idx %const_3
// %res = OpSelect %SizeT %cmp %tmp %const_0
//
// If the bitwidth of %res does not match the expected return type, we add an
// extend or truncate.
static bool genWorkgroupQuery(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR,
SPIRV::BuiltIn::BuiltIn BuiltinValue,
uint64_t DefaultValue) {
Register IndexRegister = Call->Arguments[0];
const unsigned ResultWidth = Call->ReturnType->getOperand(1).getImm();
const unsigned PointerSize = GR->getPointerSize();
const SPIRVType *PointerSizeType =
GR->getOrCreateSPIRVIntegerType(PointerSize, MIRBuilder);
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
auto IndexInstruction = getDefInstrMaybeConstant(IndexRegister, MRI);
// Set up the final register to do truncation or extension on at the end.
Register ToTruncate = Call->ReturnRegister;
// If the index is constant, we can statically determine if it is in range.
bool IsConstantIndex =
IndexInstruction->getOpcode() == TargetOpcode::G_CONSTANT;
// If it's out of range (max dimension is 3), we can just return the constant
// default value (0 or 1 depending on which query function).
if (IsConstantIndex && getIConstVal(IndexRegister, MRI) >= 3) {
Register DefaultReg = Call->ReturnRegister;
if (PointerSize != ResultWidth) {
DefaultReg = MRI->createGenericVirtualRegister(LLT::scalar(PointerSize));
MRI->setRegClass(DefaultReg, &SPIRV::IDRegClass);
GR->assignSPIRVTypeToVReg(PointerSizeType, DefaultReg,
MIRBuilder.getMF());
ToTruncate = DefaultReg;
}
auto NewRegister =
GR->buildConstantInt(DefaultValue, MIRBuilder, PointerSizeType);
MIRBuilder.buildCopy(DefaultReg, NewRegister);
} else { // If it could be in range, we need to load from the given builtin.
auto Vec3Ty =
GR->getOrCreateSPIRVVectorType(PointerSizeType, 3, MIRBuilder);
Register LoadedVector =
buildBuiltinVariableLoad(MIRBuilder, Vec3Ty, GR, BuiltinValue,
LLT::fixed_vector(3, PointerSize));
// Set up the vreg to extract the result to (possibly a new temporary one).
Register Extracted = Call->ReturnRegister;
if (!IsConstantIndex || PointerSize != ResultWidth) {
Extracted = MRI->createGenericVirtualRegister(LLT::scalar(PointerSize));
MRI->setRegClass(Extracted, &SPIRV::IDRegClass);
GR->assignSPIRVTypeToVReg(PointerSizeType, Extracted, MIRBuilder.getMF());
}
// Use Intrinsic::spv_extractelt so dynamic vs static extraction is
// handled later: extr = spv_extractelt LoadedVector, IndexRegister.
MachineInstrBuilder ExtractInst = MIRBuilder.buildIntrinsic(
Intrinsic::spv_extractelt, ArrayRef<Register>{Extracted}, true);
ExtractInst.addUse(LoadedVector).addUse(IndexRegister);
// If the index is dynamic, need check if it's < 3, and then use a select.
if (!IsConstantIndex) {
insertAssignInstr(Extracted, nullptr, PointerSizeType, GR, MIRBuilder,
*MRI);
auto IndexType = GR->getSPIRVTypeForVReg(IndexRegister);
auto BoolType = GR->getOrCreateSPIRVBoolType(MIRBuilder);
Register CompareRegister =
MRI->createGenericVirtualRegister(LLT::scalar(1));
MRI->setRegClass(CompareRegister, &SPIRV::IDRegClass);
GR->assignSPIRVTypeToVReg(BoolType, CompareRegister, MIRBuilder.getMF());
// Use G_ICMP to check if idxVReg < 3.
MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CompareRegister, IndexRegister,
GR->buildConstantInt(3, MIRBuilder, IndexType));
// Get constant for the default value (0 or 1 depending on which
// function).
Register DefaultRegister =
GR->buildConstantInt(DefaultValue, MIRBuilder, PointerSizeType);
// Get a register for the selection result (possibly a new temporary one).
Register SelectionResult = Call->ReturnRegister;
if (PointerSize != ResultWidth) {
SelectionResult =
MRI->createGenericVirtualRegister(LLT::scalar(PointerSize));
MRI->setRegClass(SelectionResult, &SPIRV::IDRegClass);
GR->assignSPIRVTypeToVReg(PointerSizeType, SelectionResult,
MIRBuilder.getMF());
}
// Create the final G_SELECT to return the extracted value or the default.
MIRBuilder.buildSelect(SelectionResult, CompareRegister, Extracted,
DefaultRegister);
ToTruncate = SelectionResult;
} else {
ToTruncate = Extracted;
}
}
// Alter the result's bitwidth if it does not match the SizeT value extracted.
if (PointerSize != ResultWidth)
MIRBuilder.buildZExtOrTrunc(Call->ReturnRegister, ToTruncate);
return true;
}
static bool generateBuiltinVar(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
// Lookup the builtin variable record.
const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
SPIRV::BuiltIn::BuiltIn Value =
SPIRV::lookupGetBuiltin(Builtin->Name, Builtin->Set)->Value;
if (Value == SPIRV::BuiltIn::GlobalInvocationId)
return genWorkgroupQuery(Call, MIRBuilder, GR, Value, 0);
// Build a load instruction for the builtin variable.
unsigned BitWidth = GR->getScalarOrVectorBitWidth(Call->ReturnType);
LLT LLType;
if (Call->ReturnType->getOpcode() == SPIRV::OpTypeVector)
LLType =
LLT::fixed_vector(Call->ReturnType->getOperand(2).getImm(), BitWidth);
else
LLType = LLT::scalar(BitWidth);
return buildBuiltinVariableLoad(MIRBuilder, Call->ReturnType, GR, Value,
LLType, Call->ReturnRegister);
}
static bool generateAtomicInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
// Lookup the instruction opcode in the TableGen records.
const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
unsigned Opcode =
SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
switch (Opcode) {
case SPIRV::OpStore:
return buildAtomicInitInst(Call, MIRBuilder);
case SPIRV::OpAtomicLoad:
return buildAtomicLoadInst(Call, MIRBuilder, GR);
case SPIRV::OpAtomicStore:
return buildAtomicStoreInst(Call, MIRBuilder, GR);
case SPIRV::OpAtomicCompareExchange:
case SPIRV::OpAtomicCompareExchangeWeak:
return buildAtomicCompareExchangeInst(Call, MIRBuilder, GR);
case SPIRV::OpAtomicIAdd:
case SPIRV::OpAtomicISub:
case SPIRV::OpAtomicOr:
case SPIRV::OpAtomicXor:
case SPIRV::OpAtomicAnd:
case SPIRV::OpAtomicExchange:
return buildAtomicRMWInst(Call, Opcode, MIRBuilder, GR);
case SPIRV::OpMemoryBarrier:
return buildBarrierInst(Call, SPIRV::OpMemoryBarrier, MIRBuilder, GR);
case SPIRV::OpAtomicFlagTestAndSet:
case SPIRV::OpAtomicFlagClear:
return buildAtomicFlagInst(Call, Opcode, MIRBuilder, GR);
default:
return false;
}
}
static bool generateBarrierInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
// Lookup the instruction opcode in the TableGen records.
const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
unsigned Opcode =
SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
return buildBarrierInst(Call, Opcode, MIRBuilder, GR);
}
static bool generateDotOrFMulInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
unsigned Opcode = GR->getSPIRVTypeForVReg(Call->Arguments[0])->getOpcode();
bool IsVec = Opcode == SPIRV::OpTypeVector;
// Use OpDot only in case of vector args and OpFMul in case of scalar args.
