File: SPIRVModuleAnalysis.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (997 lines) | stat: -rw-r--r-- 39,029 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
//===- SPIRVModuleAnalysis.cpp - analysis of global instrs & regs - C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The analysis collects instructions that should be output at the module level
// and performs the global register numbering.
//
// The results of this analysis are used in AsmPrinter to rename registers
// globally and to output required instructions at the module level.
//
//===----------------------------------------------------------------------===//

#include "SPIRVModuleAnalysis.h"
#include "SPIRV.h"
#include "SPIRVSubtarget.h"
#include "SPIRVTargetMachine.h"
#include "SPIRVUtils.h"
#include "TargetInfo/SPIRVTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"

using namespace llvm;

#define DEBUG_TYPE "spirv-module-analysis"

static cl::opt<bool>
    SPVDumpDeps("spv-dump-deps",
                cl::desc("Dump MIR with SPIR-V dependencies info"),
                cl::Optional, cl::init(false));

char llvm::SPIRVModuleAnalysis::ID = 0;

namespace llvm {
void initializeSPIRVModuleAnalysisPass(PassRegistry &);
} // namespace llvm

INITIALIZE_PASS(SPIRVModuleAnalysis, DEBUG_TYPE, "SPIRV module analysis", true,
                true)

// Retrieve an unsigned from an MDNode with a list of them as operands.
static unsigned getMetadataUInt(MDNode *MdNode, unsigned OpIndex,
                                unsigned DefaultVal = 0) {
  if (MdNode && OpIndex < MdNode->getNumOperands()) {
    const auto &Op = MdNode->getOperand(OpIndex);
    return mdconst::extract<ConstantInt>(Op)->getZExtValue();
  }
  return DefaultVal;
}

static SPIRV::Requirements
getSymbolicOperandRequirements(SPIRV::OperandCategory::OperandCategory Category,
                               unsigned i, const SPIRVSubtarget &ST,
                               SPIRV::RequirementHandler &Reqs) {
  unsigned ReqMinVer = getSymbolicOperandMinVersion(Category, i);
  unsigned ReqMaxVer = getSymbolicOperandMaxVersion(Category, i);
  unsigned TargetVer = ST.getSPIRVVersion();
  bool MinVerOK = !ReqMinVer || !TargetVer || TargetVer >= ReqMinVer;
  bool MaxVerOK = !ReqMaxVer || !TargetVer || TargetVer <= ReqMaxVer;
  CapabilityList ReqCaps = getSymbolicOperandCapabilities(Category, i);
  ExtensionList ReqExts = getSymbolicOperandExtensions(Category, i);
  if (ReqCaps.empty()) {
    if (ReqExts.empty()) {
      if (MinVerOK && MaxVerOK)
        return {true, {}, {}, ReqMinVer, ReqMaxVer};
      return {false, {}, {}, 0, 0};
    }
  } else if (MinVerOK && MaxVerOK) {
    for (auto Cap : ReqCaps) { // Only need 1 of the capabilities to work.
      if (Reqs.isCapabilityAvailable(Cap))
        return {true, {Cap}, {}, ReqMinVer, ReqMaxVer};
    }
  }
  // If there are no capabilities, or we can't satisfy the version or
  // capability requirements, use the list of extensions (if the subtarget
  // can handle them all).
  if (llvm::all_of(ReqExts, [&ST](const SPIRV::Extension::Extension &Ext) {
        return ST.canUseExtension(Ext);
      })) {
    return {true, {}, ReqExts, 0, 0}; // TODO: add versions to extensions.
  }
  return {false, {}, {}, 0, 0};
}

void SPIRVModuleAnalysis::setBaseInfo(const Module &M) {
  MAI.MaxID = 0;
  for (int i = 0; i < SPIRV::NUM_MODULE_SECTIONS; i++)
    MAI.MS[i].clear();
  MAI.RegisterAliasTable.clear();
  MAI.InstrsToDelete.clear();
  MAI.FuncMap.clear();
  MAI.GlobalVarList.clear();
  MAI.ExtInstSetMap.clear();
  MAI.Reqs.clear();
  MAI.Reqs.initAvailableCapabilities(*ST);

  // TODO: determine memory model and source language from the configuratoin.
  if (auto MemModel = M.getNamedMetadata("spirv.MemoryModel")) {
    auto MemMD = MemModel->getOperand(0);
    MAI.Addr = static_cast<SPIRV::AddressingModel::AddressingModel>(
        getMetadataUInt(MemMD, 0));
    MAI.Mem =
        static_cast<SPIRV::MemoryModel::MemoryModel>(getMetadataUInt(MemMD, 1));
  } else {
    MAI.Mem = SPIRV::MemoryModel::OpenCL;
    unsigned PtrSize = ST->getPointerSize();
    MAI.Addr = PtrSize == 32   ? SPIRV::AddressingModel::Physical32
               : PtrSize == 64 ? SPIRV::AddressingModel::Physical64
                               : SPIRV::AddressingModel::Logical;
  }
  // Get the OpenCL version number from metadata.
  // TODO: support other source languages.
  if (auto VerNode = M.getNamedMetadata("opencl.ocl.version")) {
    MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_C;
    // Construct version literal in accordance with SPIRV-LLVM-Translator.
    // TODO: support multiple OCL version metadata.
    assert(VerNode->getNumOperands() > 0 && "Invalid SPIR");
    auto VersionMD = VerNode->getOperand(0);
    unsigned MajorNum = getMetadataUInt(VersionMD, 0, 2);
    unsigned MinorNum = getMetadataUInt(VersionMD, 1);
    unsigned RevNum = getMetadataUInt(VersionMD, 2);
    MAI.SrcLangVersion = (MajorNum * 100 + MinorNum) * 1000 + RevNum;
  } else {
    MAI.SrcLang = SPIRV::SourceLanguage::Unknown;
    MAI.SrcLangVersion = 0;
  }

  if (auto ExtNode = M.getNamedMetadata("opencl.used.extensions")) {
    for (unsigned I = 0, E = ExtNode->getNumOperands(); I != E; ++I) {
      MDNode *MD = ExtNode->getOperand(I);
      if (!MD || MD->getNumOperands() == 0)
        continue;
      for (unsigned J = 0, N = MD->getNumOperands(); J != N; ++J)
        MAI.SrcExt.insert(cast<MDString>(MD->getOperand(J))->getString());
    }
  }

