1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
|
//===-- X86InstrArithmetic.td - Integer Arithmetic Instrs --*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the integer arithmetic instructions in the X86
// architecture.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// LEA - Load Effective Address
let SchedRW = [WriteLEA] in {
let hasSideEffects = 0 in
def LEA16r : I<0x8D, MRMSrcMem,
(outs GR16:$dst), (ins anymem:$src),
"lea{w}\t{$src|$dst}, {$dst|$src}", []>, OpSize16;
let isReMaterializable = 1 in
def LEA32r : I<0x8D, MRMSrcMem,
(outs GR32:$dst), (ins anymem:$src),
"lea{l}\t{$src|$dst}, {$dst|$src}",
[(set GR32:$dst, lea32addr:$src)]>,
OpSize32, Requires<[Not64BitMode]>;
def LEA64_32r : I<0x8D, MRMSrcMem,
(outs GR32:$dst), (ins lea64_32mem:$src),
"lea{l}\t{$src|$dst}, {$dst|$src}",
[(set GR32:$dst, lea64_32addr:$src)]>,
OpSize32, Requires<[In64BitMode]>;
let isReMaterializable = 1 in
def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src),
"lea{q}\t{$src|$dst}, {$dst|$src}",
[(set GR64:$dst, lea64addr:$src)]>;
} // SchedRW
// Pseudo instruction for lea that prevent optimizer from eliminating
// the instruction.
let SchedRW = [WriteLEA], isPseudo = true, hasSideEffects = 1 in {
def PLEA32r : PseudoI<(outs GR32:$dst), (ins anymem:$src), []>;
def PLEA64r : PseudoI<(outs GR64:$dst), (ins anymem:$src), []>;
}
//===----------------------------------------------------------------------===//
// Fixed-Register Multiplication and Division Instructions.
//
// SchedModel info for instruction that loads one value and gets the second
// (and possibly third) value from a register.
// This is used for instructions that put the memory operands before other
// uses.
class SchedLoadReg<X86FoldableSchedWrite Sched> : Sched<[Sched.Folded,
// Memory operand.
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
// Register reads (implicit or explicit).
Sched.ReadAfterFold, Sched.ReadAfterFold]>;
// BinOpRR - Binary instructions with inputs "reg, reg".
class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
: ITy<opcode, MRMDestReg, typeinfo, outlist,
(ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
Sched<[sched]>;
// BinOpRR_F - Binary instructions with inputs "reg, reg", where the pattern
// has just a EFLAGS as a result.
class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode>
: BinOpRR<opcode, mnemonic, typeinfo, (outs), WriteALU,
[(set EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>;
// BinOpRR_RF - Binary instructions with inputs "reg, reg", where the pattern
// has both a regclass and EFLAGS as a result.
class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteALU,
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>;
// BinOpRR_RFF - Binary instructions with inputs "reg, reg", where the pattern
// has both a regclass and EFLAGS as a result, and has EFLAGS as input.
class BinOpRR_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteADC,
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2,
EFLAGS))]>;
// BinOpRR_Rev - Binary instructions with inputs "reg, reg"(reversed encoding).
class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
X86FoldableSchedWrite sched = WriteALU>
: ITy<opcode, MRMSrcReg, typeinfo,
(outs typeinfo.RegClass:$dst),
(ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
mnemonic, "{$src2, $dst|$dst, $src2}", []>,
Sched<[sched]> {
// The disassembler should know about this, but not the asmparser.
let isCodeGenOnly = 1;
let ForceDisassemble = 1;
let hasSideEffects = 0;
}
// BinOpRR_RFF_Rev - Binary instructions with inputs "reg, reg"(reversed
// encoding), with sched = WriteADC.
class BinOpRR_RFF_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
: BinOpRR_Rev<opcode, mnemonic, typeinfo, WriteADC>;
// BinOpRR_F_Rev - Binary instructions with inputs "reg, reg"(reversed
// encoding), without outlist dag.
class BinOpRR_F_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
: ITy<opcode, MRMSrcReg, typeinfo, (outs),
(ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
mnemonic, "{$src2, $src1|$src1, $src2}", []>,
Sched<[WriteALU]> {
// The disassembler should know about this, but not the asmparser.
let isCodeGenOnly = 1;
let ForceDisassemble = 1;
let hasSideEffects = 0;
}
// BinOpRM - Binary instructions with inputs "reg, [mem]".
class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
: ITy<opcode, MRMSrcMem, typeinfo, outlist,
(ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2),
mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
// BinOpRM_ImplicitUse - Binary instructions with inputs "reg, [mem]".
// There is an implicit register read at the end of the operand sequence.
class BinOpRM_ImplicitUse<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
: ITy<opcode, MRMSrcMem, typeinfo, outlist,
(ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2),
mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
Sched<[sched.Folded, sched.ReadAfterFold,
// base, scale, index, offset, segment.
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
// implicit register read.
sched.ReadAfterFold]>;
// BinOpRM_F - Binary instructions with inputs "reg, [mem]", where the pattern
// has just a EFLAGS as a result.
class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpRM<opcode, mnemonic, typeinfo, (outs), WriteALU,
[(set EFLAGS,
(opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
// BinOpRM_RF - Binary instructions with inputs "reg, [mem]", where the pattern
// has both a regclass and EFLAGS as a result.
class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteALU,
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
// BinOpRM_RFF - Binary instructions with inputs "reg, [mem]", where the pattern
// has both a regclass and EFLAGS as a result, and has EFLAGS as input.
class BinOpRM_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpRM_ImplicitUse<opcode, mnemonic, typeinfo,
(outs typeinfo.RegClass:$dst), WriteADC,
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1,
(typeinfo.LoadNode addr:$src2), EFLAGS))]>;
// BinOpRI - Binary instructions with inputs "reg, imm".
class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Format f, dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
: ITy<opcode, f, typeinfo, outlist,
(ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2),
mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
Sched<[sched]> {
let ImmT = typeinfo.ImmEncoding;
}
// BinOpRI_F - Binary instructions with inputs "reg, imm", where the pattern
// has EFLAGS as a result.
class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode, Format f>
: BinOpRI<opcode, mnemonic, typeinfo, f, (outs), WriteALU,
[(set EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
// BinOpRI_RF - Binary instructions with inputs "reg, imm", where the pattern
// has both a regclass and EFLAGS as a result.
class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode, Format f>
: BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteALU,
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
// BinOpRI_RFF - Binary instructions with inputs "reg, imm", where the pattern
// has both a regclass and EFLAGS as a result, and has EFLAGS as input.
class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode, Format f>
: BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteADC,
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2,
EFLAGS))]>;
// BinOpRI8 - Binary instructions with inputs "reg, imm8".
class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Format f, dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
: ITy<opcode, f, typeinfo, outlist,
(ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2),
mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
Sched<[sched]> {
let ImmT = Imm8; // Always 8-bit immediate.
}
// BinOpRI8_F - Binary instructions with inputs "reg, imm8".
class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, Format f>
: BinOpRI8<opcode, mnemonic, typeinfo, f, (outs), WriteALU, []>;
// BinOpRI8_RF - Binary instructions with inputs "reg, imm8".
class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, Format f>
: BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteALU, []>;
// BinOpRI8_RFF - Binary instructions with inputs "reg, imm8".
class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, Format f>
: BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteADC, []>;
// BinOpMR - Binary instructions with inputs "[mem], reg".
class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
list<dag> pattern>
: ITy<opcode, MRMDestMem, typeinfo,
(outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src),
mnemonic, "{$src, $dst|$dst, $src}", pattern>;
// BinOpMR_RMW - Binary instructions with inputs "[mem], reg", where the pattern
// implicitly use EFLAGS.
class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpMR<opcode, mnemonic, typeinfo,
[(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst),
(implicit EFLAGS)]>,
Sched<[WriteALURMW,
// base, scale, index, offset, segment
ReadDefault, ReadDefault, ReadDefault,
ReadDefault, ReadDefault,
WriteALU.ReadAfterFold]>; // reg
// BinOpMR_RMW_FF - Binary instructions with inputs "[mem], reg", where the
// pattern sets EFLAGS and implicitly uses EFLAGS.