MIRBuilder.buildInstr(IsVec ? SPIRV::OpDot : SPIRV::OpFMulS)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType))
.addUse(Call->Arguments[0])
.addUse(Call->Arguments[1]);
return true;
}
static bool generateGetQueryInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
// Lookup the builtin record.
SPIRV::BuiltIn::BuiltIn Value =
SPIRV::lookupGetBuiltin(Call->Builtin->Name, Call->Builtin->Set)->Value;
uint64_t IsDefault = (Value == SPIRV::BuiltIn::GlobalSize ||
Value == SPIRV::BuiltIn::WorkgroupSize ||
Value == SPIRV::BuiltIn::EnqueuedWorkgroupSize);
return genWorkgroupQuery(Call, MIRBuilder, GR, Value, IsDefault ? 1 : 0);
}
static bool generateImageSizeQueryInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
// Lookup the image size query component number in the TableGen records.
const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
uint32_t Component =
SPIRV::lookupImageQueryBuiltin(Builtin->Name, Builtin->Set)->Component;
// Query result may either be a vector or a scalar. If return type is not a
// vector, expect only a single size component. Otherwise get the number of
// expected components.
SPIRVType *RetTy = Call->ReturnType;
unsigned NumExpectedRetComponents = RetTy->getOpcode() == SPIRV::OpTypeVector
? RetTy->getOperand(2).getImm()
: 1;
// Get the actual number of query result/size components.
SPIRVType *ImgType = GR->getSPIRVTypeForVReg(Call->Arguments[0]);
unsigned NumActualRetComponents = getNumSizeComponents(ImgType);
Register QueryResult = Call->ReturnRegister;
SPIRVType *QueryResultType = Call->ReturnType;
if (NumExpectedRetComponents != NumActualRetComponents) {
QueryResult = MIRBuilder.getMRI()->createGenericVirtualRegister(
LLT::fixed_vector(NumActualRetComponents, 32));
MIRBuilder.getMRI()->setRegClass(QueryResult, &SPIRV::IDRegClass);
SPIRVType *IntTy = GR->getOrCreateSPIRVIntegerType(32, MIRBuilder);
QueryResultType = GR->getOrCreateSPIRVVectorType(
IntTy, NumActualRetComponents, MIRBuilder);
GR->assignSPIRVTypeToVReg(QueryResultType, QueryResult, MIRBuilder.getMF());
}
bool IsDimBuf = ImgType->getOperand(2).getImm() == SPIRV::Dim::DIM_Buffer;
unsigned Opcode =
IsDimBuf ? SPIRV::OpImageQuerySize : SPIRV::OpImageQuerySizeLod;
MIRBuilder.getMRI()->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
auto MIB = MIRBuilder.buildInstr(Opcode)
.addDef(QueryResult)
.addUse(GR->getSPIRVTypeID(QueryResultType))
.addUse(Call->Arguments[0]);
if (!IsDimBuf)
MIB.addUse(buildConstantIntReg(0, MIRBuilder, GR)); // Lod id.
if (NumExpectedRetComponents == NumActualRetComponents)
return true;
if (NumExpectedRetComponents == 1) {
// Only 1 component is expected, build OpCompositeExtract instruction.
unsigned ExtractedComposite =
Component == 3 ? NumActualRetComponents - 1 : Component;
assert(ExtractedComposite < NumActualRetComponents &&
"Invalid composite index!");
MIRBuilder.buildInstr(SPIRV::OpCompositeExtract)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType))
.addUse(QueryResult)
.addImm(ExtractedComposite);
} else {
// More than 1 component is expected, fill a new vector.
auto MIB = MIRBuilder.buildInstr(SPIRV::OpVectorShuffle)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType))
.addUse(QueryResult)
.addUse(QueryResult);
for (unsigned i = 0; i < NumExpectedRetComponents; ++i)
MIB.addImm(i < NumActualRetComponents ? i : 0xffffffff);
}
return true;
}
static bool generateImageMiscQueryInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
assert(Call->ReturnType->getOpcode() == SPIRV::OpTypeInt &&
"Image samples query result must be of int type!");
// Lookup the instruction opcode in the TableGen records.
const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
unsigned Opcode =
SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
Register Image = Call->Arguments[0];
MIRBuilder.getMRI()->setRegClass(Image, &SPIRV::IDRegClass);
SPIRV::Dim::Dim ImageDimensionality = static_cast<SPIRV::Dim::Dim>(
GR->getSPIRVTypeForVReg(Image)->getOperand(2).getImm());
switch (Opcode) {
case SPIRV::OpImageQuerySamples:
assert(ImageDimensionality == SPIRV::Dim::DIM_2D &&
"Image must be of 2D dimensionality");
break;
case SPIRV::OpImageQueryLevels:
assert((ImageDimensionality == SPIRV::Dim::DIM_1D ||
ImageDimensionality == SPIRV::Dim::DIM_2D ||
ImageDimensionality == SPIRV::Dim::DIM_3D ||
ImageDimensionality == SPIRV::Dim::DIM_Cube) &&
"Image must be of 1D/2D/3D/Cube dimensionality");
break;
}
MIRBuilder.buildInstr(Opcode)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType))
.addUse(Image);
return true;
}
// TODO: Move to TableGen.
