File: X86FixupInstTuning.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (517 lines) | stat: -rw-r--r-- 19,806 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
//===-- X86FixupInstTunings.cpp - replace instructions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file does a tuning pass replacing slower machine instructions
// with faster ones. We do this here, as opposed to during normal ISel, as
// attempting to get the "right" instruction can break patterns. This pass
// is not meant search for special cases where an instruction can be transformed
// to another, it is only meant to do transformations where the old instruction
// is always replacable with the new instructions. For example:
//
//      `vpermq ymm` -> `vshufd ymm`
//          -- BAD, not always valid (lane cross/non-repeated mask)
//
//      `vpermilps ymm` -> `vshufd ymm`
//          -- GOOD, always replaceable
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"

using namespace llvm;

#define DEBUG_TYPE "x86-fixup-inst-tuning"

STATISTIC(NumInstChanges, "Number of instructions changes");

namespace {
class X86FixupInstTuningPass : public MachineFunctionPass {
public:
  static char ID;

  X86FixupInstTuningPass() : MachineFunctionPass(ID) {}

  StringRef getPassName() const override { return "X86 Fixup Inst Tuning"; }

  bool runOnMachineFunction(MachineFunction &MF) override;
  bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB,
                          MachineBasicBlock::iterator &I);

  // This pass runs after regalloc and doesn't support VReg operands.
  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }

private:
  const X86InstrInfo *TII = nullptr;
  const X86Subtarget *ST = nullptr;
  const MCSchedModel *SM = nullptr;
};
} // end anonymous namespace

char X86FixupInstTuningPass::ID = 0;

INITIALIZE_PASS(X86FixupInstTuningPass, DEBUG_TYPE, DEBUG_TYPE, false, false)

FunctionPass *llvm::createX86FixupInstTuning() {
  return new X86FixupInstTuningPass();
}

template <typename T>
static std::optional<bool> CmpOptionals(T NewVal, T CurVal) {
  if (NewVal.has_value() && CurVal.has_value() && *NewVal != *CurVal)
    return *NewVal < *CurVal;

  return std::nullopt;
}

bool X86FixupInstTuningPass::processInstruction(
    MachineFunction &MF, MachineBasicBlock &MBB,
    MachineBasicBlock::iterator &I) {
  MachineInstr &MI = *I;
  unsigned Opc = MI.getOpcode();
  unsigned NumOperands = MI.getDesc().getNumOperands();

  auto GetInstTput = [&](unsigned Opcode) -> std::optional<double> {
    // We already checked that SchedModel exists in `NewOpcPreferable`.
    return MCSchedModel::getReciprocalThroughput(
        *ST, *(SM->getSchedClassDesc(TII->get(Opcode).getSchedClass())));
  };

  auto GetInstLat = [&](unsigned Opcode) -> std::optional<double> {
    // We already checked that SchedModel exists in `NewOpcPreferable`.
    return MCSchedModel::computeInstrLatency(
        *ST, *(SM->getSchedClassDesc(TII->get(Opcode).getSchedClass())));
  };

  auto GetInstSize = [&](unsigned Opcode) -> std::optional<unsigned> {
    if (unsigned Size = TII->get(Opcode).getSize())
      return Size;
    // Zero size means we where unable to compute it.
    return std::nullopt;
  };

  auto NewOpcPreferable = [&](unsigned NewOpc,
                              bool ReplaceInTie = true) -> bool {
    std::optional<bool> Res;
    if (SM->hasInstrSchedModel()) {
      // Compare tput -> lat -> code size.
      Res = CmpOptionals(GetInstTput(NewOpc), GetInstTput(Opc));
      if (Res.has_value())
        return *Res;

      Res = CmpOptionals(GetInstLat(NewOpc), GetInstLat(Opc));
      if (Res.has_value())
        return *Res;
    }

    Res = CmpOptionals(GetInstSize(Opc), GetInstSize(NewOpc));
    if (Res.has_value())
      return *Res;

