1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
//===-- X86FixupInstTunings.cpp - replace instructions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file does a tuning pass replacing slower machine instructions
// with faster ones. We do this here, as opposed to during normal ISel, as
// attempting to get the "right" instruction can break patterns. This pass
// is not meant search for special cases where an instruction can be transformed
// to another, it is only meant to do transformations where the old instruction
// is always replacable with the new instructions. For example:
//
// `vpermq ymm` -> `vshufd ymm`
// -- BAD, not always valid (lane cross/non-repeated mask)
//
// `vpermilps ymm` -> `vshufd ymm`
// -- GOOD, always replaceable
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "x86-fixup-inst-tuning"
STATISTIC(NumInstChanges, "Number of instructions changes");
namespace {
class X86FixupInstTuningPass : public MachineFunctionPass {
public:
static char ID;
X86FixupInstTuningPass() : MachineFunctionPass(ID) {}
StringRef getPassName() const override { return "X86 Fixup Inst Tuning"; }
bool runOnMachineFunction(MachineFunction &MF) override;
bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator &I);
// This pass runs after regalloc and doesn't support VReg operands.
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
private:
const X86InstrInfo *TII = nullptr;
const X86Subtarget *ST = nullptr;
const MCSchedModel *SM = nullptr;
};
} // end anonymous namespace
char X86FixupInstTuningPass::ID = 0;
INITIALIZE_PASS(X86FixupInstTuningPass, DEBUG_TYPE, DEBUG_TYPE, false, false)
FunctionPass *llvm::createX86FixupInstTuning() {
return new X86FixupInstTuningPass();
}
template <typename T>
static std::optional<bool> CmpOptionals(T NewVal, T CurVal) {
if (NewVal.has_value() && CurVal.has_value() && *NewVal != *CurVal)
return *NewVal < *CurVal;
return std::nullopt;
}
bool X86FixupInstTuningPass::processInstruction(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator &I) {
MachineInstr &MI = *I;
unsigned Opc = MI.getOpcode();
unsigned NumOperands = MI.getDesc().getNumOperands();
auto GetInstTput = [&](unsigned Opcode) -> std::optional<double> {
// We already checked that SchedModel exists in `NewOpcPreferable`.
return MCSchedModel::getReciprocalThroughput(
*ST, *(SM->getSchedClassDesc(TII->get(Opcode).getSchedClass())));
};
auto GetInstLat = [&](unsigned Opcode) -> std::optional<double> {
// We already checked that SchedModel exists in `NewOpcPreferable`.
return MCSchedModel::computeInstrLatency(
*ST, *(SM->getSchedClassDesc(TII->get(Opcode).getSchedClass())));
};
auto GetInstSize = [&](unsigned Opcode) -> std::optional<unsigned> {
if (unsigned Size = TII->get(Opcode).getSize())
return Size;
// Zero size means we where unable to compute it.
return std::nullopt;
};
auto NewOpcPreferable = [&](unsigned NewOpc,
bool ReplaceInTie = true) -> bool {
std::optional<bool> Res;
if (SM->hasInstrSchedModel()) {
// Compare tput -> lat -> code size.
Res = CmpOptionals(GetInstTput(NewOpc), GetInstTput(Opc));
if (Res.has_value())
return *Res;
Res = CmpOptionals(GetInstLat(NewOpc), GetInstLat(Opc));
if (Res.has_value())
return *Res;
}
Res = CmpOptionals(GetInstSize(Opc), GetInstSize(NewOpc));
if (Res.has_value())
return *Res;
// We either have either were unable to get tput/lat/codesize or all values
// were equal. Return specified option for a tie.
return ReplaceInTie;
};
// `vpermilpd r, i` -> `vshufpd r, r, i`
// `vpermilpd r, i, k` -> `vshufpd r, r, i, k`
// `vshufpd` is always as fast or faster than `vpermilpd` and takes
// 1 less byte of code size for VEX and EVEX encoding.
auto ProcessVPERMILPDri = [&](unsigned NewOpc) -> bool {
if (!NewOpcPreferable(NewOpc))
return false;
unsigned MaskImm = MI.getOperand(NumOperands - 1).getImm();
MI.removeOperand(NumOperands - 1);
MI.addOperand(MI.getOperand(NumOperands - 2));
MI.setDesc(TII->get(NewOpc));
MI.addOperand(MachineOperand::CreateImm(MaskImm));
return true;
};
// `vpermilps r, i` -> `vshufps r, r, i`
// `vpermilps r, i, k` -> `vshufps r, r, i, k`
// `vshufps` is always as fast or faster than `vpermilps` and takes
// 1 less byte of code size for VEX and EVEX encoding.
