1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
|
//===- AggressiveInstCombine.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the aggressive expression pattern combiner classes.
// Currently, it handles expression patterns for:
// * Truncate instruction
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
#include "AggressiveInstCombineInternal.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "aggressive-instcombine"
STATISTIC(NumAnyOrAllBitsSet, "Number of any/all-bits-set patterns folded");
STATISTIC(NumGuardedRotates,
"Number of guarded rotates transformed into funnel shifts");
STATISTIC(NumGuardedFunnelShifts,
"Number of guarded funnel shifts transformed into funnel shifts");
STATISTIC(NumPopCountRecognized, "Number of popcount idioms recognized");
static cl::opt<unsigned> MaxInstrsToScan(
"aggressive-instcombine-max-scan-instrs", cl::init(64), cl::Hidden,
cl::desc("Max number of instructions to scan for aggressive instcombine."));
/// Match a pattern for a bitwise funnel/rotate operation that partially guards
/// against undefined behavior by branching around the funnel-shift/rotation
/// when the shift amount is 0.
static bool foldGuardedFunnelShift(Instruction &I, const DominatorTree &DT) {
if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
return false;
// As with the one-use checks below, this is not strictly necessary, but we
// are being cautious to avoid potential perf regressions on targets that
// do not actually have a funnel/rotate instruction (where the funnel shift
// would be expanded back into math/shift/logic ops).
if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
return false;
// Match V to funnel shift left/right and capture the source operands and
// shift amount.
auto matchFunnelShift = [](Value *V, Value *&ShVal0, Value *&ShVal1,
Value *&ShAmt) {
unsigned Width = V->getType()->getScalarSizeInBits();
// fshl(ShVal0, ShVal1, ShAmt)
// == (ShVal0 << ShAmt) | (ShVal1 >> (Width -ShAmt))
if (match(V, m_OneUse(m_c_Or(
m_Shl(m_Value(ShVal0), m_Value(ShAmt)),
m_LShr(m_Value(ShVal1),
m_Sub(m_SpecificInt(Width), m_Deferred(ShAmt))))))) {
return Intrinsic::fshl;
}
// fshr(ShVal0, ShVal1, ShAmt)
// == (ShVal0 >> ShAmt) | (ShVal1 << (Width - ShAmt))
if (match(V,
m_OneUse(m_c_Or(m_Shl(m_Value(ShVal0), m_Sub(m_SpecificInt(Width),
m_Value(ShAmt))),
m_LShr(m_Value(ShVal1), m_Deferred(ShAmt)))))) {
return Intrinsic::fshr;
}
return Intrinsic::not_intrinsic;
};
// One phi operand must be a funnel/rotate operation, and the other phi
// operand must be the source value of that funnel/rotate operation:
// phi [ rotate(RotSrc, ShAmt), FunnelBB ], [ RotSrc, GuardBB ]
// phi [ fshl(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal0, GuardBB ]
// phi [ fshr(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal1, GuardBB ]
PHINode &Phi = cast<PHINode>(I);
unsigned FunnelOp = 0, GuardOp = 1;
Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
Value *ShVal0, *ShVal1, *ShAmt;
Intrinsic::ID IID = matchFunnelShift(P0, ShVal0, ShVal1, ShAmt);
if (IID == Intrinsic::not_intrinsic ||
(IID == Intrinsic::fshl && ShVal0 != P1) ||
(IID == Intrinsic::fshr && ShVal1 != P1)) {
IID = matchFunnelShift(P1, ShVal0, ShVal1, ShAmt);
if (IID == Intrinsic::not_intrinsic ||
(IID == Intrinsic::fshl && ShVal0 != P0) ||
(IID == Intrinsic::fshr && ShVal1 != P0))
return false;
assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
"Pattern must match funnel shift left or right");
std::swap(FunnelOp, GuardOp);
}
// The incoming block with our source operand must be the "guard" block.
