File: SPIRVPrepareFunctions.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (367 lines) | stat: -rw-r--r-- 13,978 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
//===-- SPIRVPrepareFunctions.cpp - modify function signatures --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass modifies function signatures containing aggregate arguments
// and/or return value before IRTranslator. Information about the original
// signatures is stored in metadata. It is used during call lowering to
// restore correct SPIR-V types of function arguments and return values.
// This pass also substitutes some llvm intrinsic calls with calls to newly
// generated functions (as the Khronos LLVM/SPIR-V Translator does).
//
// NOTE: this pass is a module-level one due to the necessity to modify
// GVs/functions.
//
//===----------------------------------------------------------------------===//

#include "SPIRV.h"
#include "SPIRVTargetMachine.h"
#include "SPIRVUtils.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LowerMemIntrinsics.h"

using namespace llvm;

namespace llvm {
void initializeSPIRVPrepareFunctionsPass(PassRegistry &);
}

namespace {

class SPIRVPrepareFunctions : public ModulePass {
  bool substituteIntrinsicCalls(Function *F);
  Function *removeAggregateTypesFromSignature(Function *F);

public:
  static char ID;
  SPIRVPrepareFunctions() : ModulePass(ID) {
    initializeSPIRVPrepareFunctionsPass(*PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override;

  StringRef getPassName() const override { return "SPIRV prepare functions"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    ModulePass::getAnalysisUsage(AU);
  }
};

} // namespace

char SPIRVPrepareFunctions::ID = 0;

INITIALIZE_PASS(SPIRVPrepareFunctions, "prepare-functions",
                "SPIRV prepare functions", false, false)

std::string lowerLLVMIntrinsicName(IntrinsicInst *II) {
  Function *IntrinsicFunc = II->getCalledFunction();
  assert(IntrinsicFunc && "Missing function");
  std::string FuncName = IntrinsicFunc->getName().str();
  std::replace(FuncName.begin(), FuncName.end(), '.', '_');
  FuncName = "spirv." + FuncName;
  return FuncName;
}

static Function *getOrCreateFunction(Module *M, Type *RetTy,
                                     ArrayRef<Type *> ArgTypes,
                                     StringRef Name) {
  FunctionType *FT = FunctionType::get(RetTy, ArgTypes, false);
  Function *F = M->getFunction(Name);
  if (F && F->getFunctionType() == FT)
    return F;
  Function *NewF = Function::Create(FT, GlobalValue::ExternalLinkage, Name, M);
  if (F)
    NewF->setDSOLocal(F->isDSOLocal());
  NewF->setCallingConv(CallingConv::SPIR_FUNC);
  return NewF;
}

static bool lowerIntrinsicToFunction(IntrinsicInst *Intrinsic) {
  // For @llvm.memset.* intrinsic cases with constant value and length arguments
  // are emulated via "storing" a constant array to the destination. For other
  // cases we wrap the intrinsic in @spirv.llvm_memset_* function and expand the
  // intrinsic to a loop via expandMemSetAsLoop().
  if (auto *MSI = dyn_cast<MemSetInst>(Intrinsic))
    if (isa<Constant>(MSI->getValue()) && isa<ConstantInt>(MSI->getLength()))
      return false; // It is handled later using OpCopyMemorySized.

  Module *M = Intrinsic->getModule();
  std::string FuncName = lowerLLVMIntrinsicName(Intrinsic);
  if (Intrinsic->isVolatile())
    FuncName += ".volatile";
  // Redirect @llvm.intrinsic.* call to @spirv.llvm_intrinsic_*
  Function *F = M->getFunction(FuncName);
  if (F) {
    Intrinsic->setCalledFunction(F);
    return true;
  }
  // TODO copy arguments attributes: nocapture writeonly.
  FunctionCallee FC =
      M->getOrInsertFunction(FuncName, Intrinsic->getFunctionType());
  auto IntrinsicID = Intrinsic->getIntrinsicID();
  Intrinsic->setCalledFunction(FC);