class BinOpMR_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpMR<opcode, mnemonic, typeinfo,
[(store (opnode (load addr:$dst), typeinfo.RegClass:$src, EFLAGS),
addr:$dst),
(implicit EFLAGS)]>,
Sched<[WriteADCRMW,
// base, scale, index, offset, segment
ReadDefault, ReadDefault, ReadDefault,
ReadDefault, ReadDefault,
WriteALU.ReadAfterFold, // reg
WriteALU.ReadAfterFold]>; // EFLAGS
// BinOpMR_F - Binary instructions with inputs "[mem], reg", where the pattern
// has EFLAGS as a result.
class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode>
: BinOpMR<opcode, mnemonic, typeinfo,
[(set EFLAGS, (opnode (typeinfo.LoadNode addr:$dst),
typeinfo.RegClass:$src))]>,
Sched<[WriteALU.Folded, ReadDefault, ReadDefault, ReadDefault,
ReadDefault, ReadDefault, WriteALU.ReadAfterFold]>;
// BinOpMI - Binary instructions with inputs "[mem], imm".
class BinOpMI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Format f, list<dag> pattern>
: ITy<opcode, f, typeinfo,
(outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src),
mnemonic, "{$src, $dst|$dst, $src}", pattern> {
let ImmT = typeinfo.ImmEncoding;
}
// BinOpMI_RMW - Binary instructions with inputs "[mem], imm", where the
// pattern implicitly use EFLAGS.
class BinOpMI_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode, Format f>
: BinOpMI<opcode, mnemonic, typeinfo, f,
[(store (opnode (typeinfo.VT (load addr:$dst)),
typeinfo.ImmOperator:$src), addr:$dst),
(implicit EFLAGS)]>,
Sched<[WriteALURMW]>;
// BinOpMI_RMW_FF - Binary instructions with inputs "[mem], imm", where the
// pattern sets EFLAGS and implicitly uses EFLAGS.
class BinOpMI_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode, Format f>
: BinOpMI<opcode, mnemonic, typeinfo, f,
[(store (opnode (typeinfo.VT (load addr:$dst)),
typeinfo.ImmOperator:$src, EFLAGS), addr:$dst),
(implicit EFLAGS)]>,
Sched<[WriteADCRMW]>;
// BinOpMI_F - Binary instructions with inputs "[mem], imm", where the pattern
// has EFLAGS as a result.
class BinOpMI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode, Format f>
: BinOpMI<opcode, mnemonic, typeinfo, f,
[(set EFLAGS, (opnode (typeinfo.LoadNode addr:$dst),
typeinfo.ImmOperator:$src))]>,
Sched<[WriteALU.Folded]>;
// BinOpMI8 - Binary instructions with inputs "[mem], imm8".
class BinOpMI8<string mnemonic, X86TypeInfo typeinfo,
Format f, list<dag> pattern>
: ITy<0x82, f, typeinfo,
(outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src),
mnemonic, "{$src, $dst|$dst, $src}", pattern> {
let ImmT = Imm8; // Always 8-bit immediate.
}
// BinOpMI8_RMW - Binary instructions with inputs "[mem], imm8".
class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo, Format f>
: BinOpMI8<mnemonic, typeinfo, f, []>, Sched<[WriteALURMW]>;
// BinOpMI8_RMW_FF - Binary instructions with inputs "[mem], imm8".
class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo, Format f>
: BinOpMI8<mnemonic, typeinfo, f, []>, Sched<[WriteADCRMW]>;
// BinOpMI8_F - Binary instructions with inputs "[mem], imm8"
class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo, Format f>
: BinOpMI8<mnemonic, typeinfo, f, []>, Sched<[WriteALU.Folded]>;
// BinOpAI - Binary instructions with input imm, that implicitly use A reg and
// implicitly define Areg and EFLAGS.
class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Register areg, string operands, X86FoldableSchedWrite sched = WriteALU>
: ITy<opcode, RawFrm, typeinfo,
(outs), (ins typeinfo.ImmOperand:$src),
mnemonic, operands, []>,
Sched<[sched]> {
let ImmT = typeinfo.ImmEncoding;
let Uses = [areg];
let Defs = [areg, EFLAGS];
let hasSideEffects = 0;
}
// BinOpAI_RFF - Binary instructions with input imm, that implicitly use and
// define Areg and EFLAGS.
class BinOpAI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Register areg, string operands>
: BinOpAI<opcode, mnemonic, typeinfo, areg, operands, WriteADC> {
let Uses = [areg, EFLAGS];
}
// BinOpAI_F - Binary instructions with input imm, that implicitly use A reg and
// implicitly define EFLAGS.
class BinOpAI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Register areg, string operands>
: BinOpAI<opcode, mnemonic, typeinfo, areg, operands> {
let Defs = [EFLAGS];
}
// UnaryOpM - Unary instructions with a memory operand.
class UnaryOpM<bits<8> opcode, Format f, string mnemonic, X86TypeInfo info,
list<dag> pattern>
: ITy<opcode, f, info, (outs), (ins info.MemOperand:$dst), mnemonic,
"$dst", pattern>;
// UnaryOpR - Unary instructions with a register.
class UnaryOpR<bits<8> opcode, Format f, string mnemonic, X86TypeInfo info,
list<dag> pattern>
: ITy<opcode, f, info, (outs info.RegClass:$dst),
(ins info.RegClass:$src1), mnemonic, "$dst", pattern>;
// INCDECR - Instructions like "inc reg".
class INCDECR<Format f, string mnemonic, X86TypeInfo info,
SDPatternOperator node>
: UnaryOpR<0xFE, f, mnemonic, info,
[(set info.RegClass:$dst, EFLAGS,
(node info.RegClass:$src1, 1))]>;
// INCDECM - Instructions like "inc [mem]".
class INCDECM<Format f, string mnemonic, X86TypeInfo info, int num>
: UnaryOpM<0xFE, f, mnemonic, info,
[(store (add (info.LoadNode addr:$dst), num), addr:$dst),
(implicit EFLAGS)]>;
// INCDECR_ALT - Instructions like "inc reg" short forms.
class INCDECR_ALT<bits<8> opcode, string mnemonic, X86TypeInfo info>
: UnaryOpR<opcode, AddRegFrm, mnemonic, info, []>{
let Predicates = [Not64BitMode];
let Opcode = opcode;
}
// MulOpR - Instructions like "mul reg".
class MulOpR<bits<8> opcode, Format f, string mnemonic, X86TypeInfo info,
X86FoldableSchedWrite sched, list<dag> pattern>
: ITy<opcode, f, info, (outs), (ins info.RegClass:$src), mnemonic,
"$src", pattern>,
Sched<[sched]>;
// MulOpM - Instructions like "mul [mem]".
class MulOpM<bits<8> opcode, Format f, string mnemonic, X86TypeInfo info,
X86FoldableSchedWrite sched, list<dag> pattern>
: ITy<opcode, f, info, (outs), (ins info.MemOperand:$src), mnemonic,
"$src", pattern>, SchedLoadReg<sched>;
// NegOpR - Instructions like "neg reg", with implicit EFLAGS.
class NegOpR<bits<8> opcode, string mnemonic, X86TypeInfo info>
: UnaryOpR<opcode, MRM3r, mnemonic, info,
[(set info.RegClass:$dst, (ineg info.RegClass:$src1)),
(implicit EFLAGS)]>;
// NotOpR - Instructions like "not reg".
class NotOpR<bits<8> opcode, string mnemonic, X86TypeInfo info>
: UnaryOpR<opcode, MRM2r, mnemonic, info,
[(set info.RegClass:$dst,
(not info.RegClass:$src1))]>;
// NegOpM - Instructions like "neg [mem]", with implicit EFLAGS.
class NegOpM<bits<8> opcode, string mnemonic, X86TypeInfo info>
: UnaryOpM<opcode, MRM3m, mnemonic, info,
[(store (ineg (info.LoadNode addr:$dst)), addr:$dst),
(implicit EFLAGS)]>;
// NotOpM - Instructions like "neg [mem]".
class NotOpM<bits<8> opcode, string mnemonic, X86TypeInfo info>
: UnaryOpM<opcode, MRM2m, mnemonic, info,
[(store (not (info.LoadNode addr:$dst)), addr:$dst)]>;
// BinOpRR_C - Binary instructions with inputs "reg, reg", which used mainly
// with Constraints = "$src1 = $dst".