static SPIRV::SamplerAddressingMode::SamplerAddressingMode
getSamplerAddressingModeFromBitmask(unsigned Bitmask) {
switch (Bitmask & SPIRV::CLK_ADDRESS_MODE_MASK) {
case SPIRV::CLK_ADDRESS_CLAMP:
return SPIRV::SamplerAddressingMode::Clamp;
case SPIRV::CLK_ADDRESS_CLAMP_TO_EDGE:
return SPIRV::SamplerAddressingMode::ClampToEdge;
case SPIRV::CLK_ADDRESS_REPEAT:
return SPIRV::SamplerAddressingMode::Repeat;
case SPIRV::CLK_ADDRESS_MIRRORED_REPEAT:
return SPIRV::SamplerAddressingMode::RepeatMirrored;
case SPIRV::CLK_ADDRESS_NONE:
return SPIRV::SamplerAddressingMode::None;
default:
llvm_unreachable("Unknown CL address mode");
}
}
static unsigned getSamplerParamFromBitmask(unsigned Bitmask) {
return (Bitmask & SPIRV::CLK_NORMALIZED_COORDS_TRUE) ? 1 : 0;
}
static SPIRV::SamplerFilterMode::SamplerFilterMode
getSamplerFilterModeFromBitmask(unsigned Bitmask) {
if (Bitmask & SPIRV::CLK_FILTER_LINEAR)
return SPIRV::SamplerFilterMode::Linear;
if (Bitmask & SPIRV::CLK_FILTER_NEAREST)
return SPIRV::SamplerFilterMode::Nearest;
return SPIRV::SamplerFilterMode::Nearest;
}
static bool generateReadImageInst(const StringRef DemangledCall,
const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
Register Image = Call->Arguments[0];
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
MRI->setRegClass(Image, &SPIRV::IDRegClass);
MRI->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
bool HasOclSampler = DemangledCall.contains_insensitive("ocl_sampler");
bool HasMsaa = DemangledCall.contains_insensitive("msaa");
if (HasOclSampler || HasMsaa)
MRI->setRegClass(Call->Arguments[2], &SPIRV::IDRegClass);
if (HasOclSampler) {
Register Sampler = Call->Arguments[1];
if (!GR->isScalarOfType(Sampler, SPIRV::OpTypeSampler) &&
getDefInstrMaybeConstant(Sampler, MRI)->getOperand(1).isCImm()) {
uint64_t SamplerMask = getIConstVal(Sampler, MRI);
Sampler = GR->buildConstantSampler(
Register(), getSamplerAddressingModeFromBitmask(SamplerMask),
getSamplerParamFromBitmask(SamplerMask),
getSamplerFilterModeFromBitmask(SamplerMask), MIRBuilder,
GR->getSPIRVTypeForVReg(Sampler));
}
SPIRVType *ImageType = GR->getSPIRVTypeForVReg(Image);
SPIRVType *SampledImageType =
GR->getOrCreateOpTypeSampledImage(ImageType, MIRBuilder);
Register SampledImage = MRI->createVirtualRegister(&SPIRV::IDRegClass);
MIRBuilder.buildInstr(SPIRV::OpSampledImage)
.addDef(SampledImage)
.addUse(GR->getSPIRVTypeID(SampledImageType))
.addUse(Image)
.addUse(Sampler);
Register Lod = GR->buildConstantFP(APFloat::getZero(APFloat::IEEEsingle()),
MIRBuilder);
SPIRVType *TempType = Call->ReturnType;
bool NeedsExtraction = false;
if (TempType->getOpcode() != SPIRV::OpTypeVector) {
TempType =
GR->getOrCreateSPIRVVectorType(Call->ReturnType, 4, MIRBuilder);
NeedsExtraction = true;
}
LLT LLType = LLT::scalar(GR->getScalarOrVectorBitWidth(TempType));
Register TempRegister = MRI->createGenericVirtualRegister(LLType);
MRI->setRegClass(TempRegister, &SPIRV::IDRegClass);
GR->assignSPIRVTypeToVReg(TempType, TempRegister, MIRBuilder.getMF());
MIRBuilder.buildInstr(SPIRV::OpImageSampleExplicitLod)
.addDef(NeedsExtraction ? TempRegister : Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(TempType))
.addUse(SampledImage)
.addUse(Call->Arguments[2]) // Coordinate.
.addImm(SPIRV::ImageOperand::Lod)
.addUse(Lod);
if (NeedsExtraction)
MIRBuilder.buildInstr(SPIRV::OpCompositeExtract)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType))
.addUse(TempRegister)
.addImm(0);
} else if (HasMsaa) {
MIRBuilder.buildInstr(SPIRV::OpImageRead)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType))
.addUse(Image)
.addUse(Call->Arguments[1]) // Coordinate.
.addImm(SPIRV::ImageOperand::Sample)
.addUse(Call->Arguments[2]);
} else {
MIRBuilder.buildInstr(SPIRV::OpImageRead)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType))
.addUse(Image)
.addUse(Call->Arguments[1]); // Coordinate.
}
return true;
}
static bool generateWriteImageInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
MIRBuilder.getMRI()->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
MIRBuilder.getMRI()->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
MIRBuilder.getMRI()->setRegClass(Call->Arguments[2], &SPIRV::IDRegClass);
MIRBuilder.buildInstr(SPIRV::OpImageWrite)
.addUse(Call->Arguments[0]) // Image.
.addUse(Call->Arguments[1]) // Coordinate.
.addUse(Call->Arguments[2]); // Texel.
return true;
}
static bool generateSampleImageInst(const StringRef DemangledCall,
const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
if (Call->Builtin->Name.contains_insensitive(
"__translate_sampler_initializer")) {
// Build sampler literal.
uint64_t Bitmask = getIConstVal(Call->Arguments[0], MRI);
Register Sampler = GR->buildConstantSampler(
Call->ReturnRegister, getSamplerAddressingModeFromBitmask(Bitmask),
getSamplerParamFromBitmask(Bitmask),
getSamplerFilterModeFromBitmask(Bitmask), MIRBuilder, Call->ReturnType);
return Sampler.isValid();
} else if (Call->Builtin->Name.contains_insensitive("__spirv_SampledImage")) {
// Create OpSampledImage.
Register Image = Call->Arguments[0];
SPIRVType *ImageType = GR->getSPIRVTypeForVReg(Image);
SPIRVType *SampledImageType =
GR->getOrCreateOpTypeSampledImage(ImageType, MIRBuilder);
Register SampledImage =
Call->ReturnRegister.isValid()
? Call->ReturnRegister
: MRI->createVirtualRegister(&SPIRV::IDRegClass);
MIRBuilder.buildInstr(SPIRV::OpSampledImage)
.addDef(SampledImage)
.addUse(GR->getSPIRVTypeID(SampledImageType))
.addUse(Image)
.addUse(Call->Arguments[1]); // Sampler.
return true;
} else if (Call->Builtin->Name.contains_insensitive(
"__spirv_ImageSampleExplicitLod")) {
// Sample an image using an explicit level of detail.
std::string ReturnType = DemangledCall.str();
if (DemangledCall.contains("_R")) {
ReturnType = ReturnType.substr(ReturnType.find("_R") + 2);
ReturnType = ReturnType.substr(0, ReturnType.find('('));
}
SPIRVType *Type = GR->getOrCreateSPIRVTypeByName(ReturnType, MIRBuilder);
MRI->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
MRI->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
MRI->setRegClass(Call->Arguments[3], &SPIRV::IDRegClass);
MIRBuilder.buildInstr(SPIRV::OpImageSampleExplicitLod)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Type))
.addUse(Call->Arguments[0]) // Image.
.addUse(Call->Arguments[1]) // Coordinate.
.addImm(SPIRV::ImageOperand::Lod)
.addUse(Call->Arguments[3]);
return true;
}
return false;
}
static bool generateSelectInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder) {
MIRBuilder.buildSelect(Call->ReturnRegister, Call->Arguments[0],
Call->Arguments[1], Call->Arguments[2]);
return true;
}
static bool generateSpecConstantInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
// Lookup the instruction opcode in the TableGen records.
const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
unsigned Opcode =
SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
const MachineRegisterInfo *MRI = MIRBuilder.getMRI();
switch (Opcode) {
case SPIRV::OpSpecConstant: {
// Build the SpecID decoration.
unsigned SpecId =
static_cast<unsigned>(getIConstVal(Call->Arguments[0], MRI));
buildOpDecorate(Call->ReturnRegister, MIRBuilder, SPIRV::Decoration::SpecId,
{SpecId});
// Determine the constant MI.