  // Update required capabilities for this memory model, addressing model and
  // source language.
  MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand,
                                 MAI.Mem, *ST);
  MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::SourceLanguageOperand,
                                 MAI.SrcLang, *ST);
  MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand,
                                 MAI.Addr, *ST);

  // TODO: check if it's required by default.
  MAI.ExtInstSetMap[static_cast<unsigned>(SPIRV::InstructionSet::OpenCL_std)] =
      Register::index2VirtReg(MAI.getNextID());
}

// Collect MI which defines the register in the given machine function.
static void collectDefInstr(Register Reg, const MachineFunction *MF,
                            SPIRV::ModuleAnalysisInfo *MAI,
                            SPIRV::ModuleSectionType MSType,
                            bool DoInsert = true) {
  assert(MAI->hasRegisterAlias(MF, Reg) && "Cannot find register alias");
  MachineInstr *MI = MF->getRegInfo().getUniqueVRegDef(Reg);
  assert(MI && "There should be an instruction that defines the register");
  MAI->setSkipEmission(MI);
  if (DoInsert)
    MAI->MS[MSType].push_back(MI);
}

void SPIRVModuleAnalysis::collectGlobalEntities(
    const std::vector<SPIRV::DTSortableEntry *> &DepsGraph,
    SPIRV::ModuleSectionType MSType,
    std::function<bool(const SPIRV::DTSortableEntry *)> Pred,
    bool UsePreOrder = false) {
  DenseSet<const SPIRV::DTSortableEntry *> Visited;
  for (const auto *E : DepsGraph) {
    std::function<void(const SPIRV::DTSortableEntry *)> RecHoistUtil;
    // NOTE: here we prefer recursive approach over iterative because
    // we don't expect depchains long enough to cause SO.
    RecHoistUtil = [MSType, UsePreOrder, &Visited, &Pred,
                    &RecHoistUtil](const SPIRV::DTSortableEntry *E) {
      if (Visited.count(E) || !Pred(E))
        return;
      Visited.insert(E);

      // Traversing deps graph in post-order allows us to get rid of
      // register aliases preprocessing.
      // But pre-order is required for correct processing of function
      // declaration and arguments processing.
      if (!UsePreOrder)
        for (auto *S : E->getDeps())
          RecHoistUtil(S);

      Register GlobalReg = Register::index2VirtReg(MAI.getNextID());
      bool IsFirst = true;
      for (auto &U : *E) {
        const MachineFunction *MF = U.first;
        Register Reg = U.second;
        MAI.setRegisterAlias(MF, Reg, GlobalReg);
        if (!MF->getRegInfo().getUniqueVRegDef(Reg))
          continue;
        collectDefInstr(Reg, MF, &MAI, MSType, IsFirst);
        IsFirst = false;
        if (E->getIsGV())
          MAI.GlobalVarList.push_back(MF->getRegInfo().getUniqueVRegDef(Reg));
      }

      if (UsePreOrder)
        for (auto *S : E->getDeps())
          RecHoistUtil(S);
    };
    RecHoistUtil(E);
  }
}

// The function initializes global register alias table for types, consts,
// global vars and func decls and collects these instruction for output
// at module level. Also it collects explicit OpExtension/OpCapability
// instructions.
void SPIRVModuleAnalysis::processDefInstrs(const Module &M) {
  std::vector<SPIRV::DTSortableEntry *> DepsGraph;

  GR->buildDepsGraph(DepsGraph, SPVDumpDeps ? MMI : nullptr);

  collectGlobalEntities(
      DepsGraph, SPIRV::MB_TypeConstVars,
      [](const SPIRV::DTSortableEntry *E) { return !E->getIsFunc(); });

  for (auto F = M.begin(), E = M.end(); F != E; ++F) {
    MachineFunction *MF = MMI->getMachineFunction(*F);
    if (!MF)
      continue;
    // Iterate through and collect OpExtension/OpCapability instructions.
    for (MachineBasicBlock &MBB : *MF) {
      for (MachineInstr &MI : MBB) {
        if (MI.getOpcode() == SPIRV::OpExtension) {
          // Here, OpExtension just has a single enum operand, not a string.
          auto Ext = SPIRV::Extension::Extension(MI.getOperand(0).getImm());
          MAI.Reqs.addExtension(Ext);
          MAI.setSkipEmission(&MI);
        } else if (MI.getOpcode() == SPIRV::OpCapability) {
          auto Cap = SPIRV::Capability::Capability(MI.getOperand(0).getImm());
          MAI.Reqs.addCapability(Cap);
          MAI.setSkipEmission(&MI);
        }
      }
    }
  }

  collectGlobalEntities(
      DepsGraph, SPIRV::MB_ExtFuncDecls,
      [](const SPIRV::DTSortableEntry *E) { return E->getIsFunc(); }, true);
}

