1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
|
//===-- X86FastPreTileConfig.cpp - Fast Tile Register Configure------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Pass to preconfig the shape of physical tile registers
/// It inserts ldtilecfg ahead of each group of tile registers. The algorithm
/// walk each instruction of basic block in reverse order. All the tile
/// registers that live out the basic block would be spilled and reloaded
/// before its user. It also check the depenedency of the shape to ensure
/// the shape is defined before ldtilecfg.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "fastpretileconfig"
STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads, "Number of loads added");
namespace {
class X86FastPreTileConfig : public MachineFunctionPass {
MachineFunction *MF = nullptr;
const X86Subtarget *ST = nullptr;
const TargetInstrInfo *TII = nullptr;
MachineRegisterInfo *MRI = nullptr;
X86MachineFunctionInfo *X86FI = nullptr;
MachineFrameInfo *MFI = nullptr;
const TargetRegisterInfo *TRI = nullptr;
MachineBasicBlock *MBB = nullptr;
int CfgSS = -1;
struct PHIInfo {
Register Row;
Register Col;
Register StackAddr;
};
DenseMap<MachineInstr *, struct PHIInfo> VisitedPHIs;
/// Maps virtual regs to the frame index where these values are spilled.
IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
/// Has a bit set for tile virtual register for which it was determined
/// that it is alive across blocks.
BitVector MayLiveAcrossBlocks;
int getStackSpaceFor(Register VirtReg);
void InitializeTileConfigStackSpace();
bool mayLiveOut(Register VirtReg, MachineInstr *CfgMI);
void spill(MachineBasicBlock::iterator Before, Register VirtReg, bool Kill);
void reload(MachineBasicBlock::iterator UseMI, Register VirtReg,
MachineOperand *RowMO, MachineOperand *ColMO);
void canonicalizePHIs(MachineBasicBlock &MBB);
void convertPHI(MachineBasicBlock *MBB, MachineInstr &PHI);
void convertPHIs(MachineBasicBlock &MBB);
bool configBasicBlock(MachineBasicBlock &MBB);
public:
X86FastPreTileConfig() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {}
/// Return the pass name.
StringRef getPassName() const override {
return "Fast Tile Register Preconfigure";
}
/// Perform tile register configure.
bool runOnMachineFunction(MachineFunction &MFunc) override;
static char ID;
};
} // end anonymous namespace
char X86FastPreTileConfig::ID = 0;
INITIALIZE_PASS_BEGIN(X86FastPreTileConfig, DEBUG_TYPE,
"Fast Tile Register Preconfigure", false, false)
INITIALIZE_PASS_END(X86FastPreTileConfig, DEBUG_TYPE,
"Fast Tile Register Preconfigure", false, false)
static bool dominates(MachineBasicBlock &MBB,
MachineBasicBlock::const_iterator A,
MachineBasicBlock::const_iterator B) {
auto MBBEnd = MBB.end();
if (B == MBBEnd)
return true;
MachineBasicBlock::const_iterator I = MBB.begin();
for (; &*I != A && &*I != B; ++I)
;
return &*I == A;
}
/// This allocates space for the specified virtual register to be held on the
/// stack.
int X86FastPreTileConfig::getStackSpaceFor(Register VirtReg) {
// Find the location Reg would belong...
int SS = StackSlotForVirtReg[VirtReg];
// Already has space allocated?
if (SS != -1)
return SS;
// Allocate a new stack object for this spill location...
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
unsigned Size = TRI->getSpillSize(RC);
Align Alignment = TRI->getSpillAlign(RC);
int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment);
// Assign the slot.
StackSlotForVirtReg[VirtReg] = FrameIdx;
return FrameIdx;
}
/// Returns false if \p VirtReg is known to not live out of the current config.
