File: SPIRVCallLowering.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (444 lines) | stat: -rw-r--r-- 18,446 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
//===--- SPIRVCallLowering.cpp - Call lowering ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the lowering of LLVM calls to machine code calls for
// GlobalISel.
//
//===----------------------------------------------------------------------===//

#include "SPIRVCallLowering.h"
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "SPIRV.h"
#include "SPIRVBuiltins.h"
#include "SPIRVGlobalRegistry.h"
#include "SPIRVISelLowering.h"
#include "SPIRVRegisterInfo.h"
#include "SPIRVSubtarget.h"
#include "SPIRVUtils.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/Support/ModRef.h"

using namespace llvm;

SPIRVCallLowering::SPIRVCallLowering(const SPIRVTargetLowering &TLI,
                                     SPIRVGlobalRegistry *GR)
    : CallLowering(&TLI), GR(GR) {}

bool SPIRVCallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
                                    const Value *Val, ArrayRef<Register> VRegs,
                                    FunctionLoweringInfo &FLI,
                                    Register SwiftErrorVReg) const {
  // Currently all return types should use a single register.
  // TODO: handle the case of multiple registers.
  if (VRegs.size() > 1)
    return false;
  if (Val) {
    const auto &STI = MIRBuilder.getMF().getSubtarget();
    return MIRBuilder.buildInstr(SPIRV::OpReturnValue)
        .addUse(VRegs[0])
        .constrainAllUses(MIRBuilder.getTII(), *STI.getRegisterInfo(),
                          *STI.getRegBankInfo());
  }
  MIRBuilder.buildInstr(SPIRV::OpReturn);
  return true;
}

// Based on the LLVM function attributes, get a SPIR-V FunctionControl.
static uint32_t getFunctionControl(const Function &F) {
  MemoryEffects MemEffects = F.getMemoryEffects();

  uint32_t FuncControl = static_cast<uint32_t>(SPIRV::FunctionControl::None);

  if (F.hasFnAttribute(Attribute::AttrKind::NoInline))
    FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::DontInline);
  else if (F.hasFnAttribute(Attribute::AttrKind::AlwaysInline))
    FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Inline);

  if (MemEffects.doesNotAccessMemory())
    FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Pure);
  else if (MemEffects.onlyReadsMemory())
    FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Const);

  return FuncControl;
}

static ConstantInt *getConstInt(MDNode *MD, unsigned NumOp) {
  if (MD->getNumOperands() > NumOp) {
    auto *CMeta = dyn_cast<ConstantAsMetadata>(MD->getOperand(NumOp));
    if (CMeta)
      return dyn_cast<ConstantInt>(CMeta->getValue());
  }
  return nullptr;
}

// This code restores function args/retvalue types for composite cases
// because the final types should still be aggregate whereas they're i32
// during the translation to cope with aggregate flattening etc.
static FunctionType *getOriginalFunctionType(const Function &F) {
  auto *NamedMD = F.getParent()->getNamedMetadata("spv.cloned_funcs");
  if (NamedMD == nullptr)
    return F.getFunctionType();

  Type *RetTy = F.getFunctionType()->getReturnType();
  SmallVector<Type *, 4> ArgTypes;
  for (auto &Arg : F.args())
    ArgTypes.push_back(Arg.getType());

  auto ThisFuncMDIt =
      std::find_if(NamedMD->op_begin(), NamedMD->op_end(), [&F](MDNode *N) {
        return isa<MDString>(N->getOperand(0)) &&
               cast<MDString>(N->getOperand(0))->getString() == F.getName();
      });
  // TODO: probably one function can have numerous type mutations,
  // so we should support this.
  if (ThisFuncMDIt != NamedMD->op_end()) {
    auto *ThisFuncMD = *ThisFuncMDIt;
    MDNode *MD = dyn_cast<MDNode>(ThisFuncMD->getOperand(1));
    assert(MD && "MDNode operand is expected");
    ConstantInt *Const = getConstInt(MD, 0);
    if (Const) {
      auto *CMeta = dyn_cast<ConstantAsMetadata>(MD->getOperand(1));
      assert(CMeta && "ConstantAsMetadata operand is expected");
      assert(Const->getSExtValue() >= -1);
      // Currently -1 indicates return value, greater values mean
      // argument numbers.
      if (Const->getSExtValue() == -1)
        RetTy = CMeta->getType();
      else
        ArgTypes[Const->getSExtValue()] = CMeta->getType();
    }
  }

  return FunctionType::get(RetTy, ArgTypes, F.isVarArg());
}

static MDString *getKernelArgAttribute(const Function &KernelFunction,
                                       unsigned ArgIdx,
                                       const StringRef AttributeName) {
  assert(KernelFunction.getCallingConv() == CallingConv::SPIR_KERNEL &&
         "Kernel attributes are attached/belong only to kernel functions");