class BinOpRR_C<bits<8> opcode, Format f, string mnemonic, X86TypeInfo info,
list<dag> pattern>
: ITy<opcode, f, info, (outs info.RegClass:$dst),
(ins info.RegClass:$src1, info.RegClass:$src2),
mnemonic, "{$src2, $dst|$dst, $src2}", pattern>;
// BinOpRM_C - Binary instructions with inputs "reg, [mem]", which used mainly
// with Constraints = "$src1 = $dst".
class BinOpRM_C<bits<8> opcode, Format f, string mnemonic, X86TypeInfo info,
list<dag> pattern>
: ITy<opcode, f, info, (outs info.RegClass:$dst),
(ins info.RegClass:$src1, info.MemOperand:$src2),
mnemonic, "{$src2, $dst|$dst, $src2}", pattern>;
// IMulOpRR - Instructions like "imul reg, reg, i8".
class IMulOpRR<bits<8> opcode, string mnemonic, X86TypeInfo info,
X86FoldableSchedWrite sched>
: BinOpRR_C<opcode, MRMSrcReg, mnemonic, info,
[(set info.RegClass:$dst, EFLAGS,
(X86smul_flag info.RegClass:$src1,
info.RegClass:$src2))]>,
Sched<[sched]>, TB;
// IMulOpRM - Instructions like "imul reg, reg, [mem]".
class IMulOpRM<bits<8> opcode, string mnemonic, X86TypeInfo info,
X86FoldableSchedWrite sched>
: BinOpRM_C<opcode, MRMSrcMem, mnemonic, info,
[(set info.RegClass:$dst, EFLAGS,
(X86smul_flag info.RegClass:$src1, (info.LoadNode addr:$src2)))]>,
Sched<[sched.Folded, sched.ReadAfterFold]>, TB;
// IMulOpRRI8 - Instructions like "imul reg, reg, i8".
class IMulOpRRI8<bits<8> opcode, string mnemonic, X86TypeInfo info,
X86FoldableSchedWrite sched>
: ITy<opcode, MRMSrcReg, info, (outs info.RegClass:$dst),
(ins info.RegClass:$src1, info.Imm8Operand:$src2), mnemonic,
"{$src2, $src1, $dst|$dst, $src1, $src2}", []>, Sched<[sched]> {
let ImmT = Imm8;
}
// IMulOpRRI - Instructions like "imul reg, reg, i16/i32/i64".
class IMulOpRRI<bits<8> opcode, string mnemonic, X86TypeInfo info,
X86FoldableSchedWrite sched>
: ITy<opcode, MRMSrcReg, info, (outs info.RegClass:$dst),
(ins info.RegClass:$src1, info.ImmOperand:$src2), mnemonic,
"{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set info.RegClass:$dst, EFLAGS,
(X86smul_flag info.RegClass:$src1,
info.ImmNoSuOperator:$src2))]>,
Sched<[sched]>{
let ImmT = info.ImmEncoding;
}
// IMulOpRMI8 - Instructions like "imul reg, [mem], i8".
class IMulOpRMI8<bits<8> opcode, string mnemonic, X86TypeInfo info,
X86FoldableSchedWrite sched>
: ITy<opcode, MRMSrcMem, info, (outs info.RegClass:$dst),
(ins info.MemOperand:$src1, info.Imm8Operand:$src2), mnemonic,
"{$src2, $src1, $dst|$dst, $src1, $src2}", []>, Sched<[sched.Folded]> {
let ImmT = Imm8;
}
// IMulOpRMI - Instructions like "imul reg, [mem], i16/i32/i64".
class IMulOpRMI<bits<8> opcode, string mnemonic, X86TypeInfo info,
X86FoldableSchedWrite sched>
: ITy<opcode, MRMSrcMem, info, (outs info.RegClass:$dst),
(ins info.MemOperand:$src1, info.ImmOperand:$src2), mnemonic,
"{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set info.RegClass:$dst, EFLAGS,
(X86smul_flag (info.LoadNode addr:$src1),
info.ImmNoSuOperator:$src2))]>,
Sched<[sched.Folded]>{
let ImmT = info.ImmEncoding;
}
def X86add_flag_nocf : PatFrag<(ops node:$lhs, node:$rhs),
(X86add_flag node:$lhs, node:$rhs), [{
return hasNoCarryFlagUses(SDValue(N, 1));
}]>;
def X86sub_flag_nocf : PatFrag<(ops node:$lhs, node:$rhs),
(X86sub_flag node:$lhs, node:$rhs), [{
// Only use DEC if the result is used.
return !SDValue(N, 0).use_empty() && hasNoCarryFlagUses(SDValue(N, 1));
}]>;
let Defs = [EFLAGS] in {
let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
// Short forms only valid in 32-bit mode. Selected during MCInst lowering.
let CodeSize = 1, hasSideEffects = 0 in {
def INC16r_alt : INCDECR_ALT<0x40, "inc", Xi16>;
def INC32r_alt : INCDECR_ALT<0x40, "inc", Xi32>;
} // CodeSize = 1, hasSideEffects = 0
let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can xform into LEA.
def INC8r : INCDECR<MRM0r, "inc", Xi8, X86add_flag_nocf>;
def INC16r : INCDECR<MRM0r, "inc", Xi16, X86add_flag_nocf>;
def INC32r : INCDECR<MRM0r, "inc", Xi32, X86add_flag_nocf>;
def INC64r : INCDECR<MRM0r, "inc", Xi64, X86add_flag_nocf>;
} // isConvertibleToThreeAddress = 1, CodeSize = 2
} // Constraints = "$src1 = $dst", SchedRW
let CodeSize = 2, SchedRW = [WriteALURMW] in {
let Predicates = [UseIncDec] in {
def INC8m : INCDECM<MRM0m, "inc", Xi8, 1>;
def INC16m : INCDECM<MRM0m, "inc", Xi16, 1>;
def INC32m : INCDECM<MRM0m, "inc", Xi32, 1>;
} // Predicates
let Predicates = [UseIncDec, In64BitMode] in {
def INC64m : INCDECM<MRM0m, "inc", Xi64, 1>;
} // Predicates
} // CodeSize = 2, SchedRW
let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
// Short forms only valid in 32-bit mode. Selected during MCInst lowering.
let CodeSize = 1, hasSideEffects = 0 in {
def DEC16r_alt : INCDECR_ALT<0x48, "dec", Xi16>;
def DEC32r_alt : INCDECR_ALT<0x48, "dec", Xi32>;
} // CodeSize = 1, hasSideEffects = 0
let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can xform into LEA.
def DEC8r : INCDECR<MRM1r, "dec", Xi8, X86sub_flag_nocf>;
def DEC16r : INCDECR<MRM1r, "dec", Xi16, X86sub_flag_nocf>;
def DEC32r : INCDECR<MRM1r, "dec", Xi32, X86sub_flag_nocf>;
def DEC64r : INCDECR<MRM1r, "dec", Xi64, X86sub_flag_nocf>;
} // isConvertibleToThreeAddress = 1, CodeSize = 2
} // Constraints = "$src1 = $dst", SchedRW
let CodeSize = 2, SchedRW = [WriteALURMW] in {
let Predicates = [UseIncDec] in {
def DEC8m : INCDECM<MRM1m, "dec", Xi8, -1>;
def DEC16m : INCDECM<MRM1m, "dec", Xi16, -1>;
def DEC32m : INCDECM<MRM1m, "dec", Xi32, -1>;
} // Predicates
let Predicates = [UseIncDec, In64BitMode] in {
def DEC64m : INCDECM<MRM1m, "dec", Xi64, -1>;
} // Predicates
} // CodeSize = 2, SchedRW
} // Defs = [EFLAGS]
// Extra precision multiplication
// AL is really implied by AX, but the registers in Defs must match the
// SDNode results (i8, i32).
// AL,AH = AL*GR8
let Defs = [AL,EFLAGS,AX], Uses = [AL] in
def MUL8r : MulOpR<0xF6, MRM4r, "mul", Xi8, WriteIMul8,
// FIXME: Used for 8-bit mul, ignore result upper 8 bits.
// This probably ought to be moved to a def : Pat<> if the
// syntax can be accepted.