    // We either have either were unable to get tput/lat/codesize or all values
    // were equal. Return specified option for a tie.
    return ReplaceInTie;
  };

  // `vpermilpd r, i` -> `vshufpd r, r, i`
  // `vpermilpd r, i, k` -> `vshufpd r, r, i, k`
  // `vshufpd` is always as fast or faster than `vpermilpd` and takes
  // 1 less byte of code size for VEX and EVEX encoding.
  auto ProcessVPERMILPDri = [&](unsigned NewOpc) -> bool {
    if (!NewOpcPreferable(NewOpc))
      return false;
    unsigned MaskImm = MI.getOperand(NumOperands - 1).getImm();
    MI.removeOperand(NumOperands - 1);
    MI.addOperand(MI.getOperand(NumOperands - 2));
    MI.setDesc(TII->get(NewOpc));
    MI.addOperand(MachineOperand::CreateImm(MaskImm));
    return true;
  };

  // `vpermilps r, i` -> `vshufps r, r, i`
  // `vpermilps r, i, k` -> `vshufps r, r, i, k`
  // `vshufps` is always as fast or faster than `vpermilps` and takes
  // 1 less byte of code size for VEX and EVEX encoding.
  auto ProcessVPERMILPSri = [&](unsigned NewOpc) -> bool {
    if (!NewOpcPreferable(NewOpc))
      return false;
    unsigned MaskImm = MI.getOperand(NumOperands - 1).getImm();
    MI.removeOperand(NumOperands - 1);
    MI.addOperand(MI.getOperand(NumOperands - 2));
    MI.setDesc(TII->get(NewOpc));
    MI.addOperand(MachineOperand::CreateImm(MaskImm));
    return true;
  };

  // `vpermilps m, i` -> `vpshufd m, i` iff no domain delay penalty on shuffles.
  // `vpshufd` is always as fast or faster than `vpermilps` and takes 1 less
  // byte of code size.
  auto ProcessVPERMILPSmi = [&](unsigned NewOpc) -> bool {
    // TODO: Might be work adding bypass delay if -Os/-Oz is enabled as
    // `vpshufd` saves a byte of code size.
    if (!ST->hasNoDomainDelayShuffle() ||
        !NewOpcPreferable(NewOpc, /*ReplaceInTie*/ false))
      return false;
    MI.setDesc(TII->get(NewOpc));
    return true;
  };

  // `vunpcklpd/vmovlhps r, r` -> `vunpcklqdq r, r`/`vshufpd r, r, 0x00`
  // `vunpckhpd/vmovlhps r, r` -> `vunpckhqdq r, r`/`vshufpd r, r, 0xff`
  // `vunpcklpd r, r, k` -> `vunpcklqdq r, r, k`/`vshufpd r, r, k, 0x00`
  // `vunpckhpd r, r, k` -> `vunpckhqdq r, r, k`/`vshufpd r, r, k, 0xff`
  // `vunpcklpd r, m` -> `vunpcklqdq r, m, k`
  // `vunpckhpd r, m` -> `vunpckhqdq r, m, k`
  // `vunpcklpd r, m, k` -> `vunpcklqdq r, m, k`
  // `vunpckhpd r, m, k` -> `vunpckhqdq r, m, k`
  // 1) If no bypass delay and `vunpck{l|h}qdq` faster than `vunpck{l|h}pd`
  //        -> `vunpck{l|h}qdq`
  // 2) If `vshufpd` faster than `vunpck{l|h}pd`
  //        -> `vshufpd`
  //
  // `vunpcklps` -> `vunpckldq` (for all operand types if no bypass delay)
  auto ProcessUNPCK = [&](unsigned NewOpc, unsigned MaskImm) -> bool {
    if (!NewOpcPreferable(NewOpc, /*ReplaceInTie*/ false))
      return false;

