File: X86FixupVectorConstants.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (398 lines) | stat: -rw-r--r-- 15,039 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
//===-- X86FixupVectorConstants.cpp - optimize constant generation  -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file examines all full size vector constant pool loads and attempts to
// replace them with smaller constant pool entries, including:
// * Converting AVX512 memory-fold instructions to their broadcast-fold form
// * TODO: Broadcasting of full width loads.
// * TODO: Sign/Zero extension of full width loads.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrFoldTables.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineConstantPool.h"

using namespace llvm;

#define DEBUG_TYPE "x86-fixup-vector-constants"

STATISTIC(NumInstChanges, "Number of instructions changes");

namespace {
class X86FixupVectorConstantsPass : public MachineFunctionPass {
public:
  static char ID;

  X86FixupVectorConstantsPass() : MachineFunctionPass(ID) {}

  StringRef getPassName() const override {
    return "X86 Fixup Vector Constants";
  }

  bool runOnMachineFunction(MachineFunction &MF) override;
  bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB,
                          MachineInstr &MI);

  // This pass runs after regalloc and doesn't support VReg operands.
  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }

private:
  const X86InstrInfo *TII = nullptr;
  const X86Subtarget *ST = nullptr;
  const MCSchedModel *SM = nullptr;
};
} // end anonymous namespace

char X86FixupVectorConstantsPass::ID = 0;

INITIALIZE_PASS(X86FixupVectorConstantsPass, DEBUG_TYPE, DEBUG_TYPE, false, false)

FunctionPass *llvm::createX86FixupVectorConstants() {
  return new X86FixupVectorConstantsPass();
}

static const Constant *getConstantFromPool(const MachineInstr &MI,
                                           const MachineOperand &Op) {
  if (!Op.isCPI() || Op.getOffset() != 0)
    return nullptr;

  ArrayRef<MachineConstantPoolEntry> Constants =
      MI.getParent()->getParent()->getConstantPool()->getConstants();
  const MachineConstantPoolEntry &ConstantEntry = Constants[Op.getIndex()];

  // Bail if this is a machine constant pool entry, we won't be able to dig out
  // anything useful.
  if (ConstantEntry.isMachineConstantPoolEntry())
    return nullptr;

  return ConstantEntry.Val.ConstVal;
}

// Attempt to extract the full width of bits data from the constant.
static std::optional<APInt> extractConstantBits(const Constant *C) {
  unsigned NumBits = C->getType()->getPrimitiveSizeInBits();

  if (auto *CInt = dyn_cast<ConstantInt>(C))
    return CInt->getValue();

  if (auto *CFP = dyn_cast<ConstantFP>(C))
    return CFP->getValue().bitcastToAPInt();

  if (auto *CV = dyn_cast<ConstantVector>(C)) {
    if (auto *CVSplat = CV->getSplatValue(/*AllowUndefs*/ true)) {
      if (std::optional<APInt> Bits = extractConstantBits(CVSplat)) {
        assert((NumBits % Bits->getBitWidth()) == 0 && "Illegal splat");
        return APInt::getSplat(NumBits, *Bits);
      }
    }
  }

  if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
    bool IsInteger = CDS->getElementType()->isIntegerTy();
    bool IsFloat = CDS->getElementType()->isHalfTy() ||
                   CDS->getElementType()->isBFloatTy() ||
                   CDS->getElementType()->isFloatTy() ||
                   CDS->getElementType()->isDoubleTy();
    if (IsInteger || IsFloat) {
      APInt Bits = APInt::getZero(NumBits);
      unsigned EltBits = CDS->getElementType()->getPrimitiveSizeInBits();
      for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
        if (IsInteger)
          Bits.insertBits(CDS->getElementAsAPInt(I), I * EltBits);
        else
          Bits.insertBits(CDS->getElementAsAPFloat(I).bitcastToAPInt(),
                          I * EltBits);
      }
      return Bits;
    }
  }

  return std::nullopt;
}

// Attempt to compute the splat width of bits data by normalizing the splat to
// remove undefs.
static std::optional<APInt> getSplatableConstant(const Constant *C,
                                                 unsigned SplatBitWidth) {
  const Type *Ty = C->getType();
  assert((Ty->getPrimitiveSizeInBits() % SplatBitWidth) == 0 &&
         "Illegal splat width");

  if (std::optional<APInt> Bits = extractConstantBits(C))
    if (Bits->isSplat(SplatBitWidth))
      return Bits->trunc(SplatBitWidth);