[(set AL, (mul AL, GR8:$src)), (implicit EFLAGS)]>;
// AX,DX = AX*GR16
let Defs = [AX,DX,EFLAGS], Uses = [AX], hasSideEffects = 0 in
def MUL16r : MulOpR<0xF7, MRM4r, "mul", Xi16, WriteIMul16, []>;
// EAX,EDX = EAX*GR32
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], hasSideEffects = 0 in
def MUL32r : MulOpR<0xF7, MRM4r, "mul", Xi32, WriteIMul32,
[/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/]>;
// RAX,RDX = RAX*GR64
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], hasSideEffects = 0 in
def MUL64r : MulOpR<0xF7, MRM4r, "mul", Xi64, WriteIMul64,
[/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/]>;
// AL,AH = AL*[mem8]
let Defs = [AL,EFLAGS,AX], Uses = [AL] in
def MUL8m : MulOpM<0xF6, MRM4m, "mul", Xi8, WriteIMul8,
// FIXME: Used for 8-bit mul, ignore result upper 8 bits.
// This probably ought to be moved to a def : Pat<> if the
// syntax can be accepted.
[(set AL, (mul AL, (loadi8 addr:$src))),
(implicit EFLAGS)]>;
// AX,DX = AX*[mem16]
let mayLoad = 1, hasSideEffects = 0 in {
let Defs = [AX,DX,EFLAGS], Uses = [AX] in
def MUL16m : MulOpM<0xF7, MRM4m, "mul", Xi16, WriteIMul16, []>;
// EAX,EDX = EAX*[mem32]
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
def MUL32m : MulOpM<0xF7, MRM4m, "mul", Xi32, WriteIMul32, []>;
// RAX,RDX = RAX*[mem64]
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
def MUL64m : MulOpM<0xF7, MRM4m, "mul", Xi64, WriteIMul64, []>,
Requires<[In64BitMode]>;
}
let hasSideEffects = 0 in {
// AL,AH = AL*GR8
let Defs = [AL,EFLAGS,AX], Uses = [AL] in
def IMUL8r : MulOpR<0xF6, MRM5r, "imul", Xi8, WriteIMul8, []>;
// AX,DX = AX*GR16
let Defs = [AX,DX,EFLAGS], Uses = [AX] in
def IMUL16r : MulOpR<0xF7, MRM5r, "imul", Xi16, WriteIMul16, []>;
// EAX,EDX = EAX*GR32
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
def IMUL32r : MulOpR<0xF7, MRM5r, "imul", Xi32, WriteIMul32, []>;
// RAX,RDX = RAX*GR64
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
def IMUL64r : MulOpR<0xF7, MRM5r, "imul", Xi64, WriteIMul64, []>;
let mayLoad = 1 in {
// AL,AH = AL*[mem8]
let Defs = [AL,EFLAGS,AX], Uses = [AL] in
def IMUL8m : MulOpM<0xF6, MRM5m, "imul", Xi8, WriteIMul8, []>;
// AX,DX = AX*[mem16]
let Defs = [AX,DX,EFLAGS], Uses = [AX] in
def IMUL16m : MulOpM<0xF7, MRM5m, "imul", Xi16, WriteIMul16, []>;
// EAX,EDX = EAX*[mem32]
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
def IMUL32m : MulOpM<0xF7, MRM5m, "imul", Xi32, WriteIMul32, []>;
// RAX,RDX = RAX*[mem64]
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
def IMUL64m : MulOpM<0xF7, MRM5m, "imul", Xi64, WriteIMul64, []>,
Requires<[In64BitMode]>;
}
let Defs = [EFLAGS] in {
let Constraints = "$src1 = $dst" in {
let isCommutable = 1 in {
// X = IMUL Y, Z --> X = IMUL Z, Y
// Register-Register Signed Integer Multiply
def IMUL16rr : IMulOpRR<0xAF, "imul", Xi16, WriteIMul16Reg>;
def IMUL32rr : IMulOpRR<0xAF, "imul", Xi32, WriteIMul32Reg>;
def IMUL64rr : IMulOpRR<0xAF, "imul", Xi64, WriteIMul64Reg>;
} // isCommutable
// Register-Memory Signed Integer Multiply
def IMUL16rm : IMulOpRM<0xAF, "imul", Xi16, WriteIMul16Reg>;
def IMUL32rm : IMulOpRM<0xAF, "imul", Xi32, WriteIMul32Reg>;
def IMUL64rm : IMulOpRM<0xAF, "imul", Xi64, WriteIMul64Reg>;
} // Constraints = "$src1 = $dst"
} // Defs = [EFLAGS]
// Surprisingly enough, these are not two address instructions!
let Defs = [EFLAGS] in {
// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.
// Register-Integer Signed Integer Multiply
// GR16 = GR16*I8
def IMUL16rri8 : IMulOpRRI8<0x6B, "imul", Xi16, WriteIMul16Imm>;
// GR16 = GR16*I16
def IMUL16rri : IMulOpRRI<0x69, "imul", Xi16, WriteIMul16Imm>;
// GR32 = GR32*I8
def IMUL32rri8 : IMulOpRRI8<0x6B, "imul", Xi32, WriteIMul32Imm>;
// GR32 = GR32*I32
def IMUL32rri : IMulOpRRI<0x69, "imul", Xi32, WriteIMul32Imm>;
// GR64 = GR64*I8
def IMUL64rri8 : IMulOpRRI8<0x6B, "imul", Xi64, WriteIMul64Imm>;
// GR64 = GR64*I32
def IMUL64rri32 : IMulOpRRI<0x69, "imul", Xi64, WriteIMul64Imm>;
// Memory-Integer Signed Integer Multiply
// GR16 = [mem16]*I8
let mayLoad = 1 in {
def IMUL16rmi8 : IMulOpRMI8<0x6B, "imul", Xi16, WriteIMul16Imm>;
// GR16 = [mem16]*I16
def IMUL16rmi : IMulOpRMI<0x69, "imul", Xi16, WriteIMul16Imm>;
// GR32 = [mem32]*I8
def IMUL32rmi8 : IMulOpRMI8<0x6B, "imul", Xi32, WriteIMul32Imm>;
// GR32 = [mem32]*I32
def IMUL32rmi : IMulOpRMI<0x69, "imul", Xi32, WriteIMul32Imm>;
// GR64 = [mem64]*I8
def IMUL64rmi8 : IMulOpRMI8<0x6B, "imul", Xi64, WriteIMul64Imm>;
// GR64 = [mem64]*I32
def IMUL64rmi32 : IMulOpRMI<0x69, "imul", Xi64, WriteIMul64Imm>;
} // mayLoad
} // Defs = [EFLAGS]
} // hasSideEffects
// unsigned division/remainder
let hasSideEffects = 1 in { // so that we don't speculatively execute
let Defs = [AL,AH,EFLAGS], Uses = [AX] in
// AX/r8 = AL,AH
def DIV8r : MulOpR<0xF6, MRM6r, "div", Xi8, WriteDiv8, []>;
let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
// DX:AX/r16 = AX,DX
def DIV16r : MulOpR<0xF7, MRM6r, "div", Xi16, WriteDiv16, []>;
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
// EDX:EAX/r32 = EAX,EDX
def DIV32r : MulOpR<0xF7, MRM6r, "div", Xi32, WriteDiv32, []>;
// RDX:RAX/r64 = RAX,RDX
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
def DIV64r : MulOpR<0xF7, MRM6r, "div", Xi64, WriteDiv64, []>;
let mayLoad = 1 in {
let Defs = [AL,AH,EFLAGS], Uses = [AX] in
// AX/[mem8] = AL,AH
def DIV8m : MulOpM<0xF6, MRM6m, "div", Xi8, WriteDiv8, []>;
let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
// DX:AX/[mem16] = AX,DX
def DIV16m : MulOpM<0xF7, MRM6m, "div", Xi16, WriteDiv16, []>;
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX
def DIV32m : MulOpM<0xF7, MRM6m, "div", Xi32, WriteDiv32, []>;
// RDX:RAX/[mem64] = RAX,RDX
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
def DIV64m : MulOpM<0xF7, MRM6m, "div", Xi64, WriteDiv64, []>,
Requires<[In64BitMode]>;
}
// Signed division/remainder.