    MI.setDesc(TII->get(NewOpc));
    MI.addOperand(MachineOperand::CreateImm(MaskImm));
    return true;
  };

  auto ProcessUNPCKToIntDomain = [&](unsigned NewOpc) -> bool {
    // TODO it may be worth it to set ReplaceInTie to `true` as there is no real
    // downside to the integer unpck, but if someone doesn't specify exact
    // target we won't find it faster.
    if (!ST->hasNoDomainDelayShuffle() ||
        !NewOpcPreferable(NewOpc, /*ReplaceInTie*/ false))
      return false;
    MI.setDesc(TII->get(NewOpc));
    return true;
  };

  auto ProcessUNPCKLPDrr = [&](unsigned NewOpcIntDomain,
                               unsigned NewOpc) -> bool {
    if (ProcessUNPCKToIntDomain(NewOpcIntDomain))
      return true;
    return ProcessUNPCK(NewOpc, 0x00);
  };
  auto ProcessUNPCKHPDrr = [&](unsigned NewOpcIntDomain,
                               unsigned NewOpc) -> bool {
    if (ProcessUNPCKToIntDomain(NewOpcIntDomain))
      return true;
    return ProcessUNPCK(NewOpc, 0xff);
  };

  auto ProcessUNPCKPDrm = [&](unsigned NewOpcIntDomain) -> bool {
    return ProcessUNPCKToIntDomain(NewOpcIntDomain);
  };

  auto ProcessUNPCKPS = [&](unsigned NewOpc) -> bool {
    return ProcessUNPCKToIntDomain(NewOpc);
  };

  switch (Opc) {
  case X86::VPERMILPDri:
    return ProcessVPERMILPDri(X86::VSHUFPDrri);
  case X86::VPERMILPDYri:
    return ProcessVPERMILPDri(X86::VSHUFPDYrri);
  case X86::VPERMILPDZ128ri:
    return ProcessVPERMILPDri(X86::VSHUFPDZ128rri);
  case X86::VPERMILPDZ256ri:
    return ProcessVPERMILPDri(X86::VSHUFPDZ256rri);
  case X86::VPERMILPDZri:
    return ProcessVPERMILPDri(X86::VSHUFPDZrri);
  case X86::VPERMILPDZ128rikz:
    return ProcessVPERMILPDri(X86::VSHUFPDZ128rrikz);
  case X86::VPERMILPDZ256rikz:
    return ProcessVPERMILPDri(X86::VSHUFPDZ256rrikz);
  case X86::VPERMILPDZrikz:
    return ProcessVPERMILPDri(X86::VSHUFPDZrrikz);
  case X86::VPERMILPDZ128rik:
    return ProcessVPERMILPDri(X86::VSHUFPDZ128rrik);
  case X86::VPERMILPDZ256rik:
    return ProcessVPERMILPDri(X86::VSHUFPDZ256rrik);
  case X86::VPERMILPDZrik:
    return ProcessVPERMILPDri(X86::VSHUFPDZrrik);