// True if there is an instruction in the MS list with all the same operands as
// the given instruction has (after the given starting index).
// TODO: maybe it needs to check Opcodes too.
static bool findSameInstrInMS(const MachineInstr &A,
                              SPIRV::ModuleSectionType MSType,
                              SPIRV::ModuleAnalysisInfo &MAI,
                              unsigned StartOpIndex = 0) {
  for (const auto *B : MAI.MS[MSType]) {
    const unsigned NumAOps = A.getNumOperands();
    if (NumAOps != B->getNumOperands() || A.getNumDefs() != B->getNumDefs())
      continue;
    bool AllOpsMatch = true;
    for (unsigned i = StartOpIndex; i < NumAOps && AllOpsMatch; ++i) {
      if (A.getOperand(i).isReg() && B->getOperand(i).isReg()) {
        Register RegA = A.getOperand(i).getReg();
        Register RegB = B->getOperand(i).getReg();
        AllOpsMatch = MAI.getRegisterAlias(A.getMF(), RegA) ==
                      MAI.getRegisterAlias(B->getMF(), RegB);
      } else {
        AllOpsMatch = A.getOperand(i).isIdenticalTo(B->getOperand(i));
      }
    }
    if (AllOpsMatch)
      return true;
  }
  return false;
}

// Look for IDs declared with Import linkage, and map the corresponding function
// to the register defining that variable (which will usually be the result of
// an OpFunction). This lets us call externally imported functions using
// the correct ID registers.
void SPIRVModuleAnalysis::collectFuncNames(MachineInstr &MI,
                                           const Function *F) {
  if (MI.getOpcode() == SPIRV::OpDecorate) {
    // If it's got Import linkage.
    auto Dec = MI.getOperand(1).getImm();
    if (Dec == static_cast<unsigned>(SPIRV::Decoration::LinkageAttributes)) {
      auto Lnk = MI.getOperand(MI.getNumOperands() - 1).getImm();
      if (Lnk == static_cast<unsigned>(SPIRV::LinkageType::Import)) {
        // Map imported function name to function ID register.
        const Function *ImportedFunc =
            F->getParent()->getFunction(getStringImm(MI, 2));
        Register Target = MI.getOperand(0).getReg();
        MAI.FuncMap[ImportedFunc] = MAI.getRegisterAlias(MI.getMF(), Target);
      }
    }
  } else if (MI.getOpcode() == SPIRV::OpFunction) {
    // Record all internal OpFunction declarations.
    Register Reg = MI.defs().begin()->getReg();
    Register GlobalReg = MAI.getRegisterAlias(MI.getMF(), Reg);
    assert(GlobalReg.isValid());
    MAI.FuncMap[F] = GlobalReg;
  }
}

// Collect the given instruction in the specified MS. We assume global register
// numbering has already occurred by this point. We can directly compare reg
// arguments when detecting duplicates.
static void collectOtherInstr(MachineInstr &MI, SPIRV::ModuleAnalysisInfo &MAI,
                              SPIRV::ModuleSectionType MSType,
                              bool Append = true) {
  MAI.setSkipEmission(&MI);
  if (findSameInstrInMS(MI, MSType, MAI))
    return; // Found a duplicate, so don't add it.
  // No duplicates, so add it.
  if (Append)
    MAI.MS[MSType].push_back(&MI);
  else
    MAI.MS[MSType].insert(MAI.MS[MSType].begin(), &MI);
}

// Some global instructions make reference to function-local ID regs, so cannot
// be correctly collected until these registers are globally numbered.
void SPIRVModuleAnalysis::processOtherInstrs(const Module &M) {
  for (auto F = M.begin(), E = M.end(); F != E; ++F) {
    if ((*F).isDeclaration())
      continue;
    MachineFunction *MF = MMI->getMachineFunction(*F);
    assert(MF);
    for (MachineBasicBlock &MBB : *MF)
      for (MachineInstr &MI : MBB) {
        if (MAI.getSkipEmission(&MI))
          continue;
        const unsigned OpCode = MI.getOpcode();
        if (OpCode == SPIRV::OpName || OpCode == SPIRV::OpMemberName) {
          collectOtherInstr(MI, MAI, SPIRV::MB_DebugNames);
        } else if (OpCode == SPIRV::OpEntryPoint) {
          collectOtherInstr(MI, MAI, SPIRV::MB_EntryPoints);
        } else if (TII->isDecorationInstr(MI)) {
          collectOtherInstr(MI, MAI, SPIRV::MB_Annotations);
          collectFuncNames(MI, &*F);
        } else if (TII->isConstantInstr(MI)) {
          // Now OpSpecConstant*s are not in DT,
          // but they need to be collected anyway.
          collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars);
        } else if (OpCode == SPIRV::OpFunction) {
          collectFuncNames(MI, &*F);
        } else if (OpCode == SPIRV::OpTypeForwardPointer) {
          collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, false);
        }
      }
  }
}

// Number registers in all functions globally from 0 onwards and store
// the result in global register alias table. Some registers are already
// numbered in collectGlobalEntities.
void SPIRVModuleAnalysis::numberRegistersGlobally(const Module &M) {
  for (auto F = M.begin(), E = M.end(); F != E; ++F) {
    if ((*F).isDeclaration())
      continue;
    MachineFunction *MF = MMI->getMachineFunction(*F);
    assert(MF);
    for (MachineBasicBlock &MBB : *MF) {
      for (MachineInstr &MI : MBB) {
        for (MachineOperand &Op : MI.operands()) {
          if (!Op.isReg())
            continue;
          Register Reg = Op.getReg();
          if (MAI.hasRegisterAlias(MF, Reg))
            continue;
          Register NewReg = Register::index2VirtReg(MAI.getNextID());
          MAI.setRegisterAlias(MF, Reg, NewReg);
        }
        if (MI.getOpcode() != SPIRV::OpExtInst)
          continue;
        auto Set = MI.getOperand(2).getImm();
        if (MAI.ExtInstSetMap.find(Set) == MAI.ExtInstSetMap.end())
          MAI.ExtInstSetMap[Set] = Register::index2VirtReg(MAI.getNextID());
      }
    }
  }
}