let Defs = [AL,AH,EFLAGS], Uses = [AX] in
// AX/r8 = AL,AH
def IDIV8r : MulOpR<0xF6, MRM7r, "idiv", Xi8, WriteIDiv8, []>;
let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
// DX:AX/r16 = AX,DX
def IDIV16r: MulOpR<0xF7, MRM7r, "idiv", Xi16, WriteIDiv16, []>;
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
// EDX:EAX/r32 = EAX,EDX
def IDIV32r: MulOpR<0xF7, MRM7r, "idiv", Xi32, WriteIDiv32, []>;
// RDX:RAX/r64 = RAX,RDX
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
def IDIV64r: MulOpR<0xF7, MRM7r, "idiv", Xi64, WriteIDiv64, []>;
let mayLoad = 1 in {
let Defs = [AL,AH,EFLAGS], Uses = [AX] in
// AX/[mem8] = AL,AH
def IDIV8m : MulOpM<0xF6, MRM7m, "idiv", Xi8, WriteIDiv8, []>;
let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
// DX:AX/[mem16] = AX,DX
def IDIV16m: MulOpM<0xF7, MRM7m, "idiv", Xi16, WriteIDiv16, []>;
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
// EDX:EAX/[mem32] = EAX,EDX
def IDIV32m: MulOpM<0xF7, MRM7m, "idiv", Xi32, WriteIDiv32, []>;
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX
// RDX:RAX/[mem64] = RAX,RDX
def IDIV64m: MulOpM<0xF7, MRM7m, "idiv", Xi64, WriteIDiv64, []>,
Requires<[In64BitMode]>;
}
} // hasSideEffects = 1
//===----------------------------------------------------------------------===//
// Two address Instructions.
//
// unary instructions
let CodeSize = 2 in {
let Defs = [EFLAGS] in {
let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
def NEG8r : NegOpR<0xF6, "neg", Xi8>;
def NEG16r : NegOpR<0xF7, "neg", Xi16>;
def NEG32r : NegOpR<0xF7, "neg", Xi32>;
def NEG64r : NegOpR<0xF7, "neg", Xi64>;
} // Constraints = "$src1 = $dst", SchedRW
// Read-modify-write negate.
let SchedRW = [WriteALURMW] in {
def NEG8m : NegOpM<0xF6, "neg", Xi8>;
def NEG16m : NegOpM<0xF7, "neg", Xi16>;
def NEG32m : NegOpM<0xF7, "neg", Xi32>;
def NEG64m : NegOpM<0xF7, "neg", Xi64>, Requires<[In64BitMode]>;
} // SchedRW
} // Defs = [EFLAGS]
// Note: NOT does not set EFLAGS!
let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
def NOT8r : NotOpR<0xF6, "not", Xi8>;
def NOT16r : NotOpR<0xF7, "not", Xi16>;
def NOT32r : NotOpR<0xF7, "not", Xi32>;
def NOT64r : NotOpR<0xF7, "not", Xi64>;
} // Constraints = "$src1 = $dst", SchedRW
let SchedRW = [WriteALURMW] in {
def NOT8m : NotOpM<0xF6, "not", Xi8>;
def NOT16m : NotOpM<0xF7, "not", Xi16>;
def NOT32m : NotOpM<0xF7, "not", Xi32>;
def NOT64m : NotOpM<0xF7, "not", Xi64>, Requires<[In64BitMode]>;
} // SchedRW
} // CodeSize
/// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is
/// defined with "(set GPR:$dst, EFLAGS, (...".
///
/// It would be nice to get rid of the second and third argument here, but
/// tblgen can't handle dependent type references aggressively enough: PR8330
multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
string mnemonic, Format RegMRM, Format MemMRM,
SDNode opnodeflag, SDNode opnode,
bit CommutableRR, bit ConvertibleToThreeAddress,
bit ConvertibleToThreeAddressRR> {
let Defs = [EFLAGS] in {
let Constraints = "$src1 = $dst" in {
let isCommutable = CommutableRR in {
let isConvertibleToThreeAddress = ConvertibleToThreeAddressRR in {
def NAME#8rr : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>;
def NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>;
def NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>;
def NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>;
} // isConvertibleToThreeAddress
} // isCommutable
def NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
def NAME#8rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>;
def NAME#16rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>;
def NAME#32rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>;
def NAME#64rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>;
let isConvertibleToThreeAddress = ConvertibleToThreeAddress, hasSideEffects= 0 in {
def NAME#8ri : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>;
// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.
def NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, RegMRM>;
def NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, RegMRM>;
def NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, RegMRM>;
def NAME#16ri : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>;
def NAME#32ri : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>;
def NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>;
}
} // Constraints = "$src1 = $dst"
let mayLoad = 1, mayStore = 1, hasSideEffects = 0 in {
def NAME#8mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>;
def NAME#16mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>;
def NAME#32mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>;
def NAME#64mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>;
// NOTE: These are order specific, we want the mi8 forms to be listed
// first so that they are slightly preferred to the mi forms.
def NAME#16mi8 : BinOpMI8_RMW<mnemonic, Xi16, MemMRM>;
def NAME#32mi8 : BinOpMI8_RMW<mnemonic, Xi32, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi8 : BinOpMI8_RMW<mnemonic, Xi64, MemMRM>;
def NAME#8mi : BinOpMI_RMW<0x80, mnemonic, Xi8 , opnode, MemMRM>;
def NAME#16mi : BinOpMI_RMW<0x80, mnemonic, Xi16, opnode, MemMRM>;
def NAME#32mi : BinOpMI_RMW<0x80, mnemonic, Xi32, opnode, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi32 : BinOpMI_RMW<0x80, mnemonic, Xi64, opnode, MemMRM>;
}
// These are for the disassembler since 0x82 opcode behaves like 0x80, but
// not in 64-bit mode.
let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
hasSideEffects = 0 in {
let Constraints = "$src1 = $dst" in
def NAME#8ri8 : BinOpRI8_RF<0x82, mnemonic, Xi8, RegMRM>;
let mayLoad = 1, mayStore = 1 in
def NAME#8mi8 : BinOpMI8_RMW<mnemonic, Xi8, MemMRM>;
}
} // Defs = [EFLAGS]
def NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
"{$src, %al|al, $src}">;
def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
"{$src, %ax|ax, $src}">;
def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
"{$src, %eax|eax, $src}">;
def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
"{$src, %rax|rax, $src}">;
}
/// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is
/// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and
/// SBB.
///
/// It would be nice to get rid of the second and third argument here, but
/// tblgen can't handle dependent type references aggressively enough: PR8330
multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
string mnemonic, Format RegMRM, Format MemMRM,
SDNode opnode, bit CommutableRR,
bit ConvertibleToThreeAddress> {
let Uses = [EFLAGS], Defs = [EFLAGS] in {
let Constraints = "$src1 = $dst" in {
let isCommutable = CommutableRR in {
def NAME#8rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>;
let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
def NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>;
def NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>;
def NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>;
} // isConvertibleToThreeAddress
} // isCommutable
def NAME#8rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi8>;
def NAME#16rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi16>;
def NAME#32rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi32>;
def NAME#64rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi64>;
def NAME#8rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>;
def NAME#16rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>;
def NAME#32rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>;
def NAME#64rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>;
def NAME#8ri : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>;
let isConvertibleToThreeAddress = ConvertibleToThreeAddress, hasSideEffects = 0 in {
// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.
def NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, RegMRM>;
def NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, RegMRM>;
def NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, RegMRM>;
def NAME#16ri : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>;
def NAME#32ri : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>;
def NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>;
}
} // Constraints = "$src1 = $dst"
def NAME#8mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>;
def NAME#16mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>;
def NAME#32mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>;
def NAME#64mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>;
// NOTE: These are order specific, we want the mi8 forms to be listed
// first so that they are slightly preferred to the mi forms.
let mayLoad = 1, mayStore = 1, hasSideEffects = 0 in {
def NAME#16mi8 : BinOpMI8_RMW_FF<mnemonic, Xi16, MemMRM>;
def NAME#32mi8 : BinOpMI8_RMW_FF<mnemonic, Xi32, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi8 : BinOpMI8_RMW_FF<mnemonic, Xi64, MemMRM>;
def NAME#8mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi8 , opnode, MemMRM>;
def NAME#16mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi16, opnode, MemMRM>;
def NAME#32mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi32, opnode, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi32 : BinOpMI_RMW_FF<0x80, mnemonic, Xi64, opnode, MemMRM>;
}
// These are for the disassembler since 0x82 opcode behaves like 0x80, but
// not in 64-bit mode.
let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
hasSideEffects = 0 in {
let Constraints = "$src1 = $dst" in
def NAME#8ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi8, RegMRM>;
let mayLoad = 1, mayStore = 1 in
def NAME#8mi8 : BinOpMI8_RMW_FF<mnemonic, Xi8, MemMRM>;
}
} // Uses = [EFLAGS], Defs = [EFLAGS]
def NAME#8i8 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi8 , AL,
"{$src, %al|al, $src}">;
def NAME#16i16 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi16, AX,
"{$src, %ax|ax, $src}">;
def NAME#32i32 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi32, EAX,
"{$src, %eax|eax, $src}">;
def NAME#64i32 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi64, RAX,
"{$src, %rax|rax, $src}">;
}
/// ArithBinOp_F - This is an arithmetic binary operator where the pattern is
/// defined with "(set EFLAGS, (...". It would be really nice to find a way
/// to factor this with the other ArithBinOp_*.