  case X86::VPERMILPSri:
    return ProcessVPERMILPSri(X86::VSHUFPSrri);
  case X86::VPERMILPSYri:
    return ProcessVPERMILPSri(X86::VSHUFPSYrri);
  case X86::VPERMILPSZ128ri:
    return ProcessVPERMILPSri(X86::VSHUFPSZ128rri);
  case X86::VPERMILPSZ256ri:
    return ProcessVPERMILPSri(X86::VSHUFPSZ256rri);
  case X86::VPERMILPSZri:
    return ProcessVPERMILPSri(X86::VSHUFPSZrri);
  case X86::VPERMILPSZ128rikz:
    return ProcessVPERMILPSri(X86::VSHUFPSZ128rrikz);
  case X86::VPERMILPSZ256rikz:
    return ProcessVPERMILPSri(X86::VSHUFPSZ256rrikz);
  case X86::VPERMILPSZrikz:
    return ProcessVPERMILPSri(X86::VSHUFPSZrrikz);
  case X86::VPERMILPSZ128rik:
    return ProcessVPERMILPSri(X86::VSHUFPSZ128rrik);
  case X86::VPERMILPSZ256rik:
    return ProcessVPERMILPSri(X86::VSHUFPSZ256rrik);
  case X86::VPERMILPSZrik:
    return ProcessVPERMILPSri(X86::VSHUFPSZrrik);
  case X86::VPERMILPSmi:
    return ProcessVPERMILPSmi(X86::VPSHUFDmi);
  case X86::VPERMILPSYmi:
    // TODO: See if there is a more generic way we can test if the replacement
    // instruction is supported.
    return ST->hasAVX2() ? ProcessVPERMILPSmi(X86::VPSHUFDYmi) : false;
  case X86::VPERMILPSZ128mi:
    return ProcessVPERMILPSmi(X86::VPSHUFDZ128mi);
  case X86::VPERMILPSZ256mi:
    return ProcessVPERMILPSmi(X86::VPSHUFDZ256mi);
  case X86::VPERMILPSZmi:
    return ProcessVPERMILPSmi(X86::VPSHUFDZmi);
  case X86::VPERMILPSZ128mikz:
    return ProcessVPERMILPSmi(X86::VPSHUFDZ128mikz);
  case X86::VPERMILPSZ256mikz:
    return ProcessVPERMILPSmi(X86::VPSHUFDZ256mikz);
  case X86::VPERMILPSZmikz:
    return ProcessVPERMILPSmi(X86::VPSHUFDZmikz);
  case X86::VPERMILPSZ128mik:
    return ProcessVPERMILPSmi(X86::VPSHUFDZ128mik);
  case X86::VPERMILPSZ256mik:
    return ProcessVPERMILPSmi(X86::VPSHUFDZ256mik);
  case X86::VPERMILPSZmik:
    return ProcessVPERMILPSmi(X86::VPSHUFDZmik);