// RequirementHandler implementations.
void SPIRV::RequirementHandler::getAndAddRequirements(
    SPIRV::OperandCategory::OperandCategory Category, uint32_t i,
    const SPIRVSubtarget &ST) {
  addRequirements(getSymbolicOperandRequirements(Category, i, ST, *this));
}

void SPIRV::RequirementHandler::pruneCapabilities(
    const CapabilityList &ToPrune) {
  for (const auto &Cap : ToPrune) {
    AllCaps.insert(Cap);
    auto FoundIndex = std::find(MinimalCaps.begin(), MinimalCaps.end(), Cap);
    if (FoundIndex != MinimalCaps.end())
      MinimalCaps.erase(FoundIndex);
    CapabilityList ImplicitDecls =
        getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap);
    pruneCapabilities(ImplicitDecls);
  }
}

void SPIRV::RequirementHandler::addCapabilities(const CapabilityList &ToAdd) {
  for (const auto &Cap : ToAdd) {
    bool IsNewlyInserted = AllCaps.insert(Cap).second;
    if (!IsNewlyInserted) // Don't re-add if it's already been declared.
      continue;
    CapabilityList ImplicitDecls =
        getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap);
    pruneCapabilities(ImplicitDecls);
    MinimalCaps.push_back(Cap);
  }
}

void SPIRV::RequirementHandler::addRequirements(
    const SPIRV::Requirements &Req) {
  if (!Req.IsSatisfiable)
    report_fatal_error("Adding SPIR-V requirements this target can't satisfy.");

  if (Req.Cap.has_value())
    addCapabilities({Req.Cap.value()});

  addExtensions(Req.Exts);

  if (Req.MinVer) {
    if (MaxVersion && Req.MinVer > MaxVersion) {
      LLVM_DEBUG(dbgs() << "Conflicting version requirements: >= " << Req.MinVer
                        << " and <= " << MaxVersion << "\n");
      report_fatal_error("Adding SPIR-V requirements that can't be satisfied.");
    }

    if (MinVersion == 0 || Req.MinVer > MinVersion)
      MinVersion = Req.MinVer;
  }

  if (Req.MaxVer) {
    if (MinVersion && Req.MaxVer < MinVersion) {
      LLVM_DEBUG(dbgs() << "Conflicting version requirements: <= " << Req.MaxVer
                        << " and >= " << MinVersion << "\n");
      report_fatal_error("Adding SPIR-V requirements that can't be satisfied.");
    }

    if (MaxVersion == 0 || Req.MaxVer < MaxVersion)
      MaxVersion = Req.MaxVer;
  }
}

void SPIRV::RequirementHandler::checkSatisfiable(
    const SPIRVSubtarget &ST) const {
  // Report as many errors as possible before aborting the compilation.
  bool IsSatisfiable = true;
  auto TargetVer = ST.getSPIRVVersion();

  if (MaxVersion && TargetVer && MaxVersion < TargetVer) {
    LLVM_DEBUG(
        dbgs() << "Target SPIR-V version too high for required features\n"
               << "Required max version: " << MaxVersion << " target version "
               << TargetVer << "\n");
    IsSatisfiable = false;
  }

  if (MinVersion && TargetVer && MinVersion > TargetVer) {
    LLVM_DEBUG(dbgs() << "Target SPIR-V version too low for required features\n"
                      << "Required min version: " << MinVersion
                      << " target version " << TargetVer << "\n");
    IsSatisfiable = false;
  }

  if (MinVersion && MaxVersion && MinVersion > MaxVersion) {
    LLVM_DEBUG(
        dbgs()
        << "Version is too low for some features and too high for others.\n"
        << "Required SPIR-V min version: " << MinVersion
        << " required SPIR-V max version " << MaxVersion << "\n");
    IsSatisfiable = false;
  }

  for (auto Cap : MinimalCaps) {
    if (AvailableCaps.contains(Cap))
      continue;
    LLVM_DEBUG(dbgs() << "Capability not supported: "
                      << getSymbolicOperandMnemonic(
                             OperandCategory::CapabilityOperand, Cap)
                      << "\n");
    IsSatisfiable = false;
  }

  for (auto Ext : AllExtensions) {
    if (ST.canUseExtension(Ext))
      continue;
    LLVM_DEBUG(dbgs() << "Extension not suported: "
                      << getSymbolicOperandMnemonic(
                             OperandCategory::ExtensionOperand, Ext)
                      << "\n");
    IsSatisfiable = false;
  }

  if (!IsSatisfiable)
    report_fatal_error("Unable to meet SPIR-V requirements for this target.");
}