auto ProcessVPERMILPSri = [&](unsigned NewOpc) -> bool {
if (!NewOpcPreferable(NewOpc))
return false;
unsigned MaskImm = MI.getOperand(NumOperands - 1).getImm();
MI.removeOperand(NumOperands - 1);
MI.addOperand(MI.getOperand(NumOperands - 2));
MI.setDesc(TII->get(NewOpc));
MI.addOperand(MachineOperand::CreateImm(MaskImm));
return true;
};
// `vpermilps m, i` -> `vpshufd m, i` iff no domain delay penalty on shuffles.
// `vpshufd` is always as fast or faster than `vpermilps` and takes 1 less
// byte of code size.
auto ProcessVPERMILPSmi = [&](unsigned NewOpc) -> bool {
// TODO: Might be work adding bypass delay if -Os/-Oz is enabled as
// `vpshufd` saves a byte of code size.
if (!ST->hasNoDomainDelayShuffle() ||
!NewOpcPreferable(NewOpc, /*ReplaceInTie*/ false))
return false;
MI.setDesc(TII->get(NewOpc));
return true;
};
// `vunpcklpd/vmovlhps r, r` -> `vunpcklqdq r, r`/`vshufpd r, r, 0x00`
// `vunpckhpd/vmovlhps r, r` -> `vunpckhqdq r, r`/`vshufpd r, r, 0xff`
// `vunpcklpd r, r, k` -> `vunpcklqdq r, r, k`/`vshufpd r, r, k, 0x00`
// `vunpckhpd r, r, k` -> `vunpckhqdq r, r, k`/`vshufpd r, r, k, 0xff`
// `vunpcklpd r, m` -> `vunpcklqdq r, m, k`
// `vunpckhpd r, m` -> `vunpckhqdq r, m, k`
// `vunpcklpd r, m, k` -> `vunpcklqdq r, m, k`
// `vunpckhpd r, m, k` -> `vunpckhqdq r, m, k`
// 1) If no bypass delay and `vunpck{l|h}qdq` faster than `vunpck{l|h}pd`
// -> `vunpck{l|h}qdq`
// 2) If `vshufpd` faster than `vunpck{l|h}pd`
// -> `vshufpd`
//
// `vunpcklps` -> `vunpckldq` (for all operand types if no bypass delay)
auto ProcessUNPCK = [&](unsigned NewOpc, unsigned MaskImm) -> bool {
if (!NewOpcPreferable(NewOpc, /*ReplaceInTie*/ false))
return false;
MI.setDesc(TII->get(NewOpc));
MI.addOperand(MachineOperand::CreateImm(MaskImm));
return true;
};
auto ProcessUNPCKToIntDomain = [&](unsigned NewOpc) -> bool {
// TODO it may be worth it to set ReplaceInTie to `true` as there is no real
// downside to the integer unpck, but if someone doesn't specify exact
// target we won't find it faster.
if (!ST->hasNoDomainDelayShuffle() ||
!NewOpcPreferable(NewOpc, /*ReplaceInTie*/ false))
return false;
MI.setDesc(TII->get(NewOpc));
return true;
};
auto ProcessUNPCKLPDrr = [&](unsigned NewOpcIntDomain,
unsigned NewOpc) -> bool {
if (ProcessUNPCKToIntDomain(NewOpcIntDomain))
return true;
return ProcessUNPCK(NewOpc, 0x00);
};
auto ProcessUNPCKHPDrr = [&](unsigned NewOpcIntDomain,
unsigned NewOpc) -> bool {
if (ProcessUNPCKToIntDomain(NewOpcIntDomain))
return true;
return ProcessUNPCK(NewOpc, 0xff);
};
auto ProcessUNPCKPDrm = [&](unsigned NewOpcIntDomain) -> bool {
return ProcessUNPCKToIntDomain(NewOpcIntDomain);
};
auto ProcessUNPCKPS = [&](unsigned NewOpc) -> bool {
return ProcessUNPCKToIntDomain(NewOpc);
};
switch (Opc) {
case X86::VPERMILPDri:
return ProcessVPERMILPDri(X86::VSHUFPDrri);
case X86::VPERMILPDYri:
return ProcessVPERMILPDri(X86::VSHUFPDYrri);
case X86::VPERMILPDZ128ri:
return ProcessVPERMILPDri(X86::VSHUFPDZ128rri);
case X86::VPERMILPDZ256ri:
return ProcessVPERMILPDri(X86::VSHUFPDZ256rri);
case X86::VPERMILPDZri:
return ProcessVPERMILPDri(X86::VSHUFPDZrri);
case X86::VPERMILPDZ128rikz:
return ProcessVPERMILPDri(X86::VSHUFPDZ128rrikz);
case X86::VPERMILPDZ256rikz:
return ProcessVPERMILPDri(X86::VSHUFPDZ256rrikz);
case X86::VPERMILPDZrikz:
return ProcessVPERMILPDri(X86::VSHUFPDZrrikz);
case X86::VPERMILPDZ128rik:
return ProcessVPERMILPDri(X86::VSHUFPDZ128rrik);
case X86::VPERMILPDZ256rik:
return ProcessVPERMILPDri(X86::VSHUFPDZ256rrik);
case X86::VPERMILPDZrik:
return ProcessVPERMILPDri(X86::VSHUFPDZrrik);
case X86::VPERMILPSri:
return ProcessVPERMILPSri(X86::VSHUFPSrri);
case X86::VPERMILPSYri:
return ProcessVPERMILPSri(X86::VSHUFPSYrri);
case X86::VPERMILPSZ128ri:
return ProcessVPERMILPSri(X86::VSHUFPSZ128rri);
case X86::VPERMILPSZ256ri:
return ProcessVPERMILPSri(X86::VSHUFPSZ256rri);
case X86::VPERMILPSZri:
return ProcessVPERMILPSri(X86::VSHUFPSZrri);
case X86::VPERMILPSZ128rikz:
return ProcessVPERMILPSri(X86::VSHUFPSZ128rrikz);
case X86::VPERMILPSZ256rikz:
return ProcessVPERMILPSri(X86::VSHUFPSZ256rrikz);
case X86::VPERMILPSZrikz:
return ProcessVPERMILPSri(X86::VSHUFPSZrrikz);
case X86::VPERMILPSZ128rik:
return ProcessVPERMILPSri(X86::VSHUFPSZ128rrik);
case X86::VPERMILPSZ256rik:
return ProcessVPERMILPSri(X86::VSHUFPSZ256rrik);
case X86::VPERMILPSZrik:
return ProcessVPERMILPSri(X86::VSHUFPSZrrik);
case X86::VPERMILPSmi:
return ProcessVPERMILPSmi(X86::VPSHUFDmi);
case X86::VPERMILPSYmi:
// TODO: See if there is a more generic way we can test if the replacement
// instruction is supported.
return ST->hasAVX2() ? ProcessVPERMILPSmi(X86::VPSHUFDYmi) : false;
case X86::VPERMILPSZ128mi:
return ProcessVPERMILPSmi(X86::VPSHUFDZ128mi);
case X86::VPERMILPSZ256mi:
return ProcessVPERMILPSmi(X86::VPSHUFDZ256mi);
case X86::VPERMILPSZmi:
return ProcessVPERMILPSmi(X86::VPSHUFDZmi);
case X86::VPERMILPSZ128mikz:
return ProcessVPERMILPSmi(X86::VPSHUFDZ128mikz);
case X86::VPERMILPSZ256mikz:
return ProcessVPERMILPSmi(X86::VPSHUFDZ256mikz);
case X86::VPERMILPSZmikz:
return ProcessVPERMILPSmi(X86::VPSHUFDZmikz);
case X86::VPERMILPSZ128mik:
return ProcessVPERMILPSmi(X86::VPSHUFDZ128mik);
case X86::VPERMILPSZ256mik:
return ProcessVPERMILPSmi(X86::VPSHUFDZ256mik);
case X86::VPERMILPSZmik:
return ProcessVPERMILPSmi(X86::VPSHUFDZmik);
case X86::MOVLHPSrr:
case X86::UNPCKLPDrr:
return ProcessUNPCKLPDrr(X86::PUNPCKLQDQrr, X86::SHUFPDrri);
case X86::VMOVLHPSrr:
case X86::VUNPCKLPDrr:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQrr, X86::VSHUFPDrri);
case X86::VUNPCKLPDYrr:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQYrr, X86::VSHUFPDYrri);
// VMOVLHPS is always 128 bits.