Register ConstRegister = Call->Arguments[1];
const MachineInstr *Const = getDefInstrMaybeConstant(ConstRegister, MRI);
assert(Const &&
(Const->getOpcode() == TargetOpcode::G_CONSTANT ||
Const->getOpcode() == TargetOpcode::G_FCONSTANT) &&
"Argument should be either an int or floating-point constant");
// Determine the opcode and built the OpSpec MI.
const MachineOperand &ConstOperand = Const->getOperand(1);
if (Call->ReturnType->getOpcode() == SPIRV::OpTypeBool) {
assert(ConstOperand.isCImm() && "Int constant operand is expected");
Opcode = ConstOperand.getCImm()->getValue().getZExtValue()
? SPIRV::OpSpecConstantTrue
: SPIRV::OpSpecConstantFalse;
}
auto MIB = MIRBuilder.buildInstr(Opcode)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType));
if (Call->ReturnType->getOpcode() != SPIRV::OpTypeBool) {
if (Const->getOpcode() == TargetOpcode::G_CONSTANT)
addNumImm(ConstOperand.getCImm()->getValue(), MIB);
else
addNumImm(ConstOperand.getFPImm()->getValueAPF().bitcastToAPInt(), MIB);
}
return true;
}
case SPIRV::OpSpecConstantComposite: {
auto MIB = MIRBuilder.buildInstr(Opcode)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType));
for (unsigned i = 0; i < Call->Arguments.size(); i++)
MIB.addUse(Call->Arguments[i]);
return true;
}
default:
return false;
}
}
static bool buildNDRange(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
MRI->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
SPIRVType *PtrType = GR->getSPIRVTypeForVReg(Call->Arguments[0]);
assert(PtrType->getOpcode() == SPIRV::OpTypePointer &&
PtrType->getOperand(2).isReg());
Register TypeReg = PtrType->getOperand(2).getReg();
SPIRVType *StructType = GR->getSPIRVTypeForVReg(TypeReg);
MachineFunction &MF = MIRBuilder.getMF();
Register TmpReg = MRI->createVirtualRegister(&SPIRV::IDRegClass);
GR->assignSPIRVTypeToVReg(StructType, TmpReg, MF);
// Skip the first arg, it's the destination pointer. OpBuildNDRange takes
// three other arguments, so pass zero constant on absence.
unsigned NumArgs = Call->Arguments.size();
assert(NumArgs >= 2);
Register GlobalWorkSize = Call->Arguments[NumArgs < 4 ? 1 : 2];
MRI->setRegClass(GlobalWorkSize, &SPIRV::IDRegClass);
Register LocalWorkSize =
NumArgs == 2 ? Register(0) : Call->Arguments[NumArgs < 4 ? 2 : 3];
if (LocalWorkSize.isValid())
MRI->setRegClass(LocalWorkSize, &SPIRV::IDRegClass);
Register GlobalWorkOffset = NumArgs <= 3 ? Register(0) : Call->Arguments[1];
if (GlobalWorkOffset.isValid())
MRI->setRegClass(GlobalWorkOffset, &SPIRV::IDRegClass);
if (NumArgs < 4) {
Register Const;
SPIRVType *SpvTy = GR->getSPIRVTypeForVReg(GlobalWorkSize);
if (SpvTy->getOpcode() == SPIRV::OpTypePointer) {
MachineInstr *DefInstr = MRI->getUniqueVRegDef(GlobalWorkSize);
assert(DefInstr && isSpvIntrinsic(*DefInstr, Intrinsic::spv_gep) &&
DefInstr->getOperand(3).isReg());
Register GWSPtr = DefInstr->getOperand(3).getReg();
if (!MRI->getRegClassOrNull(GWSPtr))
MRI->setRegClass(GWSPtr, &SPIRV::IDRegClass);
// TODO: Maybe simplify generation of the type of the fields.
unsigned Size = Call->Builtin->Name.equals("ndrange_3D") ? 3 : 2;
unsigned BitWidth = GR->getPointerSize() == 64 ? 64 : 32;
Type *BaseTy = IntegerType::get(MF.getFunction().getContext(), BitWidth);
Type *FieldTy = ArrayType::get(BaseTy, Size);
SPIRVType *SpvFieldTy = GR->getOrCreateSPIRVType(FieldTy, MIRBuilder);
GlobalWorkSize = MRI->createVirtualRegister(&SPIRV::IDRegClass);
GR->assignSPIRVTypeToVReg(SpvFieldTy, GlobalWorkSize, MF);
MIRBuilder.buildInstr(SPIRV::OpLoad)
.addDef(GlobalWorkSize)
.addUse(GR->getSPIRVTypeID(SpvFieldTy))
.addUse(GWSPtr);
Const = GR->getOrCreateConsIntArray(0, MIRBuilder, SpvFieldTy);
} else {
Const = GR->buildConstantInt(0, MIRBuilder, SpvTy);
}
if (!LocalWorkSize.isValid())
LocalWorkSize = Const;
if (!GlobalWorkOffset.isValid())
GlobalWorkOffset = Const;
}
assert(LocalWorkSize.isValid() && GlobalWorkOffset.isValid());
MIRBuilder.buildInstr(SPIRV::OpBuildNDRange)
.addDef(TmpReg)
.addUse(TypeReg)
.addUse(GlobalWorkSize)
.addUse(LocalWorkSize)
.addUse(GlobalWorkOffset);
return MIRBuilder.buildInstr(SPIRV::OpStore)
.addUse(Call->Arguments[0])
.addUse(TmpReg);
}
static MachineInstr *getBlockStructInstr(Register ParamReg,
MachineRegisterInfo *MRI) {
// We expect the following sequence of instructions:
// %0:_(pN) = G_INTRINSIC_W_SIDE_EFFECTS intrinsic(@llvm.spv.alloca)
// or = G_GLOBAL_VALUE @block_literal_global
// %1:_(pN) = G_INTRINSIC_W_SIDE_EFFECTS intrinsic(@llvm.spv.bitcast), %0
// %2:_(p4) = G_ADDRSPACE_CAST %1:_(pN)
MachineInstr *MI = MRI->getUniqueVRegDef(ParamReg);
assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST &&
MI->getOperand(1).isReg());
Register BitcastReg = MI->getOperand(1).getReg();
MachineInstr *BitcastMI = MRI->getUniqueVRegDef(BitcastReg);
assert(isSpvIntrinsic(*BitcastMI, Intrinsic::spv_bitcast) &&
BitcastMI->getOperand(2).isReg());
Register ValueReg = BitcastMI->getOperand(2).getReg();
MachineInstr *ValueMI = MRI->getUniqueVRegDef(ValueReg);
return ValueMI;
}
// Return an integer constant corresponding to the given register and
// defined in spv_track_constant.