///
multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
string mnemonic, Format RegMRM, Format MemMRM,
SDNode opnode,
bit CommutableRR, bit ConvertibleToThreeAddress> {
let Defs = [EFLAGS] in {
let isCommutable = CommutableRR in {
def NAME#8rr : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>;
let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
def NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>;
def NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>;
def NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>;
}
} // isCommutable
def NAME#8rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>;
def NAME#16rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi16>;
def NAME#32rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi32>;
def NAME#64rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi64>;
def NAME#8rm : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>;
def NAME#16rm : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>;
def NAME#32rm : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>;
def NAME#64rm : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>;
def NAME#8ri : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>;
let isConvertibleToThreeAddress = ConvertibleToThreeAddress, hasSideEffects = 0 in {
// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.
def NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, RegMRM>;
def NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, RegMRM>;
def NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, RegMRM>;
def NAME#16ri : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>;
def NAME#32ri : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>;
def NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>;
}
def NAME#8mr : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>;
def NAME#16mr : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>;
def NAME#32mr : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>;
def NAME#64mr : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>;
// NOTE: These are order specific, we want the mi8 forms to be listed
// first so that they are slightly preferred to the mi forms.
let mayLoad = 1, hasSideEffects = 0 in {
def NAME#16mi8 : BinOpMI8_F<mnemonic, Xi16, MemMRM>;
def NAME#32mi8 : BinOpMI8_F<mnemonic, Xi32, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi8 : BinOpMI8_F<mnemonic, Xi64, MemMRM>;
def NAME#8mi : BinOpMI_F<0x80, mnemonic, Xi8 , opnode, MemMRM>;
def NAME#16mi : BinOpMI_F<0x80, mnemonic, Xi16, opnode, MemMRM>;
def NAME#32mi : BinOpMI_F<0x80, mnemonic, Xi32, opnode, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi32 : BinOpMI_F<0x80, mnemonic, Xi64, opnode, MemMRM>;
}
// These are for the disassembler since 0x82 opcode behaves like 0x80, but
// not in 64-bit mode.
let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
hasSideEffects = 0 in {
def NAME#8ri8 : BinOpRI8_F<0x82, mnemonic, Xi8, RegMRM>;
let mayLoad = 1 in
def NAME#8mi8 : BinOpMI8_F<mnemonic, Xi8, MemMRM>;
}
} // Defs = [EFLAGS]
def NAME#8i8 : BinOpAI_F<BaseOpc4, mnemonic, Xi8 , AL,
"{$src, %al|al, $src}">;
def NAME#16i16 : BinOpAI_F<BaseOpc4, mnemonic, Xi16, AX,
"{$src, %ax|ax, $src}">;
def NAME#32i32 : BinOpAI_F<BaseOpc4, mnemonic, Xi32, EAX,
"{$src, %eax|eax, $src}">;
def NAME#64i32 : BinOpAI_F<BaseOpc4, mnemonic, Xi64, RAX,
"{$src, %rax|rax, $src}">;
}
defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m,
X86and_flag, and, 1, 0, 0>;
defm OR : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m,
X86or_flag, or, 1, 0, 0>;
defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m,
X86xor_flag, xor, 1, 0, 0>;
defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m,
X86add_flag, add, 1, 1, 1>;
let isCompare = 1 in {
defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m,
X86sub_flag, sub, 0, 1, 0>;
}
// Version of XOR8rr_NOREX that use GR8_NOREX. This is used by the handling of
// __builtin_parity where the last step xors an h-register with an l-register.
let isCodeGenOnly = 1, hasSideEffects = 0, Constraints = "$src1 = $dst",
Defs = [EFLAGS], isCommutable = 1 in
def XOR8rr_NOREX : I<0x30, MRMDestReg, (outs GR8_NOREX:$dst),
(ins GR8_NOREX:$src1, GR8_NOREX:$src2),
"xor{b}\t{$src2, $dst|$dst, $src2}", []>,
Sched<[WriteALU]>;
// Arithmetic.
defm ADC : ArithBinOp_RFF<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, X86adc_flag,
1, 0>;
defm SBB : ArithBinOp_RFF<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, X86sbb_flag,
0, 0>;
let isCompare = 1 in {
defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>;
}
// Patterns to recognize loads on the LHS of an ADC. We can't make X86adc_flag
// commutable since it has EFLAGs as an input.
def : Pat<(X86adc_flag (loadi8 addr:$src2), GR8:$src1, EFLAGS),
(ADC8rm GR8:$src1, addr:$src2)>;
def : Pat<(X86adc_flag (loadi16 addr:$src2), GR16:$src1, EFLAGS),
(ADC16rm GR16:$src1, addr:$src2)>;
def : Pat<(X86adc_flag (loadi32 addr:$src2), GR32:$src1, EFLAGS),
(ADC32rm GR32:$src1, addr:$src2)>;
def : Pat<(X86adc_flag (loadi64 addr:$src2), GR64:$src1, EFLAGS),
(ADC64rm GR64:$src1, addr:$src2)>;
// Patterns to recognize RMW ADC with loads in operand 1.
def : Pat<(store (X86adc_flag GR8:$src, (loadi8 addr:$dst), EFLAGS),
addr:$dst),
(ADC8mr addr:$dst, GR8:$src)>;
def : Pat<(store (X86adc_flag GR16:$src, (loadi16 addr:$dst), EFLAGS),
addr:$dst),
(ADC16mr addr:$dst, GR16:$src)>;
def : Pat<(store (X86adc_flag GR32:$src, (loadi32 addr:$dst), EFLAGS),
addr:$dst),
(ADC32mr addr:$dst, GR32:$src)>;
def : Pat<(store (X86adc_flag GR64:$src, (loadi64 addr:$dst), EFLAGS),
addr:$dst),
(ADC64mr addr:$dst, GR64:$src)>;
// Patterns for basic arithmetic ops with relocImm for the immediate field.