// Add the given capabilities and all their implicitly defined capabilities too.
void SPIRV::RequirementHandler::addAvailableCaps(const CapabilityList &ToAdd) {
  for (const auto Cap : ToAdd)
    if (AvailableCaps.insert(Cap).second)
      addAvailableCaps(getSymbolicOperandCapabilities(
          SPIRV::OperandCategory::CapabilityOperand, Cap));
}

namespace llvm {
namespace SPIRV {
void RequirementHandler::initAvailableCapabilities(const SPIRVSubtarget &ST) {
  // TODO: Implemented for other targets other then OpenCL.
  if (!ST.isOpenCLEnv())
    return;
  // Add the min requirements for different OpenCL and SPIR-V versions.
  addAvailableCaps({Capability::Addresses, Capability::Float16Buffer,
                    Capability::Int16, Capability::Int8, Capability::Kernel,
                    Capability::Linkage, Capability::Vector16,
                    Capability::Groups, Capability::GenericPointer,
                    Capability::Shader});
  if (ST.hasOpenCLFullProfile())
    addAvailableCaps({Capability::Int64, Capability::Int64Atomics});
  if (ST.hasOpenCLImageSupport()) {
    addAvailableCaps({Capability::ImageBasic, Capability::LiteralSampler,
                      Capability::Image1D, Capability::SampledBuffer,
                      Capability::ImageBuffer});
    if (ST.isAtLeastOpenCLVer(20))
      addAvailableCaps({Capability::ImageReadWrite});
  }
  if (ST.isAtLeastSPIRVVer(11) && ST.isAtLeastOpenCLVer(22))
    addAvailableCaps({Capability::SubgroupDispatch, Capability::PipeStorage});
  if (ST.isAtLeastSPIRVVer(13))
    addAvailableCaps({Capability::GroupNonUniform,
                      Capability::GroupNonUniformVote,
                      Capability::GroupNonUniformArithmetic,
                      Capability::GroupNonUniformBallot,
                      Capability::GroupNonUniformClustered,
                      Capability::GroupNonUniformShuffle,
                      Capability::GroupNonUniformShuffleRelative});
  if (ST.isAtLeastSPIRVVer(14))
    addAvailableCaps({Capability::DenormPreserve, Capability::DenormFlushToZero,
                      Capability::SignedZeroInfNanPreserve,
                      Capability::RoundingModeRTE,
                      Capability::RoundingModeRTZ});
  // TODO: verify if this needs some checks.
  addAvailableCaps({Capability::Float16, Capability::Float64});

  // TODO: add OpenCL extensions.
}
} // namespace SPIRV
} // namespace llvm

// Add the required capabilities from a decoration instruction (including
// BuiltIns).
static void addOpDecorateReqs(const MachineInstr &MI, unsigned DecIndex,
                              SPIRV::RequirementHandler &Reqs,
                              const SPIRVSubtarget &ST) {
  int64_t DecOp = MI.getOperand(DecIndex).getImm();
  auto Dec = static_cast<SPIRV::Decoration::Decoration>(DecOp);
  Reqs.addRequirements(getSymbolicOperandRequirements(
      SPIRV::OperandCategory::DecorationOperand, Dec, ST, Reqs));

  if (Dec == SPIRV::Decoration::BuiltIn) {
    int64_t BuiltInOp = MI.getOperand(DecIndex + 1).getImm();
    auto BuiltIn = static_cast<SPIRV::BuiltIn::BuiltIn>(BuiltInOp);
    Reqs.addRequirements(getSymbolicOperandRequirements(
        SPIRV::OperandCategory::BuiltInOperand, BuiltIn, ST, Reqs));
  }
}

// Add requirements for image handling.
static void addOpTypeImageReqs(const MachineInstr &MI,
                               SPIRV::RequirementHandler &Reqs,
                               const SPIRVSubtarget &ST) {
  assert(MI.getNumOperands() >= 8 && "Insufficient operands for OpTypeImage");
  // The operand indices used here are based on the OpTypeImage layout, which
  // the MachineInstr follows as well.
  int64_t ImgFormatOp = MI.getOperand(7).getImm();
  auto ImgFormat = static_cast<SPIRV::ImageFormat::ImageFormat>(ImgFormatOp);
  Reqs.getAndAddRequirements(SPIRV::OperandCategory::ImageFormatOperand,
                             ImgFormat, ST);

  bool IsArrayed = MI.getOperand(4).getImm() == 1;
  bool IsMultisampled = MI.getOperand(5).getImm() == 1;
  bool NoSampler = MI.getOperand(6).getImm() == 2;
  // Add dimension requirements.
  assert(MI.getOperand(2).isImm());
  switch (MI.getOperand(2).getImm()) {
  case SPIRV::Dim::DIM_1D:
    Reqs.addRequirements(NoSampler ? SPIRV::Capability::Image1D
                                   : SPIRV::Capability::Sampled1D);
    break;
  case SPIRV::Dim::DIM_2D:
    if (IsMultisampled && NoSampler)
      Reqs.addRequirements(SPIRV::Capability::ImageMSArray);
    break;
  case SPIRV::Dim::DIM_Cube:
    Reqs.addRequirements(SPIRV::Capability::Shader);
    if (IsArrayed)
      Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageCubeArray
                                     : SPIRV::Capability::SampledCubeArray);
    break;
  case SPIRV::Dim::DIM_Rect:
    Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageRect
                                   : SPIRV::Capability::SampledRect);
    break;
  case SPIRV::Dim::DIM_Buffer:
    Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageBuffer
                                   : SPIRV::Capability::SampledBuffer);
    break;
  case SPIRV::Dim::DIM_SubpassData:
    Reqs.addRequirements(SPIRV::Capability::InputAttachment);
    break;
  }