// TODO: maybe unify with prelegalizer pass.
static unsigned getConstFromIntrinsic(Register Reg, MachineRegisterInfo *MRI) {
MachineInstr *DefMI = MRI->getUniqueVRegDef(Reg);
assert(isSpvIntrinsic(*DefMI, Intrinsic::spv_track_constant) &&
DefMI->getOperand(2).isReg());
MachineInstr *DefMI2 = MRI->getUniqueVRegDef(DefMI->getOperand(2).getReg());
assert(DefMI2->getOpcode() == TargetOpcode::G_CONSTANT &&
DefMI2->getOperand(1).isCImm());
return DefMI2->getOperand(1).getCImm()->getValue().getZExtValue();
}
// Return type of the instruction result from spv_assign_type intrinsic.
// TODO: maybe unify with prelegalizer pass.
static const Type *getMachineInstrType(MachineInstr *MI) {
MachineInstr *NextMI = MI->getNextNode();
if (isSpvIntrinsic(*NextMI, Intrinsic::spv_assign_name))
NextMI = NextMI->getNextNode();
Register ValueReg = MI->getOperand(0).getReg();
if (!isSpvIntrinsic(*NextMI, Intrinsic::spv_assign_type) ||
NextMI->getOperand(1).getReg() != ValueReg)
return nullptr;
Type *Ty = getMDOperandAsType(NextMI->getOperand(2).getMetadata(), 0);
assert(Ty && "Type is expected");
return getTypedPtrEltType(Ty);
}
static const Type *getBlockStructType(Register ParamReg,
MachineRegisterInfo *MRI) {
// In principle, this information should be passed to us from Clang via
// an elementtype attribute. However, said attribute requires that
// the function call be an intrinsic, which is not. Instead, we rely on being
// able to trace this to the declaration of a variable: OpenCL C specification
// section 6.12.5 should guarantee that we can do this.
MachineInstr *MI = getBlockStructInstr(ParamReg, MRI);
if (MI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE)
return getTypedPtrEltType(MI->getOperand(1).getGlobal()->getType());
assert(isSpvIntrinsic(*MI, Intrinsic::spv_alloca) &&
"Blocks in OpenCL C must be traceable to allocation site");
return getMachineInstrType(MI);
}
// TODO: maybe move to the global register.
static SPIRVType *
getOrCreateSPIRVDeviceEventPointer(MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
LLVMContext &Context = MIRBuilder.getMF().getFunction().getContext();
Type *OpaqueType = StructType::getTypeByName(Context, "spirv.DeviceEvent");
if (!OpaqueType)
OpaqueType = StructType::getTypeByName(Context, "opencl.clk_event_t");
if (!OpaqueType)
OpaqueType = StructType::create(Context, "spirv.DeviceEvent");
unsigned SC0 = storageClassToAddressSpace(SPIRV::StorageClass::Function);
unsigned SC1 = storageClassToAddressSpace(SPIRV::StorageClass::Generic);
Type *PtrType = PointerType::get(PointerType::get(OpaqueType, SC0), SC1);
return GR->getOrCreateSPIRVType(PtrType, MIRBuilder);
}
static bool buildEnqueueKernel(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
const DataLayout &DL = MIRBuilder.getDataLayout();
bool HasEvents = Call->Builtin->Name.find("events") != StringRef::npos;
const SPIRVType *Int32Ty = GR->getOrCreateSPIRVIntegerType(32, MIRBuilder);
// Make vararg instructions before OpEnqueueKernel.
// Local sizes arguments: Sizes of block invoke arguments. Clang generates
// local size operands as an array, so we need to unpack them.
SmallVector<Register, 16> LocalSizes;
if (Call->Builtin->Name.find("_varargs") != StringRef::npos) {
const unsigned LocalSizeArrayIdx = HasEvents ? 9 : 6;
Register GepReg = Call->Arguments[LocalSizeArrayIdx];
MachineInstr *GepMI = MRI->getUniqueVRegDef(GepReg);
assert(isSpvIntrinsic(*GepMI, Intrinsic::spv_gep) &&
GepMI->getOperand(3).isReg());
Register ArrayReg = GepMI->getOperand(3).getReg();
MachineInstr *ArrayMI = MRI->getUniqueVRegDef(ArrayReg);
const Type *LocalSizeTy = getMachineInstrType(ArrayMI);
assert(LocalSizeTy && "Local size type is expected");
const uint64_t LocalSizeNum =
cast<ArrayType>(LocalSizeTy)->getNumElements();
unsigned SC = storageClassToAddressSpace(SPIRV::StorageClass::Generic);
const LLT LLType = LLT::pointer(SC, GR->getPointerSize());
const SPIRVType *PointerSizeTy = GR->getOrCreateSPIRVPointerType(
Int32Ty, MIRBuilder, SPIRV::StorageClass::Function);
for (unsigned I = 0; I < LocalSizeNum; ++I) {
Register Reg = MRI->createVirtualRegister(&SPIRV::IDRegClass);
MRI->setType(Reg, LLType);
GR->assignSPIRVTypeToVReg(PointerSizeTy, Reg, MIRBuilder.getMF());
auto GEPInst = MIRBuilder.buildIntrinsic(Intrinsic::spv_gep,
ArrayRef<Register>{Reg}, true);
GEPInst
.addImm(GepMI->getOperand(2).getImm()) // In bound.
.addUse(ArrayMI->getOperand(0).getReg()) // Alloca.
.addUse(buildConstantIntReg(0, MIRBuilder, GR)) // Indices.
.addUse(buildConstantIntReg(I, MIRBuilder, GR));
LocalSizes.push_back(Reg);
}
}
// SPIRV OpEnqueueKernel instruction has 10+ arguments.
auto MIB = MIRBuilder.buildInstr(SPIRV::OpEnqueueKernel)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Int32Ty));
// Copy all arguments before block invoke function pointer.
const unsigned BlockFIdx = HasEvents ? 6 : 3;
for (unsigned i = 0; i < BlockFIdx; i++)
MIB.addUse(Call->Arguments[i]);
// If there are no event arguments in the original call, add dummy ones.
if (!HasEvents) {
MIB.addUse(buildConstantIntReg(0, MIRBuilder, GR)); // Dummy num events.
Register NullPtr = GR->getOrCreateConstNullPtr(
MIRBuilder, getOrCreateSPIRVDeviceEventPointer(MIRBuilder, GR));
MIB.addUse(NullPtr); // Dummy wait events.
MIB.addUse(NullPtr); // Dummy ret event.
}
MachineInstr *BlockMI = getBlockStructInstr(Call->Arguments[BlockFIdx], MRI);
assert(BlockMI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
// Invoke: Pointer to invoke function.
MIB.addGlobalAddress(BlockMI->getOperand(1).getGlobal());
Register BlockLiteralReg = Call->Arguments[BlockFIdx + 1];
// Param: Pointer to block literal.
MIB.addUse(BlockLiteralReg);
Type *PType = const_cast<Type *>(getBlockStructType(BlockLiteralReg, MRI));
// TODO: these numbers should be obtained from block literal structure.
// Param Size: Size of block literal structure.
MIB.addUse(buildConstantIntReg(DL.getTypeStoreSize(PType), MIRBuilder, GR));
// Param Aligment: Aligment of block literal structure.