case X86::VMOVLHPSZrr:
case X86::VUNPCKLPDZ128rr:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ128rr, X86::VSHUFPDZ128rri);
case X86::VUNPCKLPDZ256rr:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ256rr, X86::VSHUFPDZ256rri);
case X86::VUNPCKLPDZrr:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZrr, X86::VSHUFPDZrri);
case X86::VUNPCKLPDZ128rrk:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ128rrk, X86::VSHUFPDZ128rrik);
case X86::VUNPCKLPDZ256rrk:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ256rrk, X86::VSHUFPDZ256rrik);
case X86::VUNPCKLPDZrrk:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZrrk, X86::VSHUFPDZrrik);
case X86::VUNPCKLPDZ128rrkz:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ128rrkz, X86::VSHUFPDZ128rrikz);
case X86::VUNPCKLPDZ256rrkz:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ256rrkz, X86::VSHUFPDZ256rrikz);
case X86::VUNPCKLPDZrrkz:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZrrkz, X86::VSHUFPDZrrikz);
case X86::UNPCKHPDrr:
return ProcessUNPCKHPDrr(X86::PUNPCKHQDQrr, X86::SHUFPDrri);
case X86::VUNPCKHPDrr:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQrr, X86::VSHUFPDrri);
case X86::VUNPCKHPDYrr:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQYrr, X86::VSHUFPDYrri);
case X86::VUNPCKHPDZ128rr:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ128rr, X86::VSHUFPDZ128rri);
case X86::VUNPCKHPDZ256rr:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ256rr, X86::VSHUFPDZ256rri);
case X86::VUNPCKHPDZrr:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZrr, X86::VSHUFPDZrri);
case X86::VUNPCKHPDZ128rrk:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ128rrk, X86::VSHUFPDZ128rrik);
case X86::VUNPCKHPDZ256rrk:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ256rrk, X86::VSHUFPDZ256rrik);
case X86::VUNPCKHPDZrrk:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZrrk, X86::VSHUFPDZrrik);
case X86::VUNPCKHPDZ128rrkz:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ128rrkz, X86::VSHUFPDZ128rrikz);
case X86::VUNPCKHPDZ256rrkz:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ256rrkz, X86::VSHUFPDZ256rrikz);
case X86::VUNPCKHPDZrrkz:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZrrkz, X86::VSHUFPDZrrikz);
case X86::UNPCKLPDrm:
return ProcessUNPCKPDrm(X86::PUNPCKLQDQrm);
case X86::VUNPCKLPDrm:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQrm);
case X86::VUNPCKLPDYrm:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQYrm);
case X86::VUNPCKLPDZ128rm:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ128rm);
case X86::VUNPCKLPDZ256rm:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ256rm);
case X86::VUNPCKLPDZrm:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZrm);
case X86::VUNPCKLPDZ128rmk:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ128rmk);
case X86::VUNPCKLPDZ256rmk:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ256rmk);
case X86::VUNPCKLPDZrmk:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZrmk);
case X86::VUNPCKLPDZ128rmkz:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ128rmkz);
case X86::VUNPCKLPDZ256rmkz:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ256rmkz);
case X86::VUNPCKLPDZrmkz:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZrmkz);
case X86::UNPCKHPDrm:
return ProcessUNPCKPDrm(X86::PUNPCKHQDQrm);
case X86::VUNPCKHPDrm:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQrm);
case X86::VUNPCKHPDYrm:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQYrm);
case X86::VUNPCKHPDZ128rm:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ128rm);
case X86::VUNPCKHPDZ256rm:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ256rm);
case X86::VUNPCKHPDZrm:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZrm);
case X86::VUNPCKHPDZ128rmk:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ128rmk);
case X86::VUNPCKHPDZ256rmk:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ256rmk);
case X86::VUNPCKHPDZrmk:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZrmk);
case X86::VUNPCKHPDZ128rmkz:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ128rmkz);
case X86::VUNPCKHPDZ256rmkz:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ256rmkz);