  // Has optional access qualifier.
  // TODO: check if it's OpenCL's kernel.
  if (MI.getNumOperands() > 8 &&
      MI.getOperand(8).getImm() == SPIRV::AccessQualifier::ReadWrite)
    Reqs.addRequirements(SPIRV::Capability::ImageReadWrite);
  else
    Reqs.addRequirements(SPIRV::Capability::ImageBasic);
}

void addInstrRequirements(const MachineInstr &MI,
                          SPIRV::RequirementHandler &Reqs,
                          const SPIRVSubtarget &ST) {
  switch (MI.getOpcode()) {
  case SPIRV::OpMemoryModel: {
    int64_t Addr = MI.getOperand(0).getImm();
    Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand,
                               Addr, ST);
    int64_t Mem = MI.getOperand(1).getImm();
    Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand, Mem,
                               ST);
    break;
  }
  case SPIRV::OpEntryPoint: {
    int64_t Exe = MI.getOperand(0).getImm();
    Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModelOperand,
                               Exe, ST);
    break;
  }
  case SPIRV::OpExecutionMode:
  case SPIRV::OpExecutionModeId: {
    int64_t Exe = MI.getOperand(1).getImm();
    Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModeOperand,
                               Exe, ST);
    break;
  }
  case SPIRV::OpTypeMatrix:
    Reqs.addCapability(SPIRV::Capability::Matrix);
    break;
  case SPIRV::OpTypeInt: {
    unsigned BitWidth = MI.getOperand(1).getImm();
    if (BitWidth == 64)
      Reqs.addCapability(SPIRV::Capability::Int64);
    else if (BitWidth == 16)
      Reqs.addCapability(SPIRV::Capability::Int16);
    else if (BitWidth == 8)
      Reqs.addCapability(SPIRV::Capability::Int8);
    break;
  }
  case SPIRV::OpTypeFloat: {
    unsigned BitWidth = MI.getOperand(1).getImm();
    if (BitWidth == 64)
      Reqs.addCapability(SPIRV::Capability::Float64);
    else if (BitWidth == 16)
      Reqs.addCapability(SPIRV::Capability::Float16);
    break;
  }
  case SPIRV::OpTypeVector: {
    unsigned NumComponents = MI.getOperand(2).getImm();
    if (NumComponents == 8 || NumComponents == 16)
      Reqs.addCapability(SPIRV::Capability::Vector16);
    break;
  }
  case SPIRV::OpTypePointer: {
    auto SC = MI.getOperand(1).getImm();
    Reqs.getAndAddRequirements(SPIRV::OperandCategory::StorageClassOperand, SC,
                               ST);
    // If it's a type of pointer to float16, add Float16Buffer capability.
    assert(MI.getOperand(2).isReg());
    const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
    SPIRVType *TypeDef = MRI.getVRegDef(MI.getOperand(2).getReg());
    if (TypeDef->getOpcode() == SPIRV::OpTypeFloat &&
        TypeDef->getOperand(1).getImm() == 16)
      Reqs.addCapability(SPIRV::Capability::Float16Buffer);
    break;
  }
  case SPIRV::OpBitReverse:
  case SPIRV::OpTypeRuntimeArray:
    Reqs.addCapability(SPIRV::Capability::Shader);
    break;
  case SPIRV::OpTypeOpaque:
  case SPIRV::OpTypeEvent:
    Reqs.addCapability(SPIRV::Capability::Kernel);
    break;
  case SPIRV::OpTypePipe:
  case SPIRV::OpTypeReserveId:
    Reqs.addCapability(SPIRV::Capability::Pipes);
    break;
  case SPIRV::OpTypeDeviceEvent:
  case SPIRV::OpTypeQueue:
  case SPIRV::OpBuildNDRange:
    Reqs.addCapability(SPIRV::Capability::DeviceEnqueue);
    break;
  case SPIRV::OpDecorate:
  case SPIRV::OpDecorateId:
  case SPIRV::OpDecorateString:
    addOpDecorateReqs(MI, 1, Reqs, ST);
    break;
  case SPIRV::OpMemberDecorate:
  case SPIRV::OpMemberDecorateString:
    addOpDecorateReqs(MI, 2, Reqs, ST);
    break;
  case SPIRV::OpInBoundsPtrAccessChain:
    Reqs.addCapability(SPIRV::Capability::Addresses);
    break;
  case SPIRV::OpConstantSampler:
    Reqs.addCapability(SPIRV::Capability::LiteralSampler);
    break;
  case SPIRV::OpTypeImage:
    addOpTypeImageReqs(MI, Reqs, ST);
    break;
  case SPIRV::OpTypeSampler:
    Reqs.addCapability(SPIRV::Capability::ImageBasic);
    break;
  case SPIRV::OpTypeForwardPointer:
    // TODO: check if it's OpenCL's kernel.
    Reqs.addCapability(SPIRV::Capability::Addresses);
    break;
  case SPIRV::OpAtomicFlagTestAndSet:
  case SPIRV::OpAtomicLoad:
  case SPIRV::OpAtomicStore:
  case SPIRV::OpAtomicExchange:
  case SPIRV::OpAtomicCompareExchange:
  case SPIRV::OpAtomicIIncrement:
  case SPIRV::OpAtomicIDecrement:
  case SPIRV::OpAtomicIAdd:
  case SPIRV::OpAtomicISub:
  case SPIRV::OpAtomicUMin:
  case SPIRV::OpAtomicUMax:
  case SPIRV::OpAtomicSMin:
  case SPIRV::OpAtomicSMax:
  case SPIRV::OpAtomicAnd:
  case SPIRV::OpAtomicOr:
  case SPIRV::OpAtomicXor: {
    const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
    const MachineInstr *InstrPtr = &MI;
    if (MI.getOpcode() == SPIRV::OpAtomicStore) {
      assert(MI.getOperand(3).isReg());
      InstrPtr = MRI.getVRegDef(MI.getOperand(3).getReg());
      assert(InstrPtr && "Unexpected type instruction for OpAtomicStore");
    }
    assert(InstrPtr->getOperand(1).isReg() && "Unexpected operand in atomic");
    Register TypeReg = InstrPtr->getOperand(1).getReg();
    SPIRVType *TypeDef = MRI.getVRegDef(TypeReg);
    if (TypeDef->getOpcode() == SPIRV::OpTypeInt) {
      unsigned BitWidth = TypeDef->getOperand(1).getImm();
      if (BitWidth == 64)
        Reqs.addCapability(SPIRV::Capability::Int64Atomics);
    }
    break;
  }
  case SPIRV::OpGroupNonUniformIAdd:
  case SPIRV::OpGroupNonUniformFAdd:
  case SPIRV::OpGroupNonUniformIMul:
  case SPIRV::OpGroupNonUniformFMul:
  case SPIRV::OpGroupNonUniformSMin:
  case SPIRV::OpGroupNonUniformUMin:
  case SPIRV::OpGroupNonUniformFMin:
  case SPIRV::OpGroupNonUniformSMax:
  case SPIRV::OpGroupNonUniformUMax:
  case SPIRV::OpGroupNonUniformFMax:
  case SPIRV::OpGroupNonUniformBitwiseAnd:
  case SPIRV::OpGroupNonUniformBitwiseOr:
  case SPIRV::OpGroupNonUniformBitwiseXor:
  case SPIRV::OpGroupNonUniformLogicalAnd:
  case SPIRV::OpGroupNonUniformLogicalOr:
  case SPIRV::OpGroupNonUniformLogicalXor: {
    assert(MI.getOperand(3).isImm());
    int64_t GroupOp = MI.getOperand(3).getImm();
    switch (GroupOp) {
    case SPIRV::GroupOperation::Reduce:
    case SPIRV::GroupOperation::InclusiveScan:
    case SPIRV::GroupOperation::ExclusiveScan:
      Reqs.addCapability(SPIRV::Capability::Kernel);
      Reqs.addCapability(SPIRV::Capability::GroupNonUniformArithmetic);
      Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot);
      break;
    case SPIRV::GroupOperation::ClusteredReduce:
      Reqs.addCapability(SPIRV::Capability::GroupNonUniformClustered);
      break;
    case SPIRV::GroupOperation::PartitionedReduceNV:
    case SPIRV::GroupOperation::PartitionedInclusiveScanNV:
    case SPIRV::GroupOperation::PartitionedExclusiveScanNV:
      Reqs.addCapability(SPIRV::Capability::GroupNonUniformPartitionedNV);
      break;
    }
    break;
  }
  case SPIRV::OpGroupNonUniformShuffle:
  case SPIRV::OpGroupNonUniformShuffleXor:
    Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffle);
    break;
  case SPIRV::OpGroupNonUniformShuffleUp:
  case SPIRV::OpGroupNonUniformShuffleDown:
    Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffleRelative);
    break;
  case SPIRV::OpGroupAll:
  case SPIRV::OpGroupAny:
  case SPIRV::OpGroupBroadcast:
  case SPIRV::OpGroupIAdd:
  case SPIRV::OpGroupFAdd:
  case SPIRV::OpGroupFMin:
  case SPIRV::OpGroupUMin:
  case SPIRV::OpGroupSMin:
  case SPIRV::OpGroupFMax:
  case SPIRV::OpGroupUMax:
  case SPIRV::OpGroupSMax:
    Reqs.addCapability(SPIRV::Capability::Groups);
    break;
  case SPIRV::OpGroupNonUniformElect:
    Reqs.addCapability(SPIRV::Capability::GroupNonUniform);
    break;
  case SPIRV::OpGroupNonUniformAll:
  case SPIRV::OpGroupNonUniformAny:
  case SPIRV::OpGroupNonUniformAllEqual:
    Reqs.addCapability(SPIRV::Capability::GroupNonUniformVote);
    break;
  case SPIRV::OpGroupNonUniformBroadcast:
  case SPIRV::OpGroupNonUniformBroadcastFirst:
  case SPIRV::OpGroupNonUniformBallot:
  case SPIRV::OpGroupNonUniformInverseBallot:
  case SPIRV::OpGroupNonUniformBallotBitExtract:
  case SPIRV::OpGroupNonUniformBallotBitCount:
  case SPIRV::OpGroupNonUniformBallotFindLSB:
  case SPIRV::OpGroupNonUniformBallotFindMSB:
    Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot);
    break;
  default:
    break;
  }
}