  // Detect general splats with undefs.
  // TODO: Do we need to handle NumEltsBits > SplatBitWidth splitting?
  if (auto *CV = dyn_cast<ConstantVector>(C)) {
    unsigned NumOps = CV->getNumOperands();
    unsigned NumEltsBits = Ty->getScalarSizeInBits();
    unsigned NumScaleOps = SplatBitWidth / NumEltsBits;
    if ((SplatBitWidth % NumEltsBits) == 0) {
      // Collect the elements and ensure that within the repeated splat sequence
      // they either match or are undef.
      SmallVector<Constant *, 16> Sequence(NumScaleOps, nullptr);
      for (unsigned Idx = 0; Idx != NumOps; ++Idx) {
        if (Constant *Elt = CV->getAggregateElement(Idx)) {
          if (isa<UndefValue>(Elt))
            continue;
          unsigned SplatIdx = Idx % NumScaleOps;
          if (!Sequence[SplatIdx] || Sequence[SplatIdx] == Elt) {
            Sequence[SplatIdx] = Elt;
            continue;
          }
        }
        return std::nullopt;
      }
      // Extract the constant bits forming the splat and insert into the bits
      // data, leave undef as zero.
      APInt SplatBits = APInt::getZero(SplatBitWidth);
      for (unsigned I = 0; I != NumScaleOps; ++I) {
        if (!Sequence[I])
          continue;
        if (std::optional<APInt> Bits = extractConstantBits(Sequence[I])) {
          SplatBits.insertBits(*Bits, I * Bits->getBitWidth());
          continue;
        }
        return std::nullopt;
      }
      return SplatBits;
    }
  }

  return std::nullopt;
}

// Attempt to rebuild a normalized splat vector constant of the requested splat
// width, built up of potentially smaller scalar values.
// NOTE: We don't always bother converting to scalars if the vector length is 1.
static Constant *rebuildSplatableConstant(const Constant *C,
                                          unsigned SplatBitWidth) {
  std::optional<APInt> Splat = getSplatableConstant(C, SplatBitWidth);
  if (!Splat)
    return nullptr;

  // Determine scalar size to use for the constant splat vector, clamping as we
  // might have found a splat smaller than the original constant data.
  const Type *OriginalType = C->getType();
  Type *SclTy = OriginalType->getScalarType();
  unsigned NumSclBits = SclTy->getPrimitiveSizeInBits();
  NumSclBits = std::min<unsigned>(NumSclBits, SplatBitWidth);

  if (NumSclBits == 8) {
    SmallVector<uint8_t> RawBits;
    for (unsigned I = 0; I != SplatBitWidth; I += 8)
      RawBits.push_back(Splat->extractBits(8, I).getZExtValue());
    return ConstantDataVector::get(OriginalType->getContext(), RawBits);
  }

  if (NumSclBits == 16) {
    SmallVector<uint16_t> RawBits;
    for (unsigned I = 0; I != SplatBitWidth; I += 16)
      RawBits.push_back(Splat->extractBits(16, I).getZExtValue());
    if (SclTy->is16bitFPTy())
      return ConstantDataVector::getFP(SclTy, RawBits);
    return ConstantDataVector::get(OriginalType->getContext(), RawBits);
  }

  if (NumSclBits == 32) {
    SmallVector<uint32_t> RawBits;
    for (unsigned I = 0; I != SplatBitWidth; I += 32)
      RawBits.push_back(Splat->extractBits(32, I).getZExtValue());
    if (SclTy->isFloatTy())
      return ConstantDataVector::getFP(SclTy, RawBits);
    return ConstantDataVector::get(OriginalType->getContext(), RawBits);
  }

  // Fallback to i64 / double.
  SmallVector<uint64_t> RawBits;
  for (unsigned I = 0; I != SplatBitWidth; I += 64)
    RawBits.push_back(Splat->extractBits(64, I).getZExtValue());
  if (SclTy->isDoubleTy())
    return ConstantDataVector::getFP(SclTy, RawBits);
  return ConstantDataVector::get(OriginalType->getContext(), RawBits);
}

bool X86FixupVectorConstantsPass::processInstruction(MachineFunction &MF,
                                                     MachineBasicBlock &MBB,
                                                     MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  MachineConstantPool *CP = MI.getParent()->getParent()->getConstantPool();
  bool HasDQI = ST->hasDQI();
  bool HasBWI = ST->hasBWI();

  auto ConvertToBroadcast = [&](unsigned OpBcst256, unsigned OpBcst128,
                                unsigned OpBcst64, unsigned OpBcst32,
                                unsigned OpBcst16, unsigned OpBcst8,
                                unsigned OperandNo) {
    assert(MI.getNumOperands() >= (OperandNo + X86::AddrNumOperands) &&
           "Unexpected number of operands!");