MIB.addUse(
buildConstantIntReg(DL.getPrefTypeAlign(PType).value(), MIRBuilder, GR));
for (unsigned i = 0; i < LocalSizes.size(); i++)
MIB.addUse(LocalSizes[i]);
return true;
}
static bool generateEnqueueInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
// Lookup the instruction opcode in the TableGen records.
const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
unsigned Opcode =
SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
switch (Opcode) {
case SPIRV::OpRetainEvent:
case SPIRV::OpReleaseEvent:
MIRBuilder.getMRI()->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
return MIRBuilder.buildInstr(Opcode).addUse(Call->Arguments[0]);
case SPIRV::OpCreateUserEvent:
case SPIRV::OpGetDefaultQueue:
return MIRBuilder.buildInstr(Opcode)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType));
case SPIRV::OpIsValidEvent:
MIRBuilder.getMRI()->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
return MIRBuilder.buildInstr(Opcode)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType))
.addUse(Call->Arguments[0]);
case SPIRV::OpSetUserEventStatus:
MIRBuilder.getMRI()->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
MIRBuilder.getMRI()->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
return MIRBuilder.buildInstr(Opcode)
.addUse(Call->Arguments[0])
.addUse(Call->Arguments[1]);
case SPIRV::OpCaptureEventProfilingInfo:
MIRBuilder.getMRI()->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
MIRBuilder.getMRI()->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
MIRBuilder.getMRI()->setRegClass(Call->Arguments[2], &SPIRV::IDRegClass);
return MIRBuilder.buildInstr(Opcode)
.addUse(Call->Arguments[0])
.addUse(Call->Arguments[1])
.addUse(Call->Arguments[2]);
case SPIRV::OpBuildNDRange:
return buildNDRange(Call, MIRBuilder, GR);
case SPIRV::OpEnqueueKernel:
return buildEnqueueKernel(Call, MIRBuilder, GR);
default:
return false;
}
}
static bool generateAsyncCopy(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
// Lookup the instruction opcode in the TableGen records.
const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
unsigned Opcode =
SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
auto Scope = buildConstantIntReg(SPIRV::Scope::Workgroup, MIRBuilder, GR);
switch (Opcode) {
case SPIRV::OpGroupAsyncCopy:
return MIRBuilder.buildInstr(Opcode)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType))
.addUse(Scope)
.addUse(Call->Arguments[0])
.addUse(Call->Arguments[1])
.addUse(Call->Arguments[2])
.addUse(buildConstantIntReg(1, MIRBuilder, GR))
.addUse(Call->Arguments[3]);
case SPIRV::OpGroupWaitEvents:
return MIRBuilder.buildInstr(Opcode)
.addUse(Scope)
.addUse(Call->Arguments[0])
.addUse(Call->Arguments[1]);
default:
return false;
}
}
static bool generateConvertInst(const StringRef DemangledCall,
const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
// Lookup the conversion builtin in the TableGen records.
const SPIRV::ConvertBuiltin *Builtin =
SPIRV::lookupConvertBuiltin(Call->Builtin->Name, Call->Builtin->Set);
if (Builtin->IsSaturated)
buildOpDecorate(Call->ReturnRegister, MIRBuilder,
SPIRV::Decoration::SaturatedConversion, {});
if (Builtin->IsRounded)
buildOpDecorate(Call->ReturnRegister, MIRBuilder,
SPIRV::Decoration::FPRoundingMode,
{(unsigned)Builtin->RoundingMode});
unsigned Opcode = SPIRV::OpNop;
if (GR->isScalarOrVectorOfType(Call->Arguments[0], SPIRV::OpTypeInt)) {
// Int -> ...
if (GR->isScalarOrVectorOfType(Call->ReturnRegister, SPIRV::OpTypeInt)) {
// Int -> Int
if (Builtin->IsSaturated)
Opcode = Builtin->IsDestinationSigned ? SPIRV::OpSatConvertUToS
: SPIRV::OpSatConvertSToU;
else
Opcode = Builtin->IsDestinationSigned ? SPIRV::OpUConvert
: SPIRV::OpSConvert;
} else if (GR->isScalarOrVectorOfType(Call->ReturnRegister,
SPIRV::OpTypeFloat)) {
// Int -> Float
bool IsSourceSigned =
DemangledCall[DemangledCall.find_first_of('(') + 1] != 'u';
Opcode = IsSourceSigned ? SPIRV::OpConvertSToF : SPIRV::OpConvertUToF;
}
} else if (GR->isScalarOrVectorOfType(Call->Arguments[0],
SPIRV::OpTypeFloat)) {
// Float -> ...
if (GR->isScalarOrVectorOfType(Call->ReturnRegister, SPIRV::OpTypeInt))
// Float -> Int
Opcode = Builtin->IsDestinationSigned ? SPIRV::OpConvertFToS
: SPIRV::OpConvertFToU;
else if (GR->isScalarOrVectorOfType(Call->ReturnRegister,
SPIRV::OpTypeFloat))
// Float -> Float
Opcode = SPIRV::OpFConvert;
}
assert(Opcode != SPIRV::OpNop &&
"Conversion between the types not implemented!");
MIRBuilder.buildInstr(Opcode)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType))
.addUse(Call->Arguments[0]);
return true;
}
static bool generateVectorLoadStoreInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
// Lookup the vector load/store builtin in the TableGen records.
const SPIRV::VectorLoadStoreBuiltin *Builtin =
SPIRV::lookupVectorLoadStoreBuiltin(Call->Builtin->Name,
Call->Builtin->Set);
// Build extended instruction.
auto MIB =
MIRBuilder.buildInstr(SPIRV::OpExtInst)
.addDef(Call->ReturnRegister)
.addUse(GR->getSPIRVTypeID(Call->ReturnType))
.addImm(static_cast<uint32_t>(SPIRV::InstructionSet::OpenCL_std))
.addImm(Builtin->Number);
for (auto Argument : Call->Arguments)
MIB.addUse(Argument);
// Rounding mode should be passed as a last argument in the MI for builtins
// like "vstorea_halfn_r".
if (Builtin->IsRounded)
MIB.addImm(static_cast<uint32_t>(Builtin->RoundingMode));
return true;
}
static bool generateLoadStoreInst(const SPIRV::IncomingCall *Call,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
// Lookup the instruction opcode in the TableGen records.
const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
unsigned Opcode =
SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
bool IsLoad = Opcode == SPIRV::OpLoad;
// Build the instruction.
auto MIB = MIRBuilder.buildInstr(Opcode);
if (IsLoad) {
MIB.addDef(Call->ReturnRegister);
MIB.addUse(GR->getSPIRVTypeID(Call->ReturnType));
}
// Add a pointer to the value to load/store.