/// If \p VirtReg live out of the current MBB, it must live out of the current
/// config
bool X86FastPreTileConfig::mayLiveOut(Register VirtReg, MachineInstr *CfgMI) {
if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
return true;
for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) {
if (UseInst.getParent() != MBB) {
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
return true;
}
// The use and def are in the same MBB. If the tile register is
// reconfigured, it is crobbered and we need to spill and reload
// tile register.
if (CfgMI) {
if (dominates(*MBB, *CfgMI, UseInst)) {
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
return true;
}
}
}
return false;
}
void X86FastPreTileConfig::InitializeTileConfigStackSpace() {
MachineBasicBlock &MBB = MF->front();
MachineInstr *MI = &*MBB.getFirstNonPHI();
DebugLoc DL;
if (ST->hasAVX512()) {
Register Zmm = MRI->createVirtualRegister(&X86::VR512RegClass);
BuildMI(MBB, MI, DL, TII->get(X86::AVX512_512_SET0), Zmm);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::VMOVUPSZmr)), CfgSS)
.addReg(Zmm);
} else if (ST->hasAVX2()) {
Register Ymm = MRI->createVirtualRegister(&X86::VR256RegClass);
BuildMI(MBB, MI, DL, TII->get(X86::AVX_SET0), Ymm);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::VMOVUPSYmr)), CfgSS)
.addReg(Ymm);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::VMOVUPSYmr)), CfgSS,
32)
.addReg(Ymm);
} else {
assert(ST->hasSSE2() && "AMX should assume SSE2 enabled");
unsigned StoreOpc = ST->hasAVX() ? X86::VMOVUPSmr : X86::MOVUPSmr;
Register Xmm = MRI->createVirtualRegister(&X86::VR128RegClass);
BuildMI(MBB, MI, DL, TII->get(X86::V_SET0), Xmm);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(StoreOpc)), CfgSS)
.addReg(Xmm);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(StoreOpc)), CfgSS, 16)
.addReg(Xmm);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(StoreOpc)), CfgSS, 32)
.addReg(Xmm);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(StoreOpc)), CfgSS, 48)
.addReg(Xmm);
}
// Fill in the palette first.
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::MOV8mi)), CfgSS)
.addImm(1);
}
/// Insert spill instruction for \p AssignedReg before \p Before.
/// TODO: Update DBG_VALUEs with \p VirtReg operands with the stack slot.
void X86FastPreTileConfig::spill(MachineBasicBlock::iterator Before,
Register VirtReg, bool Kill) {
LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) << " \n");
int FI = getStackSpaceFor(VirtReg);
LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
// Don't need shape information for tile store, becasue it is adjacent to
// the tile def instruction.
TII->storeRegToStackSlot(*MBB, Before, VirtReg, Kill, FI, &RC, TRI,
Register());
++NumStores;
// TODO: update DBG_VALUEs
}
/// Insert reload instruction for \p PhysReg before \p Before.
void X86FastPreTileConfig::reload(MachineBasicBlock::iterator UseMI,
Register OrigReg, MachineOperand *RowMO,
MachineOperand *ColMO) {
int FI = getStackSpaceFor(OrigReg);
const TargetRegisterClass &RC = *MRI->getRegClass(OrigReg);
Register TileReg;
// Fold copy to tileload
// BB1:
// spill src to s
//
// BB2:
// t = copy src
// -->
// t = tileload (s)
if (UseMI->isCopy())
TileReg = UseMI->getOperand(0).getReg();
else
TileReg = MRI->createVirtualRegister(&RC);
// Can't use TII->loadRegFromStackSlot(), because we need the shape
// information for reload.
// tileloadd (%sp, %idx), %tmm
unsigned Opc = X86::PTILELOADDV;
Register StrideReg = MRI->createVirtualRegister(&X86::GR64_NOSPRegClass);
// FIXME: MBB is not the parent of UseMI.
MachineInstr *NewMI = BuildMI(*UseMI->getParent(), UseMI, DebugLoc(),
TII->get(X86::MOV64ri), StrideReg)
.addImm(64);
NewMI = addFrameReference(
BuildMI(*UseMI->getParent(), UseMI, DebugLoc(), TII->get(Opc), TileReg)
.addReg(RowMO->getReg())
.addReg(ColMO->getReg()),
FI);
MachineOperand &MO = NewMI->getOperand(5);
MO.setReg(StrideReg);
MO.setIsKill(true);
RowMO->setIsKill(false);
ColMO->setIsKill(false);
// Erase copy instruction after it is folded.
if (UseMI->isCopy()) {
UseMI->eraseFromParent();
} else {
// Replace the register in the user MI.