  // Lookup the argument attribute in metadata attached to the kernel function.
  MDNode *Node = KernelFunction.getMetadata(AttributeName);
  if (Node && ArgIdx < Node->getNumOperands())
    return cast<MDString>(Node->getOperand(ArgIdx));

  // Sometimes metadata containing kernel attributes is not attached to the
  // function, but can be found in the named module-level metadata instead.
  // For example:
  //   !opencl.kernels = !{!0}
  //   !0 = !{void ()* @someKernelFunction, !1, ...}
  //   !1 = !{!"kernel_arg_addr_space", ...}
  // In this case the actual index of searched argument attribute is ArgIdx + 1,
  // since the first metadata node operand is occupied by attribute name
  // ("kernel_arg_addr_space" in the example above).
  unsigned MDArgIdx = ArgIdx + 1;
  NamedMDNode *OpenCLKernelsMD =
      KernelFunction.getParent()->getNamedMetadata("opencl.kernels");
  if (!OpenCLKernelsMD || OpenCLKernelsMD->getNumOperands() == 0)
    return nullptr;

  // KernelToMDNodeList contains kernel function declarations followed by
  // corresponding MDNodes for each attribute. Search only MDNodes "belonging"
  // to the currently lowered kernel function.
  MDNode *KernelToMDNodeList = OpenCLKernelsMD->getOperand(0);
  bool FoundLoweredKernelFunction = false;
  for (const MDOperand &Operand : KernelToMDNodeList->operands()) {
    ValueAsMetadata *MaybeValue = dyn_cast<ValueAsMetadata>(Operand);
    if (MaybeValue && dyn_cast<Function>(MaybeValue->getValue())->getName() ==
                          KernelFunction.getName()) {
      FoundLoweredKernelFunction = true;
      continue;
    }
    if (MaybeValue && FoundLoweredKernelFunction)
      return nullptr;

    MDNode *MaybeNode = dyn_cast<MDNode>(Operand);
    if (FoundLoweredKernelFunction && MaybeNode &&
        cast<MDString>(MaybeNode->getOperand(0))->getString() ==
            AttributeName &&
        MDArgIdx < MaybeNode->getNumOperands())
      return cast<MDString>(MaybeNode->getOperand(MDArgIdx));
  }
  return nullptr;
}

static SPIRV::AccessQualifier::AccessQualifier
getArgAccessQual(const Function &F, unsigned ArgIdx) {
  if (F.getCallingConv() != CallingConv::SPIR_KERNEL)
    return SPIRV::AccessQualifier::ReadWrite;

  MDString *ArgAttribute =
      getKernelArgAttribute(F, ArgIdx, "kernel_arg_access_qual");
  if (!ArgAttribute)
    return SPIRV::AccessQualifier::ReadWrite;

  if (ArgAttribute->getString().compare("read_only") == 0)
    return SPIRV::AccessQualifier::ReadOnly;
  if (ArgAttribute->getString().compare("write_only") == 0)
    return SPIRV::AccessQualifier::WriteOnly;
  return SPIRV::AccessQualifier::ReadWrite;
}

static std::vector<SPIRV::Decoration::Decoration>
getKernelArgTypeQual(const Function &KernelFunction, unsigned ArgIdx) {
  MDString *ArgAttribute =
      getKernelArgAttribute(KernelFunction, ArgIdx, "kernel_arg_type_qual");
  if (ArgAttribute && ArgAttribute->getString().compare("volatile") == 0)
    return {SPIRV::Decoration::Volatile};
  return {};
}

static Type *getArgType(const Function &F, unsigned ArgIdx) {
  Type *OriginalArgType = getOriginalFunctionType(F)->getParamType(ArgIdx);
  if (F.getCallingConv() != CallingConv::SPIR_KERNEL ||
      isSpecialOpaqueType(OriginalArgType))
    return OriginalArgType;