static void collectReqs(const Module &M, SPIRV::ModuleAnalysisInfo &MAI,
                        MachineModuleInfo *MMI, const SPIRVSubtarget &ST) {
  // Collect requirements for existing instructions.
  for (auto F = M.begin(), E = M.end(); F != E; ++F) {
    MachineFunction *MF = MMI->getMachineFunction(*F);
    if (!MF)
      continue;
    for (const MachineBasicBlock &MBB : *MF)
      for (const MachineInstr &MI : MBB)
        addInstrRequirements(MI, MAI.Reqs, ST);
  }
  // Collect requirements for OpExecutionMode instructions.
  auto Node = M.getNamedMetadata("spirv.ExecutionMode");
  if (Node) {
    for (unsigned i = 0; i < Node->getNumOperands(); i++) {
      MDNode *MDN = cast<MDNode>(Node->getOperand(i));
      const MDOperand &MDOp = MDN->getOperand(1);
      if (auto *CMeta = dyn_cast<ConstantAsMetadata>(MDOp)) {
        Constant *C = CMeta->getValue();
        if (ConstantInt *Const = dyn_cast<ConstantInt>(C)) {
          auto EM = Const->getZExtValue();
          MAI.Reqs.getAndAddRequirements(
              SPIRV::OperandCategory::ExecutionModeOperand, EM, ST);
        }
      }
    }
  }
  for (auto FI = M.begin(), E = M.end(); FI != E; ++FI) {
    const Function &F = *FI;
    if (F.isDeclaration())
      continue;
    if (F.getMetadata("reqd_work_group_size"))
      MAI.Reqs.getAndAddRequirements(
          SPIRV::OperandCategory::ExecutionModeOperand,
          SPIRV::ExecutionMode::LocalSize, ST);
    if (F.getMetadata("work_group_size_hint"))
      MAI.Reqs.getAndAddRequirements(
          SPIRV::OperandCategory::ExecutionModeOperand,
          SPIRV::ExecutionMode::LocalSizeHint, ST);
    if (F.getMetadata("intel_reqd_sub_group_size"))
      MAI.Reqs.getAndAddRequirements(
          SPIRV::OperandCategory::ExecutionModeOperand,
          SPIRV::ExecutionMode::SubgroupSize, ST);
    if (F.getMetadata("vec_type_hint"))
      MAI.Reqs.getAndAddRequirements(
          SPIRV::OperandCategory::ExecutionModeOperand,
          SPIRV::ExecutionMode::VecTypeHint, ST);
  }
}