MIB.addUse(Call->Arguments[0]);
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
MRI->setRegClass(Call->Arguments[0], &SPIRV::IDRegClass);
// Add a value to store.
if (!IsLoad) {
MIB.addUse(Call->Arguments[1]);
MRI->setRegClass(Call->Arguments[1], &SPIRV::IDRegClass);
}
// Add optional memory attributes and an alignment.
unsigned NumArgs = Call->Arguments.size();
if ((IsLoad && NumArgs >= 2) || NumArgs >= 3) {
MIB.addImm(getConstFromIntrinsic(Call->Arguments[IsLoad ? 1 : 2], MRI));
MRI->setRegClass(Call->Arguments[IsLoad ? 1 : 2], &SPIRV::IDRegClass);
}
if ((IsLoad && NumArgs >= 3) || NumArgs >= 4) {
MIB.addImm(getConstFromIntrinsic(Call->Arguments[IsLoad ? 2 : 3], MRI));
MRI->setRegClass(Call->Arguments[IsLoad ? 2 : 3], &SPIRV::IDRegClass);
}
return true;
}
/// Lowers a builtin funtion call using the provided \p DemangledCall skeleton
/// and external instruction \p Set.
namespace SPIRV {
std::optional<bool> lowerBuiltin(const StringRef DemangledCall,
SPIRV::InstructionSet::InstructionSet Set,
MachineIRBuilder &MIRBuilder,
const Register OrigRet, const Type *OrigRetTy,
const SmallVectorImpl<Register> &Args,
SPIRVGlobalRegistry *GR) {
LLVM_DEBUG(dbgs() << "Lowering builtin call: " << DemangledCall << "\n");
// SPIR-V type and return register.
Register ReturnRegister = OrigRet;
SPIRVType *ReturnType = nullptr;
if (OrigRetTy && !OrigRetTy->isVoidTy()) {
ReturnType = GR->assignTypeToVReg(OrigRetTy, OrigRet, MIRBuilder);
if (!MIRBuilder.getMRI()->getRegClassOrNull(ReturnRegister))
MIRBuilder.getMRI()->setRegClass(ReturnRegister, &SPIRV::IDRegClass);
} else if (OrigRetTy && OrigRetTy->isVoidTy()) {
ReturnRegister = MIRBuilder.getMRI()->createVirtualRegister(&IDRegClass);
MIRBuilder.getMRI()->setType(ReturnRegister, LLT::scalar(32));
ReturnType = GR->assignTypeToVReg(OrigRetTy, ReturnRegister, MIRBuilder);
}
// Lookup the builtin in the TableGen records.
std::unique_ptr<const IncomingCall> Call =
lookupBuiltin(DemangledCall, Set, ReturnRegister, ReturnType, Args);
if (!Call) {
LLVM_DEBUG(dbgs() << "Builtin record was not found!\n");
return std::nullopt;
}
// TODO: check if the provided args meet the builtin requirments.
assert(Args.size() >= Call->Builtin->MinNumArgs &&
"Too few arguments to generate the builtin");
if (Call->Builtin->MaxNumArgs && Args.size() > Call->Builtin->MaxNumArgs)
LLVM_DEBUG(dbgs() << "More arguments provided than required!\n");
// Match the builtin with implementation based on the grouping.
switch (Call->Builtin->Group) {
case SPIRV::Extended:
return generateExtInst(Call.get(), MIRBuilder, GR);
case SPIRV::Relational:
return generateRelationalInst(Call.get(), MIRBuilder, GR);
case SPIRV::Group:
return generateGroupInst(Call.get(), MIRBuilder, GR);
case SPIRV::Variable:
return generateBuiltinVar(Call.get(), MIRBuilder, GR);
case SPIRV::Atomic:
return generateAtomicInst(Call.get(), MIRBuilder, GR);
case SPIRV::Barrier:
return generateBarrierInst(Call.get(), MIRBuilder, GR);
case SPIRV::Dot:
return generateDotOrFMulInst(Call.get(), MIRBuilder, GR);
case SPIRV::GetQuery:
return generateGetQueryInst(Call.get(), MIRBuilder, GR);
case SPIRV::ImageSizeQuery:
return generateImageSizeQueryInst(Call.get(), MIRBuilder, GR);
case SPIRV::ImageMiscQuery:
return generateImageMiscQueryInst(Call.get(), MIRBuilder, GR);
case SPIRV::ReadImage:
return generateReadImageInst(DemangledCall, Call.get(), MIRBuilder, GR);
case SPIRV::WriteImage:
return generateWriteImageInst(Call.get(), MIRBuilder, GR);
case SPIRV::SampleImage:
return generateSampleImageInst(DemangledCall, Call.get(), MIRBuilder, GR);
case SPIRV::Select:
return generateSelectInst(Call.get(), MIRBuilder);
case SPIRV::SpecConstant:
return generateSpecConstantInst(Call.get(), MIRBuilder, GR);
case SPIRV::Enqueue:
return generateEnqueueInst(Call.get(), MIRBuilder, GR);
case SPIRV::AsyncCopy:
return generateAsyncCopy(Call.get(), MIRBuilder, GR);
case SPIRV::Convert:
return generateConvertInst(DemangledCall, Call.get(), MIRBuilder, GR);
case SPIRV::VectorLoadStore:
return generateVectorLoadStoreInst(Call.get(), MIRBuilder, GR);
case SPIRV::LoadStore:
return generateLoadStoreInst(Call.get(), MIRBuilder, GR);
}
return false;
}
struct BuiltinType {
StringRef Name;
uint32_t Opcode;
};
#define GET_BuiltinTypes_DECL
#define GET_BuiltinTypes_IMPL
struct OpenCLType {
StringRef Name;
StringRef SpirvTypeLiteral;
};
#define GET_OpenCLTypes_DECL
#define GET_OpenCLTypes_IMPL
#include "SPIRVGenTables.inc"
} // namespace SPIRV
//===----------------------------------------------------------------------===//
// Misc functions for parsing builtin types.
//===----------------------------------------------------------------------===//
static Type *parseTypeString(const StringRef Name, LLVMContext &Context) {
if (Name.startswith("void"))
return Type::getVoidTy(Context);
else if (Name.startswith("int") || Name.startswith("uint"))
return Type::getInt32Ty(Context);
else if (Name.startswith("float"))
return Type::getFloatTy(Context);
else if (Name.startswith("half"))
return Type::getHalfTy(Context);
llvm_unreachable("Unable to recognize type!");
}
static const TargetExtType *parseToTargetExtType(const Type *OpaqueType,
MachineIRBuilder &MIRBuilder) {
assert(isSpecialOpaqueType(OpaqueType) &&
"Not a SPIR-V/OpenCL special opaque type!");
assert(!OpaqueType->isTargetExtTy() &&
"This already is SPIR-V/OpenCL TargetExtType!");
StringRef NameWithParameters = OpaqueType->getStructName();
// Pointers-to-opaque-structs representing OpenCL types are first translated
// to equivalent SPIR-V types. OpenCL builtin type names should have the
// following format: e.g. %opencl.event_t
if (NameWithParameters.startswith("opencl.")) {
const SPIRV::OpenCLType *OCLTypeRecord =
SPIRV::lookupOpenCLType(NameWithParameters);
if (!OCLTypeRecord)
report_fatal_error("Missing TableGen record for OpenCL type: " +
NameWithParameters);
NameWithParameters = OCLTypeRecord->SpirvTypeLiteral;
// Continue with the SPIR-V builtin type...