  case X86::MOVLHPSrr:
  case X86::UNPCKLPDrr:
    return ProcessUNPCKLPDrr(X86::PUNPCKLQDQrr, X86::SHUFPDrri);
  case X86::VMOVLHPSrr:
  case X86::VUNPCKLPDrr:
    return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQrr, X86::VSHUFPDrri);
  case X86::VUNPCKLPDYrr:
    return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQYrr, X86::VSHUFPDYrri);
    // VMOVLHPS is always 128 bits.
  case X86::VMOVLHPSZrr:
  case X86::VUNPCKLPDZ128rr:
    return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ128rr, X86::VSHUFPDZ128rri);
  case X86::VUNPCKLPDZ256rr:
    return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ256rr, X86::VSHUFPDZ256rri);
  case X86::VUNPCKLPDZrr:
    return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZrr, X86::VSHUFPDZrri);
  case X86::VUNPCKLPDZ128rrk:
    return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ128rrk, X86::VSHUFPDZ128rrik);
  case X86::VUNPCKLPDZ256rrk:
    return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ256rrk, X86::VSHUFPDZ256rrik);
  case X86::VUNPCKLPDZrrk:
    return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZrrk, X86::VSHUFPDZrrik);
  case X86::VUNPCKLPDZ128rrkz:
    return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ128rrkz, X86::VSHUFPDZ128rrikz);
  case X86::VUNPCKLPDZ256rrkz:
    return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ256rrkz, X86::VSHUFPDZ256rrikz);
  case X86::VUNPCKLPDZrrkz:
    return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZrrkz, X86::VSHUFPDZrrikz);
  case X86::UNPCKHPDrr:
    return ProcessUNPCKHPDrr(X86::PUNPCKHQDQrr, X86::SHUFPDrri);
  case X86::VUNPCKHPDrr:
    return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQrr, X86::VSHUFPDrri);
  case X86::VUNPCKHPDYrr:
    return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQYrr, X86::VSHUFPDYrri);
  case X86::VUNPCKHPDZ128rr:
    return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ128rr, X86::VSHUFPDZ128rri);
  case X86::VUNPCKHPDZ256rr:
    return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ256rr, X86::VSHUFPDZ256rri);
  case X86::VUNPCKHPDZrr:
    return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZrr, X86::VSHUFPDZrri);
  case X86::VUNPCKHPDZ128rrk:
    return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ128rrk, X86::VSHUFPDZ128rrik);
  case X86::VUNPCKHPDZ256rrk:
    return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ256rrk, X86::VSHUFPDZ256rrik);
  case X86::VUNPCKHPDZrrk:
    return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZrrk, X86::VSHUFPDZrrik);
  case X86::VUNPCKHPDZ128rrkz:
    return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ128rrkz, X86::VSHUFPDZ128rrikz);
  case X86::VUNPCKHPDZ256rrkz:
    return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ256rrkz, X86::VSHUFPDZ256rrikz);
  case X86::VUNPCKHPDZrrkz:
    return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZrrkz, X86::VSHUFPDZrrikz);
  case X86::UNPCKLPDrm:
    return ProcessUNPCKPDrm(X86::PUNPCKLQDQrm);
  case X86::VUNPCKLPDrm:
    return ProcessUNPCKPDrm(X86::VPUNPCKLQDQrm);
  case X86::VUNPCKLPDYrm:
    return ProcessUNPCKPDrm(X86::VPUNPCKLQDQYrm);
  case X86::VUNPCKLPDZ128rm:
    return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ128rm);
  case X86::VUNPCKLPDZ256rm:
    return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ256rm);
  case X86::VUNPCKLPDZrm:
    return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZrm);
  case X86::VUNPCKLPDZ128rmk:
    return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ128rmk);
  case X86::VUNPCKLPDZ256rmk:
    return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ256rmk);
  case X86::VUNPCKLPDZrmk:
    return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZrmk);
  case X86::VUNPCKLPDZ128rmkz:
    return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ128rmkz);
  case X86::VUNPCKLPDZ256rmkz:
    return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ256rmkz);
  case X86::VUNPCKLPDZrmkz:
    return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZrmkz);
  case X86::UNPCKHPDrm:
    return ProcessUNPCKPDrm(X86::PUNPCKHQDQrm);
  case X86::VUNPCKHPDrm:
    return ProcessUNPCKPDrm(X86::VPUNPCKHQDQrm);
  case X86::VUNPCKHPDYrm:
    return ProcessUNPCKPDrm(X86::VPUNPCKHQDQYrm);
  case X86::VUNPCKHPDZ128rm:
    return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ128rm);
  case X86::VUNPCKHPDZ256rm:
    return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ256rm);
  case X86::VUNPCKHPDZrm:
    return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZrm);
  case X86::VUNPCKHPDZ128rmk:
    return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ128rmk);
  case X86::VUNPCKHPDZ256rmk:
    return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ256rmk);
  case X86::VUNPCKHPDZrmk:
    return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZrmk);
  case X86::VUNPCKHPDZ128rmkz:
    return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ128rmkz);
  case X86::VUNPCKHPDZ256rmkz:
    return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ256rmkz);
  case X86::VUNPCKHPDZrmkz:
    return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZrmkz);