for (auto &MO : UseMI->operands()) {
if (MO.isReg() && MO.getReg() == OrigReg)
MO.setReg(TileReg);
}
}
++NumLoads;
LLVM_DEBUG(dbgs() << "Reloading " << printReg(OrigReg, TRI) << " into "
<< printReg(TileReg, TRI) << '\n');
}
static bool isTileDef(MachineRegisterInfo *MRI, MachineInstr &MI) {
// The instruction must have 3 operands: tile def, row, col.
if (MI.isDebugInstr() || MI.getNumOperands() < 3 || !MI.isPseudo())
return false;
MachineOperand &MO = MI.getOperand(0);
if (MO.isReg()) {
Register Reg = MO.getReg();
// FIXME it may be used after Greedy RA and the physical
// register is not rewritten yet.
if (Reg.isVirtual() &&
MRI->getRegClass(Reg)->getID() == X86::TILERegClassID)
return true;
if (Reg >= X86::TMM0 && Reg <= X86::TMM7)
return true;
}
return false;
}
static ShapeT getShape(MachineRegisterInfo *MRI, Register TileReg) {
MachineInstr *MI = MRI->getVRegDef(TileReg);
if (isTileDef(MRI, *MI)) {
MachineOperand *RowMO = &MI->getOperand(1);
MachineOperand *ColMO = &MI->getOperand(2);
return ShapeT(RowMO, ColMO, MRI);
} else if (MI->isCopy()) {
TileReg = MI->getOperand(1).getReg();
return getShape(MRI, TileReg);
}
// The def should not be PHI node, because we walk the MBB in reverse post
// order.
assert(MI->isPHI() && "Unexpected PHI when get shape.");
llvm_unreachable("Unexpected MI when get shape.");
}
// BB0:
// spill t0 to s0
// BB1:
// spill t1 to s1
//
// BB2:
// t = phi [t0, bb0] [t1, bb1]
// -->
// row = phi [r0, bb0] [r1, bb1]
// col = phi [c0, bb0] [c1, bb1]
// s = phi [s0, bb0] [s1, bb1]
// t = tileload row, col, s
// The new instruction is inserted at the end of the phi node. The order
// of the original phi node is not ensured.
void X86FastPreTileConfig::convertPHI(MachineBasicBlock *MBB,
MachineInstr &PHI) {
// 1. Create instruction to get stack slot address of each incoming block.
// 2. Create PHI node for the stack address.
// 3. Create PHI node for shape. If one of the incoming shape is immediate
// use the immediate and delete the PHI node.
// 4. Create tileload instruction from the stack address.
Register StackAddrReg = MRI->createVirtualRegister(&X86::GR64_NOSPRegClass);
MachineInstrBuilder AddrPHI = BuildMI(*MBB, ++PHI.getIterator(), DebugLoc(),
TII->get(X86::PHI), StackAddrReg);
Register RowReg = MRI->createVirtualRegister(&X86::GR16RegClass);
MachineInstrBuilder RowPHI = BuildMI(*MBB, ++PHI.getIterator(), DebugLoc(),
TII->get(X86::PHI), RowReg);
Register ColReg = MRI->createVirtualRegister(&X86::GR16RegClass);
MachineInstrBuilder ColPHI = BuildMI(*MBB, ++PHI.getIterator(), DebugLoc(),
TII->get(X86::PHI), ColReg);
// Record the mapping of phi node and its row/column information.
VisitedPHIs[&PHI] = {RowReg, ColReg, StackAddrReg};
for (unsigned I = 1, E = PHI.getNumOperands(); I != E; I += 2) {
// Get the 2 incoming value of tile register and MBB.
Register InTileReg = PHI.getOperand(I).getReg();
// Mark it as liveout, so that it will be spilled when visit
// the incoming MBB. Otherwise since phi will be deleted, it
// would miss spill when visit incoming MBB.
MayLiveAcrossBlocks.set(Register::virtReg2Index(InTileReg));
MachineBasicBlock *InMBB = PHI.getOperand(I + 1).getMBB();
MachineInstr *TileDefMI = MRI->getVRegDef(InTileReg);
MachineBasicBlock::iterator InsertPos;
if (TileDefMI->isPHI()) {
InsertPos = TileDefMI->getParent()->getFirstNonPHI();
if (VisitedPHIs.count(TileDefMI)) { // circular phi reference
// def t1
// / \
// def t2 t3 = phi(t1, t4) <--
// \ / |
// t4 = phi(t2, t3)-------------
//
// For each (row, column and stack address) append phi incoming value.