    MachineOperand &CstOp = MI.getOperand(OperandNo + X86::AddrDisp);
    if (auto *C = getConstantFromPool(MI, CstOp)) {
      // Attempt to detect a suitable splat from increasing splat widths.
      std::pair<unsigned, unsigned> Broadcasts[] = {
          {8, OpBcst8},   {16, OpBcst16},   {32, OpBcst32},
          {64, OpBcst64}, {128, OpBcst128}, {256, OpBcst256},
      };
      for (auto [BitWidth, OpBcst] : Broadcasts) {
        if (OpBcst) {
          // Construct a suitable splat constant and adjust the MI to
          // use the new constant pool entry.
          if (Constant *NewCst = rebuildSplatableConstant(C, BitWidth)) {
            unsigned NewCPI =
                CP->getConstantPoolIndex(NewCst, Align(BitWidth / 8));
            MI.setDesc(TII->get(OpBcst));
            CstOp.setIndex(NewCPI);
            return true;
          }
        }
      }
    }
    return false;
  };

  // Attempt to convert full width vector loads into broadcast loads.
  switch (Opc) {
  /* FP Loads */
  case X86::MOVAPDrm:
  case X86::MOVAPSrm:
  case X86::MOVUPDrm:
  case X86::MOVUPSrm:
    // TODO: SSE3 MOVDDUP Handling
    return false;
  case X86::VMOVAPDrm:
  case X86::VMOVAPSrm:
  case X86::VMOVUPDrm:
  case X86::VMOVUPSrm:
    return ConvertToBroadcast(0, 0, X86::VMOVDDUPrm, X86::VBROADCASTSSrm, 0, 0,
                              1);
  case X86::VMOVAPDYrm:
  case X86::VMOVAPSYrm:
  case X86::VMOVUPDYrm:
  case X86::VMOVUPSYrm:
    return ConvertToBroadcast(0, X86::VBROADCASTF128, X86::VBROADCASTSDYrm,
                              X86::VBROADCASTSSYrm, 0, 0, 1);
  case X86::VMOVAPDZ128rm:
  case X86::VMOVAPSZ128rm:
  case X86::VMOVUPDZ128rm:
  case X86::VMOVUPSZ128rm:
    return ConvertToBroadcast(0, 0, X86::VMOVDDUPZ128rm,
                              X86::VBROADCASTSSZ128rm, 0, 0, 1);
  case X86::VMOVAPDZ256rm:
  case X86::VMOVAPSZ256rm:
  case X86::VMOVUPDZ256rm:
  case X86::VMOVUPSZ256rm:
    return ConvertToBroadcast(
        0, HasDQI ? X86::VBROADCASTF64X2Z128rm : X86::VBROADCASTF32X4Z256rm,
        X86::VBROADCASTSDZ256rm, X86::VBROADCASTSSZ256rm, 0, 0, 1);
  case X86::VMOVAPDZrm:
  case X86::VMOVAPSZrm:
  case X86::VMOVUPDZrm:
  case X86::VMOVUPSZrm:
    return ConvertToBroadcast(
        HasDQI ? X86::VBROADCASTF32X8rm : X86::VBROADCASTF64X4rm,
        HasDQI ? X86::VBROADCASTF64X2rm : X86::VBROADCASTF32X4rm,
        X86::VBROADCASTSDZrm, X86::VBROADCASTSSZrm, 0, 0, 1);
    /* Integer Loads */
  case X86::VMOVDQArm:
  case X86::VMOVDQUrm:
    if (ST->hasAVX2())
      return ConvertToBroadcast(0, 0, X86::VPBROADCASTQrm, X86::VPBROADCASTDrm,
                                X86::VPBROADCASTWrm, X86::VPBROADCASTBrm, 1);
    return ConvertToBroadcast(0, 0, X86::VMOVDDUPrm, X86::VBROADCASTSSrm, 0, 0,
                              1);
  case X86::VMOVDQAYrm:
  case X86::VMOVDQUYrm:
    if (ST->hasAVX2())
      return ConvertToBroadcast(0, X86::VBROADCASTI128, X86::VPBROADCASTQYrm,
                                X86::VPBROADCASTDYrm, X86::VPBROADCASTWYrm,
                                X86::VPBROADCASTBYrm, 1);
    return ConvertToBroadcast(0, X86::VBROADCASTF128, X86::VBROADCASTSDYrm,
                              X86::VBROADCASTSSYrm, 0, 0, 1);
  case X86::VMOVDQA32Z128rm:
  case X86::VMOVDQA64Z128rm:
  case X86::VMOVDQU32Z128rm:
  case X86::VMOVDQU64Z128rm:
    return ConvertToBroadcast(0, 0, X86::VPBROADCASTQZ128rm,
                              X86::VPBROADCASTDZ128rm,
                              HasBWI ? X86::VPBROADCASTWZ128rm : 0,
                              HasBWI ? X86::VPBROADCASTBZ128rm : 0, 1);
  case X86::VMOVDQA32Z256rm:
  case X86::VMOVDQA64Z256rm:
  case X86::VMOVDQU32Z256rm:
  case X86::VMOVDQU64Z256rm:
    return ConvertToBroadcast(
        0, HasDQI ? X86::VBROADCASTI64X2Z128rm : X86::VBROADCASTI32X4Z256rm,
        X86::VPBROADCASTQZ256rm, X86::VPBROADCASTDZ256rm,
        HasBWI ? X86::VPBROADCASTWZ256rm : 0,
        HasBWI ? X86::VPBROADCASTBZ256rm : 0, 1);
  case X86::VMOVDQA32Zrm:
  case X86::VMOVDQA64Zrm:
  case X86::VMOVDQU32Zrm:
  case X86::VMOVDQU64Zrm:
    return ConvertToBroadcast(
        HasDQI ? X86::VBROADCASTI32X8rm : X86::VBROADCASTI64X4rm,
        HasDQI ? X86::VBROADCASTI64X2rm : X86::VBROADCASTI32X4rm,
        X86::VPBROADCASTQZrm, X86::VPBROADCASTDZrm,
        HasBWI ? X86::VPBROADCASTWZrm : 0, HasBWI ? X86::VPBROADCASTBZrm : 0,
        1);
  }