  case X86::UNPCKLPSrr:
    return ProcessUNPCKPS(X86::PUNPCKLDQrr);
  case X86::VUNPCKLPSrr:
    return ProcessUNPCKPS(X86::VPUNPCKLDQrr);
  case X86::VUNPCKLPSYrr:
    return ProcessUNPCKPS(X86::VPUNPCKLDQYrr);
  case X86::VUNPCKLPSZ128rr:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rr);
  case X86::VUNPCKLPSZ256rr:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rr);
  case X86::VUNPCKLPSZrr:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZrr);
  case X86::VUNPCKLPSZ128rrk:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rrk);
  case X86::VUNPCKLPSZ256rrk:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rrk);
  case X86::VUNPCKLPSZrrk:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZrrk);
  case X86::VUNPCKLPSZ128rrkz:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rrkz);
  case X86::VUNPCKLPSZ256rrkz:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rrkz);
  case X86::VUNPCKLPSZrrkz:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZrrkz);
  case X86::UNPCKHPSrr:
    return ProcessUNPCKPS(X86::PUNPCKHDQrr);
  case X86::VUNPCKHPSrr:
    return ProcessUNPCKPS(X86::VPUNPCKHDQrr);
  case X86::VUNPCKHPSYrr:
    return ProcessUNPCKPS(X86::VPUNPCKHDQYrr);
  case X86::VUNPCKHPSZ128rr:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rr);
  case X86::VUNPCKHPSZ256rr:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rr);
  case X86::VUNPCKHPSZrr:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZrr);
  case X86::VUNPCKHPSZ128rrk:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rrk);
  case X86::VUNPCKHPSZ256rrk:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rrk);
  case X86::VUNPCKHPSZrrk:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZrrk);
  case X86::VUNPCKHPSZ128rrkz:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rrkz);
  case X86::VUNPCKHPSZ256rrkz:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rrkz);
  case X86::VUNPCKHPSZrrkz:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZrrkz);
  case X86::UNPCKLPSrm:
    return ProcessUNPCKPS(X86::PUNPCKLDQrm);
  case X86::VUNPCKLPSrm:
    return ProcessUNPCKPS(X86::VPUNPCKLDQrm);
  case X86::VUNPCKLPSYrm:
    return ProcessUNPCKPS(X86::VPUNPCKLDQYrm);
  case X86::VUNPCKLPSZ128rm:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rm);
  case X86::VUNPCKLPSZ256rm:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rm);
  case X86::VUNPCKLPSZrm:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZrm);
  case X86::VUNPCKLPSZ128rmk:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rmk);
  case X86::VUNPCKLPSZ256rmk:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rmk);
  case X86::VUNPCKLPSZrmk:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZrmk);
  case X86::VUNPCKLPSZ128rmkz:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rmkz);
  case X86::VUNPCKLPSZ256rmkz:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rmkz);
  case X86::VUNPCKLPSZrmkz:
    return ProcessUNPCKPS(X86::VPUNPCKLDQZrmkz);
  case X86::UNPCKHPSrm:
    return ProcessUNPCKPS(X86::PUNPCKHDQrm);
  case X86::VUNPCKHPSrm:
    return ProcessUNPCKPS(X86::VPUNPCKHDQrm);
  case X86::VUNPCKHPSYrm:
    return ProcessUNPCKPS(X86::VPUNPCKHDQYrm);
  case X86::VUNPCKHPSZ128rm:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rm);
  case X86::VUNPCKHPSZ256rm:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rm);
  case X86::VUNPCKHPSZrm:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZrm);
  case X86::VUNPCKHPSZ128rmk:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rmk);
  case X86::VUNPCKHPSZ256rmk:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rmk);
  case X86::VUNPCKHPSZrmk:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZrmk);
  case X86::VUNPCKHPSZ128rmkz:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rmkz);
  case X86::VUNPCKHPSZ256rmkz:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rmkz);
  case X86::VUNPCKHPSZrmkz:
    return ProcessUNPCKPS(X86::VPUNPCKHDQZrmkz);
  default:
    return false;
  }
}

bool X86FixupInstTuningPass::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "Start X86FixupInstTuning\n";);
  bool Changed = false;
  ST = &MF.getSubtarget<X86Subtarget>();
  TII = ST->getInstrInfo();
  SM = &ST->getSchedModel();

  for (MachineBasicBlock &MBB : MF) {
    for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
      if (processInstruction(MF, MBB, I)) {
        ++NumInstChanges;
        Changed = true;
      }
    }
  }
  LLVM_DEBUG(dbgs() << "End X86FixupInstTuning\n";);
  return Changed;
}