}
// Names of the opaque structs representing a SPIR-V builtins without
// parameters should have the following format: e.g. %spirv.Event
assert(NameWithParameters.startswith("spirv.") &&
"Unknown builtin opaque type!");
// Parameterized SPIR-V builtins names follow this format:
// e.g. %spirv.Image._void_1_0_0_0_0_0_0, %spirv.Pipe._0
if (NameWithParameters.find('_') == std::string::npos)
return TargetExtType::get(OpaqueType->getContext(), NameWithParameters);
SmallVector<StringRef> Parameters;
unsigned BaseNameLength = NameWithParameters.find('_') - 1;
SplitString(NameWithParameters.substr(BaseNameLength + 1), Parameters, "_");
SmallVector<Type *, 1> TypeParameters;
bool HasTypeParameter = !isDigit(Parameters[0][0]);
if (HasTypeParameter)
TypeParameters.push_back(parseTypeString(
Parameters[0], MIRBuilder.getMF().getFunction().getContext()));
SmallVector<unsigned> IntParameters;
for (unsigned i = HasTypeParameter ? 1 : 0; i < Parameters.size(); i++) {
unsigned IntParameter = 0;
bool ValidLiteral = !Parameters[i].getAsInteger(10, IntParameter);
assert(ValidLiteral &&
"Invalid format of SPIR-V builtin parameter literal!");
IntParameters.push_back(IntParameter);
}
return TargetExtType::get(OpaqueType->getContext(),
NameWithParameters.substr(0, BaseNameLength),
TypeParameters, IntParameters);
}
//===----------------------------------------------------------------------===//
// Implementation functions for builtin types.
//===----------------------------------------------------------------------===//
static SPIRVType *getNonParameterizedType(const TargetExtType *ExtensionType,
const SPIRV::BuiltinType *TypeRecord,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
unsigned Opcode = TypeRecord->Opcode;
// Create or get an existing type from GlobalRegistry.
return GR->getOrCreateOpTypeByOpcode(ExtensionType, MIRBuilder, Opcode);
}
static SPIRVType *getSamplerType(MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
// Create or get an existing type from GlobalRegistry.
return GR->getOrCreateOpTypeSampler(MIRBuilder);
}
static SPIRVType *getPipeType(const TargetExtType *ExtensionType,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
assert(ExtensionType->getNumIntParameters() == 1 &&
"Invalid number of parameters for SPIR-V pipe builtin!");
// Create or get an existing type from GlobalRegistry.
return GR->getOrCreateOpTypePipe(MIRBuilder,
SPIRV::AccessQualifier::AccessQualifier(
ExtensionType->getIntParameter(0)));
}
static SPIRVType *
getImageType(const TargetExtType *ExtensionType,
const SPIRV::AccessQualifier::AccessQualifier Qualifier,
MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR) {
assert(ExtensionType->getNumTypeParameters() == 1 &&
"SPIR-V image builtin type must have sampled type parameter!");
const SPIRVType *SampledType =
GR->getOrCreateSPIRVType(ExtensionType->getTypeParameter(0), MIRBuilder);
assert(ExtensionType->getNumIntParameters() == 7 &&
"Invalid number of parameters for SPIR-V image builtin!");
// Create or get an existing type from GlobalRegistry.
return GR->getOrCreateOpTypeImage(
MIRBuilder, SampledType,
SPIRV::Dim::Dim(ExtensionType->getIntParameter(0)),
ExtensionType->getIntParameter(1), ExtensionType->getIntParameter(2),
ExtensionType->getIntParameter(3), ExtensionType->getIntParameter(4),
SPIRV::ImageFormat::ImageFormat(ExtensionType->getIntParameter(5)),
Qualifier == SPIRV::AccessQualifier::WriteOnly
? SPIRV::AccessQualifier::WriteOnly
: SPIRV::AccessQualifier::AccessQualifier(
ExtensionType->getIntParameter(6)));
}
static SPIRVType *getSampledImageType(const TargetExtType *OpaqueType,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
SPIRVType *OpaqueImageType = getImageType(
OpaqueType, SPIRV::AccessQualifier::ReadOnly, MIRBuilder, GR);
// Create or get an existing type from GlobalRegistry.
return GR->getOrCreateOpTypeSampledImage(OpaqueImageType, MIRBuilder);
}
namespace SPIRV {
SPIRVType *lowerBuiltinType(const Type *OpaqueType,
SPIRV::AccessQualifier::AccessQualifier AccessQual,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry *GR) {
// In LLVM IR, SPIR-V and OpenCL builtin types are represented as either
// target(...) target extension types or pointers-to-opaque-structs. The
// approach relying on structs is deprecated and works only in the non-opaque
// pointer mode (-opaque-pointers=0).
// In order to maintain compatibility with LLVM IR generated by older versions
// of Clang and LLVM/SPIR-V Translator, the pointers-to-opaque-structs are
// "translated" to target extension types. This translation is temporary and
// will be removed in the future release of LLVM.
const TargetExtType *BuiltinType = dyn_cast<TargetExtType>(OpaqueType);
if (!BuiltinType)
BuiltinType = parseToTargetExtType(OpaqueType, MIRBuilder);
unsigned NumStartingVRegs = MIRBuilder.getMRI()->getNumVirtRegs();
const StringRef Name = BuiltinType->getName();
LLVM_DEBUG(dbgs() << "Lowering builtin type: " << Name << "\n");
// Lookup the demangled builtin type in the TableGen records.
const SPIRV::BuiltinType *TypeRecord = SPIRV::lookupBuiltinType(Name);
if (!TypeRecord)
report_fatal_error("Missing TableGen record for builtin type: " + Name);
// "Lower" the BuiltinType into TargetType. The following get<...>Type methods
// use the implementation details from TableGen records or TargetExtType
// parameters to either create a new OpType<...> machine instruction or get an
// existing equivalent SPIRVType from GlobalRegistry.
SPIRVType *TargetType;
switch (TypeRecord->Opcode) {
case SPIRV::OpTypeImage:
TargetType = getImageType(BuiltinType, AccessQual, MIRBuilder, GR);
break;
case SPIRV::OpTypePipe:
TargetType = getPipeType(BuiltinType, MIRBuilder, GR);
break;
case SPIRV::OpTypeDeviceEvent:
TargetType = GR->getOrCreateOpTypeDeviceEvent(MIRBuilder);
break;
case SPIRV::OpTypeSampler:
TargetType = getSamplerType(MIRBuilder, GR);
break;
case SPIRV::OpTypeSampledImage:
TargetType = getSampledImageType(BuiltinType, MIRBuilder, GR);
break;
default:
TargetType =
getNonParameterizedType(BuiltinType, TypeRecord, MIRBuilder, GR);
break;
}
// Emit OpName instruction if a new OpType<...> instruction was added
// (equivalent type was not found in GlobalRegistry).
if (NumStartingVRegs < MIRBuilder.getMRI()->getNumVirtRegs())
buildOpName(GR->getSPIRVTypeID(TargetType), Name, MIRBuilder);
return TargetType;
}
} // namespace SPIRV
} // namespace llvm
|