// Create r3 = phi(r1, r4)
// Create r4 = phi(r2, r3)
Register InRowReg = VisitedPHIs[TileDefMI].Row;
Register InColReg = VisitedPHIs[TileDefMI].Col;
Register InStackAddrReg = VisitedPHIs[TileDefMI].StackAddr;
RowPHI.addReg(InRowReg).addMBB(InMBB);
ColPHI.addReg(InColReg).addMBB(InMBB);
AddrPHI.addReg(InStackAddrReg).addMBB(InMBB);
continue;
} else {
// Recursively convert PHI to tileload
convertPHI(TileDefMI->getParent(), *TileDefMI);
// The PHI node is coverted to tileload instruction. Get the stack
// address from tileload operands.
MachineInstr *TileLoad = MRI->getVRegDef(InTileReg);
assert(TileLoad && TileLoad->getOpcode() == X86::PTILELOADDV);
Register InRowReg = TileLoad->getOperand(1).getReg();
Register InColReg = TileLoad->getOperand(2).getReg();
Register InStackAddrReg = TileLoad->getOperand(3).getReg();
RowPHI.addReg(InRowReg).addMBB(InMBB);
ColPHI.addReg(InColReg).addMBB(InMBB);
AddrPHI.addReg(InStackAddrReg).addMBB(InMBB);
}
} else {
InsertPos = TileDefMI->getIterator();
// Fill the incoming operand of row/column phi instruction.
ShapeT Shape = getShape(MRI, InTileReg);
Shape.getRow()->setIsKill(false);
Shape.getCol()->setIsKill(false);
RowPHI.addReg(Shape.getRow()->getReg()).addMBB(InMBB);
ColPHI.addReg(Shape.getCol()->getReg()).addMBB(InMBB);
// The incoming tile register live out of its def BB, it would be spilled.
// Create MI to get the spill stack slot address for the tile register
int FI = getStackSpaceFor(InTileReg);
Register InStackAddrReg =
MRI->createVirtualRegister(&X86::GR64_NOSPRegClass);
addOffset(BuildMI(*TileDefMI->getParent(), InsertPos, DebugLoc(),
TII->get(X86::LEA64r), InStackAddrReg)
.addFrameIndex(FI),
0);
AddrPHI.addReg(InStackAddrReg).addMBB(InMBB);
}
}
MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
Register StrideReg = MRI->createVirtualRegister(&X86::GR64_NOSPRegClass);
BuildMI(*MBB, InsertPos, DebugLoc(), TII->get(X86::MOV64ri), StrideReg)
.addImm(64);
Register TileReg = PHI.getOperand(0).getReg();
MachineInstr *NewMI = addDirectMem(
BuildMI(*MBB, InsertPos, DebugLoc(), TII->get(X86::PTILELOADDV), TileReg)
.addReg(RowReg)
.addReg(ColReg),
StackAddrReg);
MachineOperand &MO = NewMI->getOperand(5);
MO.setReg(StrideReg);
MO.setIsKill(true);
PHI.eraseFromParent();
VisitedPHIs.erase(&PHI);
}
static bool isTileRegDef(MachineRegisterInfo *MRI, MachineInstr &MI) {
MachineOperand &MO = MI.getOperand(0);
if (MO.isReg() && MO.getReg().isVirtual() &&
MRI->getRegClass(MO.getReg())->getID() == X86::TILERegClassID)
return true;
return false;
}
void X86FastPreTileConfig::canonicalizePHIs(MachineBasicBlock &MBB) {
SmallVector<MachineInstr *, 8> PHIs;
for (MachineInstr &MI : MBB) {
if (!MI.isPHI())
break;
if (!isTileRegDef(MRI, MI))
continue;
PHIs.push_back(&MI);
}
// Canonicalize the phi node first. One tile phi may depeneds previous
// phi node. For below case, we need convert %t4.
//
// BB0:
// %t3 = phi (t1 BB1, t2 BB0)
// %t4 = phi (t5 BB1, t3 BB0)
// -->
// %t3 = phi (t1 BB1, t2 BB0)
// %t4 = phi (t5 BB1, t2 BB0)
//
while (!PHIs.empty()) {
MachineInstr *PHI = PHIs.pop_back_val();
// Find the operand that is incoming from the same MBB and the def
// is also phi node.