multiclass ArithBinOp_RF_relocImm_Pats<SDNode OpNodeFlag, SDNode OpNode> {
def : Pat<(OpNodeFlag GR8:$src1, relocImm8_su:$src2),
(!cast<Instruction>(NAME#"8ri") GR8:$src1, relocImm8_su:$src2)>;
def : Pat<(OpNodeFlag GR16:$src1, relocImm16_su:$src2),
(!cast<Instruction>(NAME#"16ri") GR16:$src1, relocImm16_su:$src2)>;
def : Pat<(OpNodeFlag GR32:$src1, relocImm32_su:$src2),
(!cast<Instruction>(NAME#"32ri") GR32:$src1, relocImm32_su:$src2)>;
def : Pat<(OpNodeFlag GR64:$src1, i64relocImmSExt32_su:$src2),
(!cast<Instruction>(NAME#"64ri32") GR64:$src1, i64relocImmSExt32_su:$src2)>;
def : Pat<(store (OpNode (load addr:$dst), relocImm8_su:$src), addr:$dst),
(!cast<Instruction>(NAME#"8mi") addr:$dst, relocImm8_su:$src)>;
def : Pat<(store (OpNode (load addr:$dst), relocImm16_su:$src), addr:$dst),
(!cast<Instruction>(NAME#"16mi") addr:$dst, relocImm16_su:$src)>;
def : Pat<(store (OpNode (load addr:$dst), relocImm32_su:$src), addr:$dst),
(!cast<Instruction>(NAME#"32mi") addr:$dst, relocImm32_su:$src)>;
def : Pat<(store (OpNode (load addr:$dst), i64relocImmSExt32_su:$src), addr:$dst),
(!cast<Instruction>(NAME#"64mi32") addr:$dst, i64relocImmSExt32_su:$src)>;
}
multiclass ArithBinOp_RFF_relocImm_Pats<SDNode OpNodeFlag> {
def : Pat<(OpNodeFlag GR8:$src1, relocImm8_su:$src2, EFLAGS),
(!cast<Instruction>(NAME#"8ri") GR8:$src1, relocImm8_su:$src2)>;
def : Pat<(OpNodeFlag GR16:$src1, relocImm16_su:$src2, EFLAGS),
(!cast<Instruction>(NAME#"16ri") GR16:$src1, relocImm16_su:$src2)>;
def : Pat<(OpNodeFlag GR32:$src1, relocImm32_su:$src2, EFLAGS),
(!cast<Instruction>(NAME#"32ri") GR32:$src1, relocImm32_su:$src2)>;
def : Pat<(OpNodeFlag GR64:$src1, i64relocImmSExt32_su:$src2, EFLAGS),
(!cast<Instruction>(NAME#"64ri32") GR64:$src1, i64relocImmSExt32_su:$src2)>;
def : Pat<(store (OpNodeFlag (load addr:$dst), relocImm8_su:$src, EFLAGS), addr:$dst),
(!cast<Instruction>(NAME#"8mi") addr:$dst, relocImm8_su:$src)>;
def : Pat<(store (OpNodeFlag (load addr:$dst), relocImm16_su:$src, EFLAGS), addr:$dst),
(!cast<Instruction>(NAME#"16mi") addr:$dst, relocImm16_su:$src)>;
def : Pat<(store (OpNodeFlag (load addr:$dst), relocImm32_su:$src, EFLAGS), addr:$dst),
(!cast<Instruction>(NAME#"32mi") addr:$dst, relocImm32_su:$src)>;
def : Pat<(store (OpNodeFlag (load addr:$dst), i64relocImmSExt32_su:$src, EFLAGS), addr:$dst),
(!cast<Instruction>(NAME#"64mi32") addr:$dst, i64relocImmSExt32_su:$src)>;
}
multiclass ArithBinOp_F_relocImm_Pats<SDNode OpNodeFlag> {
def : Pat<(OpNodeFlag GR8:$src1, relocImm8_su:$src2),
(!cast<Instruction>(NAME#"8ri") GR8:$src1, relocImm8_su:$src2)>;
def : Pat<(OpNodeFlag GR16:$src1, relocImm16_su:$src2),
(!cast<Instruction>(NAME#"16ri") GR16:$src1, relocImm16_su:$src2)>;
def : Pat<(OpNodeFlag GR32:$src1, relocImm32_su:$src2),
(!cast<Instruction>(NAME#"32ri") GR32:$src1, relocImm32_su:$src2)>;
def : Pat<(OpNodeFlag GR64:$src1, i64relocImmSExt32_su:$src2),
(!cast<Instruction>(NAME#"64ri32") GR64:$src1, i64relocImmSExt32_su:$src2)>;
def : Pat<(OpNodeFlag (loadi8 addr:$src1), relocImm8_su:$src2),
(!cast<Instruction>(NAME#"8mi") addr:$src1, relocImm8_su:$src2)>;
def : Pat<(OpNodeFlag (loadi16 addr:$src1), relocImm16_su:$src2),
(!cast<Instruction>(NAME#"16mi") addr:$src1, relocImm16_su:$src2)>;
def : Pat<(OpNodeFlag (loadi32 addr:$src1), relocImm32_su:$src2),
(!cast<Instruction>(NAME#"32mi") addr:$src1, relocImm32_su:$src2)>;
def : Pat<(OpNodeFlag (loadi64 addr:$src1), i64relocImmSExt32_su:$src2),
(!cast<Instruction>(NAME#"64mi32") addr:$src1, i64relocImmSExt32_su:$src2)>;
}
defm AND : ArithBinOp_RF_relocImm_Pats<X86and_flag, and>;
defm OR : ArithBinOp_RF_relocImm_Pats<X86or_flag, or>;
defm XOR : ArithBinOp_RF_relocImm_Pats<X86xor_flag, xor>;
defm ADD : ArithBinOp_RF_relocImm_Pats<X86add_flag, add>;
defm SUB : ArithBinOp_RF_relocImm_Pats<X86sub_flag, sub>;
defm ADC : ArithBinOp_RFF_relocImm_Pats<X86adc_flag>;
defm SBB : ArithBinOp_RFF_relocImm_Pats<X86sbb_flag>;
defm CMP : ArithBinOp_F_relocImm_Pats<X86cmp>;
// ADC is commutable, but we can't indicate that to tablegen. So manually
// reverse the operands.
def : Pat<(X86adc_flag GR8:$src1, relocImm8_su:$src2, EFLAGS),
(ADC8ri relocImm8_su:$src2, GR8:$src1)>;
def : Pat<(X86adc_flag i16relocImmSExt8_su:$src2, GR16:$src1, EFLAGS),
(ADC16ri8 GR16:$src1, i16relocImmSExt8_su:$src2)>;
def : Pat<(X86adc_flag relocImm16_su:$src2, GR16:$src1, EFLAGS),
(ADC16ri GR16:$src1, relocImm16_su:$src2)>;
def : Pat<(X86adc_flag i32relocImmSExt8_su:$src2, GR32:$src1, EFLAGS),
(ADC32ri8 GR32:$src1, i32relocImmSExt8_su:$src2)>;
def : Pat<(X86adc_flag relocImm32_su:$src2, GR32:$src1, EFLAGS),
(ADC32ri GR32:$src1, relocImm32_su:$src2)>;
def : Pat<(X86adc_flag i64relocImmSExt8_su:$src2, GR64:$src1, EFLAGS),
(ADC64ri8 GR64:$src1, i64relocImmSExt8_su:$src2)>;
def : Pat<(X86adc_flag i64relocImmSExt32_su:$src2, GR64:$src1, EFLAGS),
(ADC64ri32 GR64:$src1, i64relocImmSExt32_su:$src2)>;
def : Pat<(store (X86adc_flag relocImm8_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
(ADC8mi addr:$dst, relocImm8_su:$src)>;
def : Pat<(store (X86adc_flag i16relocImmSExt8_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
(ADC16mi8 addr:$dst, i16relocImmSExt8_su:$src)>;
def : Pat<(store (X86adc_flag relocImm16_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
(ADC16mi addr:$dst, relocImm16_su:$src)>;
def : Pat<(store (X86adc_flag i32relocImmSExt8_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
(ADC32mi8 addr:$dst, i32relocImmSExt8_su:$src)>;
def : Pat<(store (X86adc_flag relocImm32_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
(ADC32mi addr:$dst, relocImm32_su:$src)>;
def : Pat<(store (X86adc_flag i64relocImmSExt8_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
(ADC64mi8 addr:$dst, i64relocImmSExt8_su:$src)>;
def : Pat<(store (X86adc_flag i64relocImmSExt32_su:$src, (load addr:$dst), EFLAGS), addr:$dst),
(ADC64mi32 addr:$dst, i64relocImmSExt32_su:$src)>;
//===----------------------------------------------------------------------===//
// Semantically, test instructions are similar like AND, except they don't
// generate a result. From an encoding perspective, they are very different:
// they don't have all the usual imm8 and REV forms, and are encoded into a
// different space.
def X86testpat : PatFrag<(ops node:$lhs, node:$rhs),
(X86cmp (and_su node:$lhs, node:$rhs), 0)>;
let isCompare = 1 in {
let Defs = [EFLAGS] in {
let isCommutable = 1 in {
// Avoid selecting these and instead use a test+and. Post processing will
// combine them. This gives bunch of other patterns that start with
// and a chance to match.