  F = dyn_cast<Function>(FC.getCallee());
  assert(F && "Callee must be a function");

  switch (IntrinsicID) {
  case Intrinsic::memset: {
    auto *MSI = static_cast<MemSetInst *>(Intrinsic);
    Argument *Dest = F->getArg(0);
    Argument *Val = F->getArg(1);
    Argument *Len = F->getArg(2);
    Argument *IsVolatile = F->getArg(3);
    Dest->setName("dest");
    Val->setName("val");
    Len->setName("len");
    IsVolatile->setName("isvolatile");
    BasicBlock *EntryBB = BasicBlock::Create(M->getContext(), "entry", F);
    IRBuilder<> IRB(EntryBB);
    auto *MemSet = IRB.CreateMemSet(Dest, Val, Len, MSI->getDestAlign(),
                                    MSI->isVolatile());
    IRB.CreateRetVoid();
    expandMemSetAsLoop(cast<MemSetInst>(MemSet));
    MemSet->eraseFromParent();
    break;
  }
  case Intrinsic::bswap: {
    BasicBlock *EntryBB = BasicBlock::Create(M->getContext(), "entry", F);
    IRBuilder<> IRB(EntryBB);
    auto *BSwap = IRB.CreateIntrinsic(Intrinsic::bswap, Intrinsic->getType(),
                                      F->getArg(0));
    IRB.CreateRet(BSwap);
    IntrinsicLowering IL(M->getDataLayout());
    IL.LowerIntrinsicCall(BSwap);
    break;
  }
  default:
    break;
  }
  return true;
}

static void lowerFunnelShifts(IntrinsicInst *FSHIntrinsic) {
  // Get a separate function - otherwise, we'd have to rework the CFG of the
  // current one. Then simply replace the intrinsic uses with a call to the new
  // function.
  // Generate LLVM IR for  i* @spirv.llvm_fsh?_i* (i* %a, i* %b, i* %c)
  Module *M = FSHIntrinsic->getModule();
  FunctionType *FSHFuncTy = FSHIntrinsic->getFunctionType();
  Type *FSHRetTy = FSHFuncTy->getReturnType();
  const std::string FuncName = lowerLLVMIntrinsicName(FSHIntrinsic);
  Function *FSHFunc =
      getOrCreateFunction(M, FSHRetTy, FSHFuncTy->params(), FuncName);

  if (!FSHFunc->empty()) {
    FSHIntrinsic->setCalledFunction(FSHFunc);
    return;
  }
  BasicBlock *RotateBB = BasicBlock::Create(M->getContext(), "rotate", FSHFunc);
  IRBuilder<> IRB(RotateBB);
  Type *Ty = FSHFunc->getReturnType();
  // Build the actual funnel shift rotate logic.
  // In the comments, "int" is used interchangeably with "vector of int
  // elements".
  FixedVectorType *VectorTy = dyn_cast<FixedVectorType>(Ty);
  Type *IntTy = VectorTy ? VectorTy->getElementType() : Ty;
  unsigned BitWidth = IntTy->getIntegerBitWidth();
  ConstantInt *BitWidthConstant = IRB.getInt({BitWidth, BitWidth});
  Value *BitWidthForInsts =
      VectorTy
          ? IRB.CreateVectorSplat(VectorTy->getNumElements(), BitWidthConstant)
          : BitWidthConstant;
  Value *RotateModVal =
      IRB.CreateURem(/*Rotate*/ FSHFunc->getArg(2), BitWidthForInsts);
  Value *FirstShift = nullptr, *SecShift = nullptr;
  if (FSHIntrinsic->getIntrinsicID() == Intrinsic::fshr) {
    // Shift the less significant number right, the "rotate" number of bits
    // will be 0-filled on the left as a result of this regular shift.
    FirstShift = IRB.CreateLShr(FSHFunc->getArg(1), RotateModVal);
  } else {
    // Shift the more significant number left, the "rotate" number of bits
    // will be 0-filled on the right as a result of this regular shift.
    FirstShift = IRB.CreateShl(FSHFunc->getArg(0), RotateModVal);
  }
  // We want the "rotate" number of the more significant int's LSBs (MSBs) to
  // occupy the leftmost (rightmost) "0 space" left by the previous operation.
  // Therefore, subtract the "rotate" number from the integer bitsize...
  Value *SubRotateVal = IRB.CreateSub(BitWidthForInsts, RotateModVal);
  if (FSHIntrinsic->getIntrinsicID() == Intrinsic::fshr) {
    // ...and left-shift the more significant int by this number, zero-filling
    // the LSBs.
    SecShift = IRB.CreateShl(FSHFunc->getArg(0), SubRotateVal);
  } else {
    // ...and right-shift the less significant int by this number, zero-filling
    // the MSBs.
    SecShift = IRB.CreateLShr(FSHFunc->getArg(1), SubRotateVal);
  }
  // A simple binary addition of the shifted ints yields the final result.
  IRB.CreateRet(IRB.CreateOr(FirstShift, SecShift));