MachineOperand *InMO = nullptr;
MachineInstr *DefMI = nullptr;
for (unsigned I = 1, E = PHI->getNumOperands(); I != E; I += 2) {
Register InTileReg = PHI->getOperand(I).getReg();
MachineBasicBlock *InMBB = PHI->getOperand(I + 1).getMBB();
DefMI = MRI->getVRegDef(InTileReg);
if (InMBB != &MBB || !DefMI->isPHI())
continue;
InMO = &PHI->getOperand(I);
break;
}
// If can't find such operand, do nothing.
if (!InMO)
continue;
// Current phi node depends on previous phi node. Break the
// dependency.
Register DefTileReg;
for (unsigned I = 1, E = DefMI->getNumOperands(); I != E; I += 2) {
MachineBasicBlock *InMBB = PHI->getOperand(I + 1).getMBB();
if (InMBB != &MBB)
continue;
DefTileReg = DefMI->getOperand(I).getReg();
InMO->setReg(DefTileReg);
break;
}
}
}
void X86FastPreTileConfig::convertPHIs(MachineBasicBlock &MBB) {
SmallVector<MachineInstr *, 8> PHIs;
for (MachineInstr &MI : MBB) {
if (!MI.isPHI())
break;
if (!isTileRegDef(MRI, MI))
continue;
PHIs.push_back(&MI);
}
while (!PHIs.empty()) {
MachineInstr *MI = PHIs.pop_back_val();
VisitedPHIs.clear();
convertPHI(&MBB, *MI);
}
}
// PreTileConfig should configure the tile registers based on basic
// block.
bool X86FastPreTileConfig::configBasicBlock(MachineBasicBlock &MBB) {
this->MBB = &MBB;
bool Change = false;
MachineInstr *LastShapeMI = nullptr;
MachineInstr *LastTileCfg = nullptr;
bool HasUnconfigTile = false;
auto Config = [&](MachineInstr &Before) {
if (CfgSS == -1)
CfgSS = MFI->CreateStackObject(ST->getTileConfigSize(),
ST->getTileConfigAlignment(), false);
LastTileCfg = addFrameReference(
BuildMI(MBB, Before, DebugLoc(), TII->get(X86::PLDTILECFGV)), CfgSS);
LastShapeMI = nullptr;
Change = true;
};
auto HasTileOperand = [](MachineRegisterInfo *MRI, MachineInstr &MI) {
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (Reg.isVirtual() &&
MRI->getRegClass(Reg)->getID() == X86::TILERegClassID)
return true;
}
return false;
};
for (MachineInstr &MI : reverse(MBB)) {
// We have transformed phi node before configuring BB.
if (MI.isPHI())
break;
// Don't collect the shape of used tile, the tile should be defined
// before the tile use. Spill and reload would happen if there is only
// tile use after ldtilecfg, so the shape can be collected from reload.
// Take below code for example. %t would be reloaded before tilestore
// call
// ....
// tilestore %r, %c, %t
// -->
// call
// ldtilecfg
// %t = tileload %r, %c
// tilestore %r, %c, %t
if (HasTileOperand(MRI, MI))
HasUnconfigTile = true;
// According to AMX ABI, all the tile registers including config register
// are volatile. Caller need to save/restore config register.
if (MI.isCall() && HasUnconfigTile) {
MachineBasicBlock::iterator I;
if (LastShapeMI && dominates(MBB, MI, LastShapeMI))
I = ++LastShapeMI->getIterator();
else
I = ++MI.getIterator();
Config(*I);
HasUnconfigTile = false;
continue;
}
if (!isTileDef(MRI, MI))
continue;
//
//---------------------------------------------------------------------
// Don't handle COPY instruction. If the src and dst of the COPY can be
// in the same config in below case, we just check the shape of t0.
// def row0
// def col0
// ldtilecfg
// t0 = tielzero(row0, col0)
// t1 = copy t0
// ...
// If the src and dst of the COPY can NOT be in the same config in below
// case. Reload would be generated befor the copy instruction.
// def row0
// def col0
// t0 = tielzero(row0, col0)
// spill t0
// ...
// def row1
// def col1
// ldtilecfg
// t1 = tilezero(row1, col1)
// reload t0
// t1 = copy t0
//---------------------------------------------------------------------
//
// If MI dominate the last shape def instruction, we need insert
// ldtilecfg after LastShapeMI now. The config doesn't include
// current MI.
