1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
//===--- SPIRVCallLowering.cpp - Call lowering ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the lowering of LLVM calls to machine code calls for
// GlobalISel.
//
//===----------------------------------------------------------------------===//
#include "SPIRVCallLowering.h"
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "SPIRV.h"
#include "SPIRVBuiltins.h"
#include "SPIRVGlobalRegistry.h"
#include "SPIRVISelLowering.h"
#include "SPIRVRegisterInfo.h"
#include "SPIRVSubtarget.h"
#include "SPIRVUtils.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/Support/ModRef.h"
using namespace llvm;
SPIRVCallLowering::SPIRVCallLowering(const SPIRVTargetLowering &TLI,
SPIRVGlobalRegistry *GR)
: CallLowering(&TLI), GR(GR) {}
bool SPIRVCallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
const Value *Val, ArrayRef<Register> VRegs,
FunctionLoweringInfo &FLI,
Register SwiftErrorVReg) const {
// Currently all return types should use a single register.
// TODO: handle the case of multiple registers.
if (VRegs.size() > 1)
return false;
if (Val) {
const auto &STI = MIRBuilder.getMF().getSubtarget();
return MIRBuilder.buildInstr(SPIRV::OpReturnValue)
.addUse(VRegs[0])
.constrainAllUses(MIRBuilder.getTII(), *STI.getRegisterInfo(),
*STI.getRegBankInfo());
}
MIRBuilder.buildInstr(SPIRV::OpReturn);
return true;
}
// Based on the LLVM function attributes, get a SPIR-V FunctionControl.
static uint32_t getFunctionControl(const Function &F) {
MemoryEffects MemEffects = F.getMemoryEffects();
uint32_t FuncControl = static_cast<uint32_t>(SPIRV::FunctionControl::None);
if (F.hasFnAttribute(Attribute::AttrKind::NoInline))
FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::DontInline);
else if (F.hasFnAttribute(Attribute::AttrKind::AlwaysInline))
FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Inline);
if (MemEffects.doesNotAccessMemory())
FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Pure);
else if (MemEffects.onlyReadsMemory())
FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Const);
return FuncControl;
}
static ConstantInt *getConstInt(MDNode *MD, unsigned NumOp) {
if (MD->getNumOperands() > NumOp) {
auto *CMeta = dyn_cast<ConstantAsMetadata>(MD->getOperand(NumOp));
if (CMeta)
return dyn_cast<ConstantInt>(CMeta->getValue());
}
return nullptr;
}
// This code restores function args/retvalue types for composite cases
// because the final types should still be aggregate whereas they're i32
// during the translation to cope with aggregate flattening etc.
static FunctionType *getOriginalFunctionType(const Function &F) {
auto *NamedMD = F.getParent()->getNamedMetadata("spv.cloned_funcs");
if (NamedMD == nullptr)
return F.getFunctionType();
Type *RetTy = F.getFunctionType()->getReturnType();
SmallVector<Type *, 4> ArgTypes;
for (auto &Arg : F.args())
ArgTypes.push_back(Arg.getType());
auto ThisFuncMDIt =
std::find_if(NamedMD->op_begin(), NamedMD->op_end(), [&F](MDNode *N) {
return isa<MDString>(N->getOperand(0)) &&
cast<MDString>(N->getOperand(0))->getString() == F.getName();
});
// TODO: probably one function can have numerous type mutations,
// so we should support this.
if (ThisFuncMDIt != NamedMD->op_end()) {
auto *ThisFuncMD = *ThisFuncMDIt;
MDNode *MD = dyn_cast<MDNode>(ThisFuncMD->getOperand(1));
assert(MD && "MDNode operand is expected");
ConstantInt *Const = getConstInt(MD, 0);
if (Const) {
auto *CMeta = dyn_cast<ConstantAsMetadata>(MD->getOperand(1));
assert(CMeta && "ConstantAsMetadata operand is expected");
assert(Const->getSExtValue() >= -1);
// Currently -1 indicates return value, greater values mean
// argument numbers.