def TEST8rr : BinOpRR_F<0x84, "test", Xi8 , null_frag>;
def TEST16rr : BinOpRR_F<0x84, "test", Xi16, null_frag>;
def TEST32rr : BinOpRR_F<0x84, "test", Xi32, null_frag>;
def TEST64rr : BinOpRR_F<0x84, "test", Xi64, null_frag>;
} // isCommutable
let hasSideEffects = 0, mayLoad = 1 in {
def TEST8mr : BinOpMR_F<0x84, "test", Xi8 , null_frag>;
def TEST16mr : BinOpMR_F<0x84, "test", Xi16, null_frag>;
def TEST32mr : BinOpMR_F<0x84, "test", Xi32, null_frag>;
def TEST64mr : BinOpMR_F<0x84, "test", Xi64, null_frag>;
}
def TEST8ri : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>;
def TEST16ri : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>;
def TEST32ri : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>;
def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>;
def TEST8mi : BinOpMI_F<0xF6, "test", Xi8 , X86testpat, MRM0m>;
def TEST16mi : BinOpMI_F<0xF6, "test", Xi16, X86testpat, MRM0m>;
def TEST32mi : BinOpMI_F<0xF6, "test", Xi32, X86testpat, MRM0m>;
let Predicates = [In64BitMode] in
def TEST64mi32 : BinOpMI_F<0xF6, "test", Xi64, X86testpat, MRM0m>;
} // Defs = [EFLAGS]
def TEST8i8 : BinOpAI_F<0xA8, "test", Xi8 , AL,
"{$src, %al|al, $src}">;
def TEST16i16 : BinOpAI_F<0xA8, "test", Xi16, AX,
"{$src, %ax|ax, $src}">;
def TEST32i32 : BinOpAI_F<0xA8, "test", Xi32, EAX,
"{$src, %eax|eax, $src}">;
def TEST64i32 : BinOpAI_F<0xA8, "test", Xi64, RAX,
"{$src, %rax|rax, $src}">;
} // isCompare
// Patterns to match a relocImm into the immediate field.
def : Pat<(X86testpat GR8:$src1, relocImm8_su:$src2),
(TEST8ri GR8:$src1, relocImm8_su:$src2)>;
def : Pat<(X86testpat GR16:$src1, relocImm16_su:$src2),
(TEST16ri GR16:$src1, relocImm16_su:$src2)>;
def : Pat<(X86testpat GR32:$src1, relocImm32_su:$src2),
(TEST32ri GR32:$src1, relocImm32_su:$src2)>;
def : Pat<(X86testpat GR64:$src1, i64relocImmSExt32_su:$src2),
(TEST64ri32 GR64:$src1, i64relocImmSExt32_su:$src2)>;
def : Pat<(X86testpat (loadi8 addr:$src1), relocImm8_su:$src2),
(TEST8mi addr:$src1, relocImm8_su:$src2)>;
def : Pat<(X86testpat (loadi16 addr:$src1), relocImm16_su:$src2),
(TEST16mi addr:$src1, relocImm16_su:$src2)>;
def : Pat<(X86testpat (loadi32 addr:$src1), relocImm32_su:$src2),
(TEST32mi addr:$src1, relocImm32_su:$src2)>;
def : Pat<(X86testpat (loadi64 addr:$src1), i64relocImmSExt32_su:$src2),
(TEST64mi32 addr:$src1, i64relocImmSExt32_su:$src2)>;
//===----------------------------------------------------------------------===//
// ANDN Instruction
//
multiclass bmi_andn<string mnemonic, RegisterClass RC, X86MemOperand x86memop,
PatFrag ld_frag, X86FoldableSchedWrite sched> {
def rr : I<0xF2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, EFLAGS, (X86and_flag (not RC:$src1), RC:$src2))]>,
Sched<[sched]>;
def rm : I<0xF2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, EFLAGS,
(X86and_flag (not RC:$src1), (ld_frag addr:$src2)))]>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
// Complexity is reduced to give and with immediate a chance to match first.
let Predicates = [HasBMI], Defs = [EFLAGS], AddedComplexity = -6 in {
defm ANDN32 : bmi_andn<"andn{l}", GR32, i32mem, loadi32, WriteALU>, T8PS, VEX_4V;
defm ANDN64 : bmi_andn<"andn{q}", GR64, i64mem, loadi64, WriteALU>, T8PS, VEX_4V, REX_W;
}
let Predicates = [HasBMI], AddedComplexity = -6 in {
def : Pat<(and (not GR32:$src1), GR32:$src2),
(ANDN32rr GR32:$src1, GR32:$src2)>;
def : Pat<(and (not GR64:$src1), GR64:$src2),
(ANDN64rr GR64:$src1, GR64:$src2)>;
def : Pat<(and (not GR32:$src1), (loadi32 addr:$src2)),
(ANDN32rm GR32:$src1, addr:$src2)>;
def : Pat<(and (not GR64:$src1), (loadi64 addr:$src2)),
(ANDN64rm GR64:$src1, addr:$src2)>;
}
//===----------------------------------------------------------------------===//
// MULX Instruction
//
multiclass bmi_mulx<string mnemonic, RegisterClass RC, X86MemOperand x86memop,
X86FoldableSchedWrite sched> {
let hasSideEffects = 0 in {
def rr : I<0xF6, MRMSrcReg, (outs RC:$dst1, RC:$dst2), (ins RC:$src),
!strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
[]>, T8XD, VEX_4V, Sched<[WriteIMulH, sched]>;
let mayLoad = 1 in
def rm : I<0xF6, MRMSrcMem, (outs RC:$dst1, RC:$dst2), (ins x86memop:$src),
!strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
[]>, T8XD, VEX_4V,
Sched<[WriteIMulHLd, sched.Folded,
// Memory operand.
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
// Implicit read of EDX/RDX
sched.ReadAfterFold]>;
// Pseudo instructions to be used when the low result isn't used. The
// instruction is defined to keep the high if both destinations are the same.
def Hrr : PseudoI<(outs RC:$dst), (ins RC:$src),
[]>, Sched<[sched]>;
let mayLoad = 1 in
def Hrm : PseudoI<(outs RC:$dst), (ins x86memop:$src),
[]>, Sched<[sched.Folded]>;
}
}
let Predicates = [HasBMI2] in {
let Uses = [EDX] in
defm MULX32 : bmi_mulx<"mulx{l}", GR32, i32mem, WriteMULX32>;
let Uses = [RDX] in
defm MULX64 : bmi_mulx<"mulx{q}", GR64, i64mem, WriteMULX64>, REX_W;
}
//===----------------------------------------------------------------------===//
// ADCX and ADOX Instructions
//
// We don't have patterns for these as there is no advantage over ADC for
// most code.
class ADCOXOpRR <bits<8> opcode, string mnemonic, X86TypeInfo info>
: BinOpRR_C<opcode, MRMSrcReg, mnemonic, info, []>{
let Opcode = opcode;
let OpSize = OpSizeFixed;
}
class ADCOXOpRM <bits<8> opcode, string mnemonic, X86TypeInfo info>
: BinOpRM_C<opcode, MRMSrcMem, mnemonic, info, []>{
let Opcode = opcode;
let OpSize = OpSizeFixed;
}
let Predicates = [HasADX], Defs = [EFLAGS], Uses = [EFLAGS],
Constraints = "$src1 = $dst", hasSideEffects = 0 in {
let SchedRW = [WriteADC], isCommutable = 1 in {
def ADCX32rr : ADCOXOpRR<0xF6, "adcx", Xi32>, T8PD;
def ADCX64rr : ADCOXOpRR<0xF6, "adcx", Xi64>, T8PD;
def ADOX32rr : ADCOXOpRR<0xF6, "adox", Xi32>, T8XS;
def ADOX64rr : ADCOXOpRR<0xF6, "adox", Xi64>, T8XS;
} // SchedRW
let mayLoad = 1,
SchedRW = [WriteADC.Folded, WriteADC.ReadAfterFold,
// Memory operand.
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
// Implicit read of EFLAGS
WriteADC.ReadAfterFold] in {
def ADCX32rm : ADCOXOpRM<0xF6, "adcx", Xi32>, T8PD;
def ADCX64rm : ADCOXOpRM<0xF6, "adcx", Xi64>, T8PD;
def ADOX32rm : ADCOXOpRM<0xF6, "adox", Xi32>, T8XS;
def ADOX64rm : ADCOXOpRM<0xF6, "adox", Xi64>, T8XS;
} // mayLoad, SchedRW
}
|