// def row0
// def col0
// tilezero(row0, col0) <- MI
// def row1
// def col1
// ldtilecfg <- insert
// tilezero(row1, col1)
if (LastShapeMI && dominates(MBB, MI, LastShapeMI))
Config(*(++LastShapeMI->getIterator()));
MachineOperand *RowMO = &MI.getOperand(1);
MachineOperand *ColMO = &MI.getOperand(2);
MachineInstr *RowMI = MRI->getVRegDef(RowMO->getReg());
MachineInstr *ColMI = MRI->getVRegDef(ColMO->getReg());
// If the shape is defined in current MBB, check the domination.
// FIXME how about loop?
if (RowMI->getParent() == &MBB) {
if (!LastShapeMI)
LastShapeMI = RowMI;
else if (dominates(MBB, LastShapeMI, RowMI))
LastShapeMI = RowMI;
}
if (ColMI->getParent() == &MBB) {
if (!LastShapeMI)
LastShapeMI = ColMI;
else if (dominates(MBB, LastShapeMI, ColMI))
LastShapeMI = ColMI;
}
// If there is user live out of the tilecfg, spill it and reload in
// before the user.
Register TileReg = MI.getOperand(0).getReg();
if (mayLiveOut(TileReg, LastTileCfg))
spill(++MI.getIterator(), TileReg, false);
for (MachineInstr &UseMI : MRI->use_instructions(TileReg)) {
if (UseMI.getParent() == &MBB) {
// check user should not across ldtilecfg
if (!LastTileCfg || !dominates(MBB, LastTileCfg, UseMI))
continue;
// reload befor UseMI
reload(UseMI.getIterator(), TileReg, RowMO, ColMO);
} else {
// Don't reload for phi instruction, we handle phi reload separately.
// TODO: merge the reload for the same user MBB.
if (!UseMI.isPHI())
reload(UseMI.getIterator(), TileReg, RowMO, ColMO);
}
}
}
// Configure tile registers at the head of the MBB
if (HasUnconfigTile) {
MachineInstr *Before;
if (LastShapeMI == nullptr || LastShapeMI->isPHI())
Before = &*MBB.getFirstNonPHI();
else
Before = &*(++LastShapeMI->getIterator());
Config(*Before);
}
return Change;
}
bool X86FastPreTileConfig::runOnMachineFunction(MachineFunction &MFunc) {
MF = &MFunc;
MRI = &MFunc.getRegInfo();
ST = &MFunc.getSubtarget<X86Subtarget>();
TII = ST->getInstrInfo();
X86FI = MFunc.getInfo<X86MachineFunctionInfo>();
MFI = &MFunc.getFrameInfo();
TRI = ST->getRegisterInfo();
CfgSS = -1;
unsigned NumVirtRegs = MRI->getNumVirtRegs();
// Abandon early if there is no tile register to config.
bool HasVirtTileReg = false;
for (unsigned I = 0, E = NumVirtRegs; I != E; ++I) {
Register VirtReg = Register::index2VirtReg(I);
if (MRI->getRegClass(VirtReg)->getID() == X86::TILERegClassID) {
HasVirtTileReg = true;
break;
}
}
if (!HasVirtTileReg)
return false;
StackSlotForVirtReg.resize(NumVirtRegs);
MayLiveAcrossBlocks.clear();
// We will create register during config. *3 is to make sure
// the virtual register number doesn't exceed the size of
// the bit vector.
MayLiveAcrossBlocks.resize(NumVirtRegs * 3);
bool Change = false;
assert(MRI->isSSA());
// Canonicalize the phi node first.
for (MachineBasicBlock &MBB : MFunc)
canonicalizePHIs(MBB);
// Loop over all of the basic blocks in reverse post order and insert
// ldtilecfg for tile registers. The reserse post order is to facilitate
// PHI node convert.
ReversePostOrderTraversal<MachineFunction *> RPOT(MF);
for (MachineBasicBlock *MBB : RPOT) {
convertPHIs(*MBB);
Change |= configBasicBlock(*MBB);
}
if (Change)
InitializeTileConfigStackSpace();
StackSlotForVirtReg.clear();
return Change;
}
FunctionPass *llvm::createX86FastPreTileConfigPass() {
return new X86FastPreTileConfig();
}
|