  // Attempt to find a AVX512 mapping from a full width memory-fold instruction
  // to a broadcast-fold instruction variant.
  if ((MI.getDesc().TSFlags & X86II::EncodingMask) == X86II::EVEX) {
    unsigned OpBcst32 = 0, OpBcst64 = 0;
    unsigned OpNoBcst32 = 0, OpNoBcst64 = 0;
    if (const X86MemoryFoldTableEntry *Mem2Bcst =
            llvm::lookupBroadcastFoldTable(Opc, 32)) {
      OpBcst32 = Mem2Bcst->DstOp;
      OpNoBcst32 = Mem2Bcst->Flags & TB_INDEX_MASK;
    }
    if (const X86MemoryFoldTableEntry *Mem2Bcst =
            llvm::lookupBroadcastFoldTable(Opc, 64)) {
      OpBcst64 = Mem2Bcst->DstOp;
      OpNoBcst64 = Mem2Bcst->Flags & TB_INDEX_MASK;
    }
    assert(((OpBcst32 == 0) || (OpBcst64 == 0) || (OpNoBcst32 == OpNoBcst64)) &&
           "OperandNo mismatch");

    if (OpBcst32 || OpBcst64) {
      unsigned OpNo = OpBcst32 == 0 ? OpNoBcst64 : OpNoBcst32;
      return ConvertToBroadcast(0, 0, OpBcst64, OpBcst32, 0, 0, OpNo);
    }
  }

  return false;
}

bool X86FixupVectorConstantsPass::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "Start X86FixupVectorConstants\n";);
  bool Changed = false;
  ST = &MF.getSubtarget<X86Subtarget>();
  TII = ST->getInstrInfo();
  SM = &ST->getSchedModel();

  for (MachineBasicBlock &MBB : MF) {
    for (MachineInstr &MI : MBB) {
      if (processInstruction(MF, MBB, MI)) {
        ++NumInstChanges;
        Changed = true;
      }
    }
  }
  LLVM_DEBUG(dbgs() << "End X86FixupVectorConstants\n";);
  return Changed;
}