if (Const->getSExtValue() == -1)
RetTy = CMeta->getType();
else
ArgTypes[Const->getSExtValue()] = CMeta->getType();
}
}
return FunctionType::get(RetTy, ArgTypes, F.isVarArg());
}
static MDString *getKernelArgAttribute(const Function &KernelFunction,
unsigned ArgIdx,
const StringRef AttributeName) {
assert(KernelFunction.getCallingConv() == CallingConv::SPIR_KERNEL &&
"Kernel attributes are attached/belong only to kernel functions");
// Lookup the argument attribute in metadata attached to the kernel function.
MDNode *Node = KernelFunction.getMetadata(AttributeName);
if (Node && ArgIdx < Node->getNumOperands())
return cast<MDString>(Node->getOperand(ArgIdx));
// Sometimes metadata containing kernel attributes is not attached to the
// function, but can be found in the named module-level metadata instead.
// For example:
// !opencl.kernels = !{!0}
// !0 = !{void ()* @someKernelFunction, !1, ...}
// !1 = !{!"kernel_arg_addr_space", ...}
// In this case the actual index of searched argument attribute is ArgIdx + 1,
// since the first metadata node operand is occupied by attribute name
// ("kernel_arg_addr_space" in the example above).
unsigned MDArgIdx = ArgIdx + 1;
NamedMDNode *OpenCLKernelsMD =
KernelFunction.getParent()->getNamedMetadata("opencl.kernels");
if (!OpenCLKernelsMD || OpenCLKernelsMD->getNumOperands() == 0)
return nullptr;
// KernelToMDNodeList contains kernel function declarations followed by
// corresponding MDNodes for each attribute. Search only MDNodes "belonging"
// to the currently lowered kernel function.
MDNode *KernelToMDNodeList = OpenCLKernelsMD->getOperand(0);
bool FoundLoweredKernelFunction = false;
for (const MDOperand &Operand : KernelToMDNodeList->operands()) {
ValueAsMetadata *MaybeValue = dyn_cast<ValueAsMetadata>(Operand);
if (MaybeValue && dyn_cast<Function>(MaybeValue->getValue())->getName() ==
KernelFunction.getName()) {
FoundLoweredKernelFunction = true;
continue;
}
if (MaybeValue && FoundLoweredKernelFunction)
return nullptr;
MDNode *MaybeNode = dyn_cast<MDNode>(Operand);
if (FoundLoweredKernelFunction && MaybeNode &&
cast<MDString>(MaybeNode->getOperand(0))->getString() ==
AttributeName &&
MDArgIdx < MaybeNode->getNumOperands())
return cast<MDString>(MaybeNode->getOperand(MDArgIdx));
}
return nullptr;
}
static SPIRV::AccessQualifier::AccessQualifier
getArgAccessQual(const Function &F, unsigned ArgIdx) {
if (F.getCallingConv() != CallingConv::SPIR_KERNEL)
return SPIRV::AccessQualifier::ReadWrite;
MDString *ArgAttribute =
getKernelArgAttribute(F, ArgIdx, "kernel_arg_access_qual");
if (!ArgAttribute)
return SPIRV::AccessQualifier::ReadWrite;
if (ArgAttribute->getString().compare("read_only") == 0)
return SPIRV::AccessQualifier::ReadOnly;
if (ArgAttribute->getString().compare("write_only") == 0)
return SPIRV::AccessQualifier::WriteOnly;
return SPIRV::AccessQualifier::ReadWrite;
}
static std::vector<SPIRV::Decoration::Decoration>
getKernelArgTypeQual(const Function &KernelFunction, unsigned ArgIdx) {
MDString *ArgAttribute =
getKernelArgAttribute(KernelFunction, ArgIdx, "kernel_arg_type_qual");
if (ArgAttribute && ArgAttribute->getString().compare("volatile") == 0)
return {SPIRV::Decoration::Volatile};
return {};
}
static Type *getArgType(const Function &F, unsigned ArgIdx) {
Type *OriginalArgType = getOriginalFunctionType(F)->getParamType(ArgIdx);
if (F.getCallingConv() != CallingConv::SPIR_KERNEL ||
isSpecialOpaqueType(OriginalArgType))
return OriginalArgType;
MDString *MDKernelArgType =
getKernelArgAttribute(F, ArgIdx, "kernel_arg_type");