  MDString *MDKernelArgType =
      getKernelArgAttribute(F, ArgIdx, "kernel_arg_type");
  if (!MDKernelArgType || !MDKernelArgType->getString().endswith("_t"))
    return OriginalArgType;

  std::string KernelArgTypeStr = "opencl." + MDKernelArgType->getString().str();
  Type *ExistingOpaqueType =
      StructType::getTypeByName(F.getContext(), KernelArgTypeStr);
  return ExistingOpaqueType
             ? ExistingOpaqueType
             : StructType::create(F.getContext(), KernelArgTypeStr);
}

bool SPIRVCallLowering::lowerFormalArguments(MachineIRBuilder &MIRBuilder,
                                             const Function &F,
                                             ArrayRef<ArrayRef<Register>> VRegs,
                                             FunctionLoweringInfo &FLI) const {
  assert(GR && "Must initialize the SPIRV type registry before lowering args.");
  GR->setCurrentFunc(MIRBuilder.getMF());

  // Assign types and names to all args, and store their types for later.
  FunctionType *FTy = getOriginalFunctionType(F);
  SmallVector<SPIRVType *, 4> ArgTypeVRegs;
  if (VRegs.size() > 0) {
    unsigned i = 0;
    for (const auto &Arg : F.args()) {
      // Currently formal args should use single registers.
      // TODO: handle the case of multiple registers.
      if (VRegs[i].size() > 1)
        return false;
      SPIRV::AccessQualifier::AccessQualifier ArgAccessQual =
          getArgAccessQual(F, i);
      auto *SpirvTy = GR->assignTypeToVReg(getArgType(F, i), VRegs[i][0],
                                           MIRBuilder, ArgAccessQual);
      ArgTypeVRegs.push_back(SpirvTy);

      if (Arg.hasName())
        buildOpName(VRegs[i][0], Arg.getName(), MIRBuilder);
      if (Arg.getType()->isPointerTy()) {
        auto DerefBytes = static_cast<unsigned>(Arg.getDereferenceableBytes());
        if (DerefBytes != 0)
          buildOpDecorate(VRegs[i][0], MIRBuilder,
                          SPIRV::Decoration::MaxByteOffset, {DerefBytes});
      }
      if (Arg.hasAttribute(Attribute::Alignment)) {
        auto Alignment = static_cast<unsigned>(
            Arg.getAttribute(Attribute::Alignment).getValueAsInt());
        buildOpDecorate(VRegs[i][0], MIRBuilder, SPIRV::Decoration::Alignment,
                        {Alignment});
      }
      if (Arg.hasAttribute(Attribute::ReadOnly)) {
        auto Attr =
            static_cast<unsigned>(SPIRV::FunctionParameterAttribute::NoWrite);
        buildOpDecorate(VRegs[i][0], MIRBuilder,
                        SPIRV::Decoration::FuncParamAttr, {Attr});
      }
      if (Arg.hasAttribute(Attribute::ZExt)) {
        auto Attr =
            static_cast<unsigned>(SPIRV::FunctionParameterAttribute::Zext);
        buildOpDecorate(VRegs[i][0], MIRBuilder,
                        SPIRV::Decoration::FuncParamAttr, {Attr});
      }
      if (Arg.hasAttribute(Attribute::NoAlias)) {
        auto Attr =
            static_cast<unsigned>(SPIRV::FunctionParameterAttribute::NoAlias);
        buildOpDecorate(VRegs[i][0], MIRBuilder,
                        SPIRV::Decoration::FuncParamAttr, {Attr});
      }

      if (F.getCallingConv() == CallingConv::SPIR_KERNEL) {
        std::vector<SPIRV::Decoration::Decoration> ArgTypeQualDecs =
            getKernelArgTypeQual(F, i);
        for (SPIRV::Decoration::Decoration Decoration : ArgTypeQualDecs)
          buildOpDecorate(VRegs[i][0], MIRBuilder, Decoration, {});
      }