  FSHIntrinsic->setCalledFunction(FSHFunc);
}

static void buildUMulWithOverflowFunc(Function *UMulFunc) {
  // The function body is already created.
  if (!UMulFunc->empty())
    return;

  BasicBlock *EntryBB = BasicBlock::Create(UMulFunc->getParent()->getContext(),
                                           "entry", UMulFunc);
  IRBuilder<> IRB(EntryBB);
  // Build the actual unsigned multiplication logic with the overflow
  // indication. Do unsigned multiplication Mul = A * B. Then check
  // if unsigned division Div = Mul / A is not equal to B. If so,
  // then overflow has happened.
  Value *Mul = IRB.CreateNUWMul(UMulFunc->getArg(0), UMulFunc->getArg(1));
  Value *Div = IRB.CreateUDiv(Mul, UMulFunc->getArg(0));
  Value *Overflow = IRB.CreateICmpNE(UMulFunc->getArg(0), Div);

  // umul.with.overflow intrinsic return a structure, where the first element
  // is the multiplication result, and the second is an overflow bit.
  Type *StructTy = UMulFunc->getReturnType();
  Value *Agg = IRB.CreateInsertValue(PoisonValue::get(StructTy), Mul, {0});
  Value *Res = IRB.CreateInsertValue(Agg, Overflow, {1});
  IRB.CreateRet(Res);
}

static void lowerUMulWithOverflow(IntrinsicInst *UMulIntrinsic) {
  // Get a separate function - otherwise, we'd have to rework the CFG of the
  // current one. Then simply replace the intrinsic uses with a call to the new
  // function.
  Module *M = UMulIntrinsic->getModule();
  FunctionType *UMulFuncTy = UMulIntrinsic->getFunctionType();
  Type *FSHLRetTy = UMulFuncTy->getReturnType();
  const std::string FuncName = lowerLLVMIntrinsicName(UMulIntrinsic);
  Function *UMulFunc =
      getOrCreateFunction(M, FSHLRetTy, UMulFuncTy->params(), FuncName);
  buildUMulWithOverflowFunc(UMulFunc);
  UMulIntrinsic->setCalledFunction(UMulFunc);
}

// Substitutes calls to LLVM intrinsics with either calls to SPIR-V intrinsics
// or calls to proper generated functions. Returns True if F was modified.
bool SPIRVPrepareFunctions::substituteIntrinsicCalls(Function *F) {
  bool Changed = false;
  for (BasicBlock &BB : *F) {
    for (Instruction &I : BB) {
      auto Call = dyn_cast<CallInst>(&I);
      if (!Call)
        continue;
      Function *CF = Call->getCalledFunction();
      if (!CF || !CF->isIntrinsic())
        continue;
      auto *II = cast<IntrinsicInst>(Call);
      if (II->getIntrinsicID() == Intrinsic::memset ||
          II->getIntrinsicID() == Intrinsic::bswap)
        Changed |= lowerIntrinsicToFunction(II);
      else if (II->getIntrinsicID() == Intrinsic::fshl ||
               II->getIntrinsicID() == Intrinsic::fshr) {
        lowerFunnelShifts(II);
        Changed = true;
      } else if (II->getIntrinsicID() == Intrinsic::umul_with_overflow) {
        lowerUMulWithOverflow(II);
        Changed = true;
      }
    }
  }
  return Changed;
}