if (!MDKernelArgType || !MDKernelArgType->getString().endswith("_t"))
return OriginalArgType;
std::string KernelArgTypeStr = "opencl." + MDKernelArgType->getString().str();
Type *ExistingOpaqueType =
StructType::getTypeByName(F.getContext(), KernelArgTypeStr);
return ExistingOpaqueType
? ExistingOpaqueType
: StructType::create(F.getContext(), KernelArgTypeStr);
}
bool SPIRVCallLowering::lowerFormalArguments(MachineIRBuilder &MIRBuilder,
const Function &F,
ArrayRef<ArrayRef<Register>> VRegs,
FunctionLoweringInfo &FLI) const {
assert(GR && "Must initialize the SPIRV type registry before lowering args.");
GR->setCurrentFunc(MIRBuilder.getMF());
// Assign types and names to all args, and store their types for later.
FunctionType *FTy = getOriginalFunctionType(F);
SmallVector<SPIRVType *, 4> ArgTypeVRegs;
if (VRegs.size() > 0) {
unsigned i = 0;
for (const auto &Arg : F.args()) {
// Currently formal args should use single registers.
// TODO: handle the case of multiple registers.
if (VRegs[i].size() > 1)
return false;
SPIRV::AccessQualifier::AccessQualifier ArgAccessQual =
getArgAccessQual(F, i);
auto *SpirvTy = GR->assignTypeToVReg(getArgType(F, i), VRegs[i][0],
MIRBuilder, ArgAccessQual);
ArgTypeVRegs.push_back(SpirvTy);
if (Arg.hasName())
buildOpName(VRegs[i][0], Arg.getName(), MIRBuilder);
if (Arg.getType()->isPointerTy()) {
auto DerefBytes = static_cast<unsigned>(Arg.getDereferenceableBytes());
if (DerefBytes != 0)
buildOpDecorate(VRegs[i][0], MIRBuilder,
SPIRV::Decoration::MaxByteOffset, {DerefBytes});
}
if (Arg.hasAttribute(Attribute::Alignment)) {
auto Alignment = static_cast<unsigned>(
Arg.getAttribute(Attribute::Alignment).getValueAsInt());
buildOpDecorate(VRegs[i][0], MIRBuilder, SPIRV::Decoration::Alignment,
{Alignment});
}
if (Arg.hasAttribute(Attribute::ReadOnly)) {
auto Attr =
static_cast<unsigned>(SPIRV::FunctionParameterAttribute::NoWrite);
buildOpDecorate(VRegs[i][0], MIRBuilder,
SPIRV::Decoration::FuncParamAttr, {Attr});
}
if (Arg.hasAttribute(Attribute::ZExt)) {
auto Attr =
static_cast<unsigned>(SPIRV::FunctionParameterAttribute::Zext);
buildOpDecorate(VRegs[i][0], MIRBuilder,
SPIRV::Decoration::FuncParamAttr, {Attr});
}
if (Arg.hasAttribute(Attribute::NoAlias)) {
auto Attr =
static_cast<unsigned>(SPIRV::FunctionParameterAttribute::NoAlias);
buildOpDecorate(VRegs[i][0], MIRBuilder,
SPIRV::Decoration::FuncParamAttr, {Attr});
}
if (F.getCallingConv() == CallingConv::SPIR_KERNEL) {
std::vector<SPIRV::Decoration::Decoration> ArgTypeQualDecs =
getKernelArgTypeQual(F, i);
for (SPIRV::Decoration::Decoration Decoration : ArgTypeQualDecs)
buildOpDecorate(VRegs[i][0], MIRBuilder, Decoration, {});
}
MDNode *Node = F.getMetadata("spirv.ParameterDecorations");
if (Node && i < Node->getNumOperands() &&
isa<MDNode>(Node->getOperand(i))) {
MDNode *MD = cast<MDNode>(Node->getOperand(i));
for (const MDOperand &MDOp : MD->operands()) {
MDNode *MD2 = dyn_cast<MDNode>(MDOp);
assert(MD2 && "Metadata operand is expected");
ConstantInt *Const = getConstInt(MD2, 0);
assert(Const && "MDOperand should be ConstantInt");
auto Dec =
static_cast<SPIRV::Decoration::Decoration>(Const->getZExtValue());
std::vector<uint32_t> DecVec;
for (unsigned j = 1; j < MD2->getNumOperands(); j++) {
ConstantInt *Const = getConstInt(MD2, j);
assert(Const && "MDOperand should be ConstantInt");
DecVec.push_back(static_cast<uint32_t>(Const->getZExtValue()));
}
buildOpDecorate(VRegs[i][0], MIRBuilder, Dec, DecVec);
}
}
++i;
}
}
// Generate a SPIR-V type for the function.