case X86::VUNPCKHPDZrmkz:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZrmkz);
case X86::UNPCKLPSrr:
return ProcessUNPCKPS(X86::PUNPCKLDQrr);
case X86::VUNPCKLPSrr:
return ProcessUNPCKPS(X86::VPUNPCKLDQrr);
case X86::VUNPCKLPSYrr:
return ProcessUNPCKPS(X86::VPUNPCKLDQYrr);
case X86::VUNPCKLPSZ128rr:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rr);
case X86::VUNPCKLPSZ256rr:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rr);
case X86::VUNPCKLPSZrr:
return ProcessUNPCKPS(X86::VPUNPCKLDQZrr);
case X86::VUNPCKLPSZ128rrk:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rrk);
case X86::VUNPCKLPSZ256rrk:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rrk);
case X86::VUNPCKLPSZrrk:
return ProcessUNPCKPS(X86::VPUNPCKLDQZrrk);
case X86::VUNPCKLPSZ128rrkz:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rrkz);
case X86::VUNPCKLPSZ256rrkz:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rrkz);
case X86::VUNPCKLPSZrrkz:
return ProcessUNPCKPS(X86::VPUNPCKLDQZrrkz);
case X86::UNPCKHPSrr:
return ProcessUNPCKPS(X86::PUNPCKHDQrr);
case X86::VUNPCKHPSrr:
return ProcessUNPCKPS(X86::VPUNPCKHDQrr);
case X86::VUNPCKHPSYrr:
return ProcessUNPCKPS(X86::VPUNPCKHDQYrr);
case X86::VUNPCKHPSZ128rr:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rr);
case X86::VUNPCKHPSZ256rr:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rr);
case X86::VUNPCKHPSZrr:
return ProcessUNPCKPS(X86::VPUNPCKHDQZrr);
case X86::VUNPCKHPSZ128rrk:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rrk);
case X86::VUNPCKHPSZ256rrk:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rrk);
case X86::VUNPCKHPSZrrk:
return ProcessUNPCKPS(X86::VPUNPCKHDQZrrk);
case X86::VUNPCKHPSZ128rrkz:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rrkz);
case X86::VUNPCKHPSZ256rrkz:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rrkz);
case X86::VUNPCKHPSZrrkz:
return ProcessUNPCKPS(X86::VPUNPCKHDQZrrkz);
case X86::UNPCKLPSrm:
return ProcessUNPCKPS(X86::PUNPCKLDQrm);
case X86::VUNPCKLPSrm:
return ProcessUNPCKPS(X86::VPUNPCKLDQrm);
case X86::VUNPCKLPSYrm:
return ProcessUNPCKPS(X86::VPUNPCKLDQYrm);
case X86::VUNPCKLPSZ128rm:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rm);
case X86::VUNPCKLPSZ256rm:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rm);
case X86::VUNPCKLPSZrm:
return ProcessUNPCKPS(X86::VPUNPCKLDQZrm);
case X86::VUNPCKLPSZ128rmk:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rmk);
case X86::VUNPCKLPSZ256rmk:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rmk);
case X86::VUNPCKLPSZrmk:
return ProcessUNPCKPS(X86::VPUNPCKLDQZrmk);
case X86::VUNPCKLPSZ128rmkz:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rmkz);
case X86::VUNPCKLPSZ256rmkz:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rmkz);
case X86::VUNPCKLPSZrmkz:
return ProcessUNPCKPS(X86::VPUNPCKLDQZrmkz);
case X86::UNPCKHPSrm:
return ProcessUNPCKPS(X86::PUNPCKHDQrm);
case X86::VUNPCKHPSrm:
return ProcessUNPCKPS(X86::VPUNPCKHDQrm);
case X86::VUNPCKHPSYrm:
return ProcessUNPCKPS(X86::VPUNPCKHDQYrm);
case X86::VUNPCKHPSZ128rm:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rm);
case X86::VUNPCKHPSZ256rm:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rm);
case X86::VUNPCKHPSZrm:
return ProcessUNPCKPS(X86::VPUNPCKHDQZrm);
case X86::VUNPCKHPSZ128rmk:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rmk);
case X86::VUNPCKHPSZ256rmk:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rmk);
case X86::VUNPCKHPSZrmk:
return ProcessUNPCKPS(X86::VPUNPCKHDQZrmk);
case X86::VUNPCKHPSZ128rmkz:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rmkz);
case X86::VUNPCKHPSZ256rmkz:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rmkz);
case X86::VUNPCKHPSZrmkz:
return ProcessUNPCKPS(X86::VPUNPCKHDQZrmkz);
default:
return false;
}
}
bool X86FixupInstTuningPass::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "Start X86FixupInstTuning\n";);
bool Changed = false;
ST = &MF.getSubtarget<X86Subtarget>();
TII = ST->getInstrInfo();
SM = &ST->getSchedModel();
for (MachineBasicBlock &MBB : MF) {
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
if (processInstruction(MF, MBB, I)) {
++NumInstChanges;
Changed = true;
}
}
}
LLVM_DEBUG(dbgs() << "End X86FixupInstTuning\n";);
return Changed;
}
|