      MDNode *Node = F.getMetadata("spirv.ParameterDecorations");
      if (Node && i < Node->getNumOperands() &&
          isa<MDNode>(Node->getOperand(i))) {
        MDNode *MD = cast<MDNode>(Node->getOperand(i));
        for (const MDOperand &MDOp : MD->operands()) {
          MDNode *MD2 = dyn_cast<MDNode>(MDOp);
          assert(MD2 && "Metadata operand is expected");
          ConstantInt *Const = getConstInt(MD2, 0);
          assert(Const && "MDOperand should be ConstantInt");
          auto Dec =
              static_cast<SPIRV::Decoration::Decoration>(Const->getZExtValue());
          std::vector<uint32_t> DecVec;
          for (unsigned j = 1; j < MD2->getNumOperands(); j++) {
            ConstantInt *Const = getConstInt(MD2, j);
            assert(Const && "MDOperand should be ConstantInt");
            DecVec.push_back(static_cast<uint32_t>(Const->getZExtValue()));
          }
          buildOpDecorate(VRegs[i][0], MIRBuilder, Dec, DecVec);
        }
      }
      ++i;
    }
  }

  // Generate a SPIR-V type for the function.
  auto MRI = MIRBuilder.getMRI();
  Register FuncVReg = MRI->createGenericVirtualRegister(LLT::scalar(32));
  MRI->setRegClass(FuncVReg, &SPIRV::IDRegClass);
  if (F.isDeclaration())
    GR->add(&F, &MIRBuilder.getMF(), FuncVReg);
  SPIRVType *RetTy = GR->getOrCreateSPIRVType(FTy->getReturnType(), MIRBuilder);
  SPIRVType *FuncTy = GR->getOrCreateOpTypeFunctionWithArgs(
      FTy, RetTy, ArgTypeVRegs, MIRBuilder);

  // Build the OpTypeFunction declaring it.
  uint32_t FuncControl = getFunctionControl(F);

  MIRBuilder.buildInstr(SPIRV::OpFunction)
      .addDef(FuncVReg)
      .addUse(GR->getSPIRVTypeID(RetTy))
      .addImm(FuncControl)
      .addUse(GR->getSPIRVTypeID(FuncTy));

  // Add OpFunctionParameters.
  int i = 0;
  for (const auto &Arg : F.args()) {
    assert(VRegs[i].size() == 1 && "Formal arg has multiple vregs");
    MRI->setRegClass(VRegs[i][0], &SPIRV::IDRegClass);
    MIRBuilder.buildInstr(SPIRV::OpFunctionParameter)
        .addDef(VRegs[i][0])
        .addUse(GR->getSPIRVTypeID(ArgTypeVRegs[i]));
    if (F.isDeclaration())
      GR->add(&Arg, &MIRBuilder.getMF(), VRegs[i][0]);
    i++;
  }
  // Name the function.
  if (F.hasName())
    buildOpName(FuncVReg, F.getName(), MIRBuilder);

  // Handle entry points and function linkage.
  if (F.getCallingConv() == CallingConv::SPIR_KERNEL) {
    auto MIB = MIRBuilder.buildInstr(SPIRV::OpEntryPoint)
                   .addImm(static_cast<uint32_t>(SPIRV::ExecutionModel::Kernel))
                   .addUse(FuncVReg);
    addStringImm(F.getName(), MIB);
  } else if (F.getLinkage() == GlobalValue::LinkageTypes::ExternalLinkage ||
             F.getLinkage() == GlobalValue::LinkOnceODRLinkage) {
    auto LnkTy = F.isDeclaration() ? SPIRV::LinkageType::Import
                                   : SPIRV::LinkageType::Export;
    buildOpDecorate(FuncVReg, MIRBuilder, SPIRV::Decoration::LinkageAttributes,
                    {static_cast<uint32_t>(LnkTy)}, F.getGlobalIdentifier());
  }

  return true;
}

bool SPIRVCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
                                  CallLoweringInfo &Info) const {
  // Currently call returns should have single vregs.
  // TODO: handle the case of multiple registers.
  if (Info.OrigRet.Regs.size() > 1)
    return false;
  MachineFunction &MF = MIRBuilder.getMF();
  GR->setCurrentFunc(MF);
  FunctionType *FTy = nullptr;
  const Function *CF = nullptr;