auto MRI = MIRBuilder.getMRI();
Register FuncVReg = MRI->createGenericVirtualRegister(LLT::scalar(32));
MRI->setRegClass(FuncVReg, &SPIRV::IDRegClass);
if (F.isDeclaration())
GR->add(&F, &MIRBuilder.getMF(), FuncVReg);
SPIRVType *RetTy = GR->getOrCreateSPIRVType(FTy->getReturnType(), MIRBuilder);
SPIRVType *FuncTy = GR->getOrCreateOpTypeFunctionWithArgs(
FTy, RetTy, ArgTypeVRegs, MIRBuilder);
// Build the OpTypeFunction declaring it.
uint32_t FuncControl = getFunctionControl(F);
MIRBuilder.buildInstr(SPIRV::OpFunction)
.addDef(FuncVReg)
.addUse(GR->getSPIRVTypeID(RetTy))
.addImm(FuncControl)
.addUse(GR->getSPIRVTypeID(FuncTy));
// Add OpFunctionParameters.
int i = 0;
for (const auto &Arg : F.args()) {
assert(VRegs[i].size() == 1 && "Formal arg has multiple vregs");
MRI->setRegClass(VRegs[i][0], &SPIRV::IDRegClass);
MIRBuilder.buildInstr(SPIRV::OpFunctionParameter)
.addDef(VRegs[i][0])
.addUse(GR->getSPIRVTypeID(ArgTypeVRegs[i]));
if (F.isDeclaration())
GR->add(&Arg, &MIRBuilder.getMF(), VRegs[i][0]);
i++;
}
// Name the function.
if (F.hasName())
buildOpName(FuncVReg, F.getName(), MIRBuilder);
// Handle entry points and function linkage.
if (F.getCallingConv() == CallingConv::SPIR_KERNEL) {
auto MIB = MIRBuilder.buildInstr(SPIRV::OpEntryPoint)
.addImm(static_cast<uint32_t>(SPIRV::ExecutionModel::Kernel))
.addUse(FuncVReg);
addStringImm(F.getName(), MIB);
} else if (F.getLinkage() == GlobalValue::LinkageTypes::ExternalLinkage ||
F.getLinkage() == GlobalValue::LinkOnceODRLinkage) {
auto LnkTy = F.isDeclaration() ? SPIRV::LinkageType::Import
: SPIRV::LinkageType::Export;
buildOpDecorate(FuncVReg, MIRBuilder, SPIRV::Decoration::LinkageAttributes,
{static_cast<uint32_t>(LnkTy)}, F.getGlobalIdentifier());
}
return true;
}
bool SPIRVCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
CallLoweringInfo &Info) const {
// Currently call returns should have single vregs.