static unsigned getFastMathFlags(const MachineInstr &I) {
  unsigned Flags = SPIRV::FPFastMathMode::None;
  if (I.getFlag(MachineInstr::MIFlag::FmNoNans))
    Flags |= SPIRV::FPFastMathMode::NotNaN;
  if (I.getFlag(MachineInstr::MIFlag::FmNoInfs))
    Flags |= SPIRV::FPFastMathMode::NotInf;
  if (I.getFlag(MachineInstr::MIFlag::FmNsz))
    Flags |= SPIRV::FPFastMathMode::NSZ;
  if (I.getFlag(MachineInstr::MIFlag::FmArcp))
    Flags |= SPIRV::FPFastMathMode::AllowRecip;
  if (I.getFlag(MachineInstr::MIFlag::FmReassoc))
    Flags |= SPIRV::FPFastMathMode::Fast;
  return Flags;
}

static void handleMIFlagDecoration(MachineInstr &I, const SPIRVSubtarget &ST,
                                   const SPIRVInstrInfo &TII,
                                   SPIRV::RequirementHandler &Reqs) {
  if (I.getFlag(MachineInstr::MIFlag::NoSWrap) && TII.canUseNSW(I) &&
      getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand,
                                     SPIRV::Decoration::NoSignedWrap, ST, Reqs)
          .IsSatisfiable) {
    buildOpDecorate(I.getOperand(0).getReg(), I, TII,
                    SPIRV::Decoration::NoSignedWrap, {});
  }
  if (I.getFlag(MachineInstr::MIFlag::NoUWrap) && TII.canUseNUW(I) &&
      getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand,
                                     SPIRV::Decoration::NoUnsignedWrap, ST,
                                     Reqs)
          .IsSatisfiable) {
    buildOpDecorate(I.getOperand(0).getReg(), I, TII,
                    SPIRV::Decoration::NoUnsignedWrap, {});
  }
  if (!TII.canUseFastMathFlags(I))
    return;
  unsigned FMFlags = getFastMathFlags(I);
  if (FMFlags == SPIRV::FPFastMathMode::None)
    return;
  Register DstReg = I.getOperand(0).getReg();
  buildOpDecorate(DstReg, I, TII, SPIRV::Decoration::FPFastMathMode, {FMFlags});
}

// Walk all functions and add decorations related to MI flags.
static void addDecorations(const Module &M, const SPIRVInstrInfo &TII,
                           MachineModuleInfo *MMI, const SPIRVSubtarget &ST,
                           SPIRV::ModuleAnalysisInfo &MAI) {
  for (auto F = M.begin(), E = M.end(); F != E; ++F) {
    MachineFunction *MF = MMI->getMachineFunction(*F);
    if (!MF)
      continue;
    for (auto &MBB : *MF)
      for (auto &MI : MBB)
        handleMIFlagDecoration(MI, ST, TII, MAI.Reqs);
  }
}

struct SPIRV::ModuleAnalysisInfo SPIRVModuleAnalysis::MAI;

void SPIRVModuleAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<TargetPassConfig>();
  AU.addRequired<MachineModuleInfoWrapperPass>();
}

bool SPIRVModuleAnalysis::runOnModule(Module &M) {
  SPIRVTargetMachine &TM =
      getAnalysis<TargetPassConfig>().getTM<SPIRVTargetMachine>();
  ST = TM.getSubtargetImpl();
  GR = ST->getSPIRVGlobalRegistry();
  TII = ST->getInstrInfo();

  MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI();

  setBaseInfo(M);

  addDecorations(M, *TII, MMI, *ST, MAI);

  collectReqs(M, MAI, MMI, *ST);

  // Process type/const/global var/func decl instructions, number their
  // destination registers from 0 to N, collect Extensions and Capabilities.
  processDefInstrs(M);

  // Number rest of registers from N+1 onwards.
  numberRegistersGlobally(M);

  // Collect OpName, OpEntryPoint, OpDecorate etc, process other instructions.
  processOtherInstrs(M);

  // If there are no entry points, we need the Linkage capability.
  if (MAI.MS[SPIRV::MB_EntryPoints].empty())
    MAI.Reqs.addCapability(SPIRV::Capability::Linkage);

  return false;
}