// Returns F if aggregate argument/return types are not present or cloned F
// function with the types replaced by i32 types. The change in types is
// noted in 'spv.cloned_funcs' metadata for later restoration.
Function *
SPIRVPrepareFunctions::removeAggregateTypesFromSignature(Function *F) {
  IRBuilder<> B(F->getContext());

  bool IsRetAggr = F->getReturnType()->isAggregateType();
  bool HasAggrArg =
      std::any_of(F->arg_begin(), F->arg_end(), [](Argument &Arg) {
        return Arg.getType()->isAggregateType();
      });
  bool DoClone = IsRetAggr || HasAggrArg;
  if (!DoClone)
    return F;
  SmallVector<std::pair<int, Type *>, 4> ChangedTypes;
  Type *RetType = IsRetAggr ? B.getInt32Ty() : F->getReturnType();
  if (IsRetAggr)
    ChangedTypes.push_back(std::pair<int, Type *>(-1, F->getReturnType()));
  SmallVector<Type *, 4> ArgTypes;
  for (const auto &Arg : F->args()) {
    if (Arg.getType()->isAggregateType()) {
      ArgTypes.push_back(B.getInt32Ty());
      ChangedTypes.push_back(
          std::pair<int, Type *>(Arg.getArgNo(), Arg.getType()));
    } else
      ArgTypes.push_back(Arg.getType());
  }
  FunctionType *NewFTy =
      FunctionType::get(RetType, ArgTypes, F->getFunctionType()->isVarArg());
  Function *NewF =
      Function::Create(NewFTy, F->getLinkage(), F->getName(), *F->getParent());

  ValueToValueMapTy VMap;
  auto NewFArgIt = NewF->arg_begin();
  for (auto &Arg : F->args()) {
    StringRef ArgName = Arg.getName();
    NewFArgIt->setName(ArgName);
    VMap[&Arg] = &(*NewFArgIt++);
  }
  SmallVector<ReturnInst *, 8> Returns;

  CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly,
                    Returns);
  NewF->takeName(F);

  NamedMDNode *FuncMD =
      F->getParent()->getOrInsertNamedMetadata("spv.cloned_funcs");
  SmallVector<Metadata *, 2> MDArgs;
  MDArgs.push_back(MDString::get(B.getContext(), NewF->getName()));
  for (auto &ChangedTyP : ChangedTypes)
    MDArgs.push_back(MDNode::get(
        B.getContext(),
        {ConstantAsMetadata::get(B.getInt32(ChangedTyP.first)),
         ValueAsMetadata::get(Constant::getNullValue(ChangedTyP.second))}));
  MDNode *ThisFuncMD = MDNode::get(B.getContext(), MDArgs);
  FuncMD->addOperand(ThisFuncMD);

  for (auto *U : make_early_inc_range(F->users())) {
    if (auto *CI = dyn_cast<CallInst>(U))
      CI->mutateFunctionType(NewF->getFunctionType());
    U->replaceUsesOfWith(F, NewF);
  }
  return NewF;
}

bool SPIRVPrepareFunctions::runOnModule(Module &M) {
  bool Changed = false;
  for (Function &F : M)
    Changed |= substituteIntrinsicCalls(&F);

  std::vector<Function *> FuncsWorklist;
  for (auto &F : M)
    FuncsWorklist.push_back(&F);

  for (auto *F : FuncsWorklist) {
    Function *NewF = removeAggregateTypesFromSignature(F);

    if (NewF != F) {
      F->eraseFromParent();
      Changed = true;
    }
  }
  return Changed;
}

ModulePass *llvm::createSPIRVPrepareFunctionsPass() {
  return new SPIRVPrepareFunctions();
}