// TODO: handle the case of multiple registers.
if (Info.OrigRet.Regs.size() > 1)
return false;
MachineFunction &MF = MIRBuilder.getMF();
GR->setCurrentFunc(MF);
FunctionType *FTy = nullptr;
const Function *CF = nullptr;
// Emit a regular OpFunctionCall. If it's an externally declared function,
// be sure to emit its type and function declaration here. It will be hoisted
// globally later.
if (Info.Callee.isGlobal()) {
CF = dyn_cast_or_null<const Function>(Info.Callee.getGlobal());
// TODO: support constexpr casts and indirect calls.
if (CF == nullptr)
return false;
FTy = getOriginalFunctionType(*CF);
}
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
Register ResVReg =
Info.OrigRet.Regs.empty() ? Register(0) : Info.OrigRet.Regs[0];
std::string FuncName = Info.Callee.getGlobal()->getName().str();
std::string DemangledName = getOclOrSpirvBuiltinDemangledName(FuncName);
const auto *ST = static_cast<const SPIRVSubtarget *>(&MF.getSubtarget());
// TODO: check that it's OCL builtin, then apply OpenCL_std.
if (!DemangledName.empty() && CF && CF->isDeclaration() &&
ST->canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std)) {
const Type *OrigRetTy = Info.OrigRet.Ty;
if (FTy)
OrigRetTy = FTy->getReturnType();
SmallVector<Register, 8> ArgVRegs;
for (auto Arg : Info.OrigArgs) {
assert(Arg.Regs.size() == 1 && "Call arg has multiple VRegs");
ArgVRegs.push_back(Arg.Regs[0]);
SPIRVType *SPIRVTy = GR->getOrCreateSPIRVType(Arg.Ty, MIRBuilder);
GR->assignSPIRVTypeToVReg(SPIRVTy, Arg.Regs[0], MIRBuilder.getMF());
}
if (auto Res = SPIRV::lowerBuiltin(
DemangledName, SPIRV::InstructionSet::OpenCL_std, MIRBuilder,
ResVReg, OrigRetTy, ArgVRegs, GR))
return *Res;
}
if (CF && CF->isDeclaration() &&
!GR->find(CF, &MIRBuilder.getMF()).isValid()) {
// Emit the type info and forward function declaration to the first MBB
// to ensure VReg definition dependencies are valid across all MBBs.
MachineIRBuilder FirstBlockBuilder;
FirstBlockBuilder.setMF(MF);
FirstBlockBuilder.setMBB(*MF.getBlockNumbered(0));
SmallVector<ArrayRef<Register>, 8> VRegArgs;
SmallVector<SmallVector<Register, 1>, 8> ToInsert;
for (const Argument &Arg : CF->args()) {
if (MIRBuilder.getDataLayout().getTypeStoreSize(Arg.getType()).isZero())
continue; // Don't handle zero sized types.
Register Reg = MRI->createGenericVirtualRegister(LLT::scalar(32));
MRI->setRegClass(Reg, &SPIRV::IDRegClass);
ToInsert.push_back({Reg});
VRegArgs.push_back(ToInsert.back());
}
// TODO: Reuse FunctionLoweringInfo
FunctionLoweringInfo FuncInfo;
lowerFormalArguments(FirstBlockBuilder, *CF, VRegArgs, FuncInfo);
}
// Make sure there's a valid return reg, even for functions returning void.
if (!ResVReg.isValid())
ResVReg = MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::IDRegClass);
SPIRVType *RetType =
GR->assignTypeToVReg(FTy->getReturnType(), ResVReg, MIRBuilder);
// Emit the OpFunctionCall and its args.
auto MIB = MIRBuilder.buildInstr(SPIRV::OpFunctionCall)
.addDef(ResVReg)
.addUse(GR->getSPIRVTypeID(RetType))
.add(Info.Callee);
for (const auto &Arg : Info.OrigArgs) {
// Currently call args should have single vregs.
if (Arg.Regs.size() > 1)
return false;
MIB.addUse(Arg.Regs[0]);
}
return MIB.constrainAllUses(MIRBuilder.getTII(), *ST->getRegisterInfo(),
*ST->getRegBankInfo());
}
|