  // Emit a regular OpFunctionCall. If it's an externally declared function,
  // be sure to emit its type and function declaration here. It will be hoisted
  // globally later.
  if (Info.Callee.isGlobal()) {
    CF = dyn_cast_or_null<const Function>(Info.Callee.getGlobal());
    // TODO: support constexpr casts and indirect calls.
    if (CF == nullptr)
      return false;
    FTy = getOriginalFunctionType(*CF);
  }

  MachineRegisterInfo *MRI = MIRBuilder.getMRI();
  Register ResVReg =
      Info.OrigRet.Regs.empty() ? Register(0) : Info.OrigRet.Regs[0];
  std::string FuncName = Info.Callee.getGlobal()->getName().str();
  std::string DemangledName = getOclOrSpirvBuiltinDemangledName(FuncName);
  const auto *ST = static_cast<const SPIRVSubtarget *>(&MF.getSubtarget());
  // TODO: check that it's OCL builtin, then apply OpenCL_std.
  if (!DemangledName.empty() && CF && CF->isDeclaration() &&
      ST->canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std)) {
    const Type *OrigRetTy = Info.OrigRet.Ty;
    if (FTy)
      OrigRetTy = FTy->getReturnType();
    SmallVector<Register, 8> ArgVRegs;
    for (auto Arg : Info.OrigArgs) {
      assert(Arg.Regs.size() == 1 && "Call arg has multiple VRegs");
      ArgVRegs.push_back(Arg.Regs[0]);
      SPIRVType *SPIRVTy = GR->getOrCreateSPIRVType(Arg.Ty, MIRBuilder);
      GR->assignSPIRVTypeToVReg(SPIRVTy, Arg.Regs[0], MIRBuilder.getMF());
    }
    if (auto Res = SPIRV::lowerBuiltin(
            DemangledName, SPIRV::InstructionSet::OpenCL_std, MIRBuilder,
            ResVReg, OrigRetTy, ArgVRegs, GR))
      return *Res;
  }
  if (CF && CF->isDeclaration() &&
      !GR->find(CF, &MIRBuilder.getMF()).isValid()) {
    // Emit the type info and forward function declaration to the first MBB
    // to ensure VReg definition dependencies are valid across all MBBs.
    MachineIRBuilder FirstBlockBuilder;
    FirstBlockBuilder.setMF(MF);
    FirstBlockBuilder.setMBB(*MF.getBlockNumbered(0));

    SmallVector<ArrayRef<Register>, 8> VRegArgs;
    SmallVector<SmallVector<Register, 1>, 8> ToInsert;
    for (const Argument &Arg : CF->args()) {
      if (MIRBuilder.getDataLayout().getTypeStoreSize(Arg.getType()).isZero())
        continue; // Don't handle zero sized types.
      Register Reg = MRI->createGenericVirtualRegister(LLT::scalar(32));
      MRI->setRegClass(Reg, &SPIRV::IDRegClass);
      ToInsert.push_back({Reg});
      VRegArgs.push_back(ToInsert.back());
    }
    // TODO: Reuse FunctionLoweringInfo
    FunctionLoweringInfo FuncInfo;
    lowerFormalArguments(FirstBlockBuilder, *CF, VRegArgs, FuncInfo);
  }

  // Make sure there's a valid return reg, even for functions returning void.
  if (!ResVReg.isValid())
    ResVReg = MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::IDRegClass);
  SPIRVType *RetType =
      GR->assignTypeToVReg(FTy->getReturnType(), ResVReg, MIRBuilder);

  // Emit the OpFunctionCall and its args.
  auto MIB = MIRBuilder.buildInstr(SPIRV::OpFunctionCall)
                 .addDef(ResVReg)
                 .addUse(GR->getSPIRVTypeID(RetType))
                 .add(Info.Callee);

  for (const auto &Arg : Info.OrigArgs) {
    // Currently call args should have single vregs.
    if (Arg.Regs.size() > 1)
      return false;
    MIB.addUse(Arg.Regs[0]);
  }
  return MIB.constrainAllUses(MIRBuilder.getTII(), *ST->getRegisterInfo(),
                              *ST->getRegBankInfo());
}