// That must contain a cmp+branch to avoid the funnel/rotate when the shift
// amount is equal to 0. The other incoming block is the block with the
// funnel/rotate.
BasicBlock *GuardBB = Phi.getIncomingBlock(GuardOp);
BasicBlock *FunnelBB = Phi.getIncomingBlock(FunnelOp);
Instruction *TermI = GuardBB->getTerminator();
// Ensure that the shift values dominate each block.
if (!DT.dominates(ShVal0, TermI) || !DT.dominates(ShVal1, TermI))
return false;
ICmpInst::Predicate Pred;
BasicBlock *PhiBB = Phi.getParent();
if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()),
m_SpecificBB(PhiBB), m_SpecificBB(FunnelBB))))
return false;
if (Pred != CmpInst::ICMP_EQ)
return false;
IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
if (ShVal0 == ShVal1)
++NumGuardedRotates;
else
++NumGuardedFunnelShifts;
// If this is not a rotate then the select was blocking poison from the
// 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
bool IsFshl = IID == Intrinsic::fshl;
if (ShVal0 != ShVal1) {
if (IsFshl && !llvm::isGuaranteedNotToBePoison(ShVal1))
ShVal1 = Builder.CreateFreeze(ShVal1);
else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(ShVal0))
ShVal0 = Builder.CreateFreeze(ShVal0);
}
// We matched a variation of this IR pattern:
// GuardBB:
// %cmp = icmp eq i32 %ShAmt, 0
// br i1 %cmp, label %PhiBB, label %FunnelBB
// FunnelBB:
// %sub = sub i32 32, %ShAmt
// %shr = lshr i32 %ShVal1, %sub
// %shl = shl i32 %ShVal0, %ShAmt
// %fsh = or i32 %shr, %shl
// br label %PhiBB
// PhiBB:
// %cond = phi i32 [ %fsh, %FunnelBB ], [ %ShVal0, %GuardBB ]
// -->
// llvm.fshl.i32(i32 %ShVal0, i32 %ShVal1, i32 %ShAmt)
Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
Phi.replaceAllUsesWith(Builder.CreateCall(F, {ShVal0, ShVal1, ShAmt}));
return true;
}
/// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
/// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
/// of 'and' ops, then we also need to capture the fact that we saw an
/// "and X, 1", so that's an extra return value for that case.
struct MaskOps {
Value *Root = nullptr;
APInt Mask;
bool MatchAndChain;
bool FoundAnd1 = false;
MaskOps(unsigned BitWidth, bool MatchAnds)
: Mask(APInt::getZero(BitWidth)), MatchAndChain(MatchAnds) {}
};
/// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
/// chain of 'and' or 'or' instructions looking for shift ops of a common source
/// value. Examples:
/// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
/// returns { X, 0x129 }
/// and (and (X >> 1), 1), (X >> 4)
/// returns { X, 0x12 }
static bool matchAndOrChain(Value *V, MaskOps &MOps) {
Value *Op0, *Op1;
if (MOps.MatchAndChain) {
// Recurse through a chain of 'and' operands. This requires an extra check
// vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
// in the chain to know that all of the high bits are cleared.
if (match(V, m_And(m_Value(Op0), m_One()))) {
MOps.FoundAnd1 = true;
return matchAndOrChain(Op0, MOps);
}
if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
} else {
// Recurse through a chain of 'or' operands.
if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
}
// We need a shift-right or a bare value representing a compare of bit 0 of
// the original source operand.
Value *Candidate;
const APInt *BitIndex = nullptr;
if (!match(V, m_LShr(m_Value(Candidate), m_APInt(BitIndex))))
Candidate = V;
// Initialize result source operand.
if (!MOps.Root)
MOps.Root = Candidate;
// The shift constant is out-of-range? This code hasn't been simplified.
if (BitIndex && BitIndex->uge(MOps.Mask.getBitWidth()))
return false;
// Fill in the mask bit derived from the shift constant.
MOps.Mask.setBit(BitIndex ? BitIndex->getZExtValue() : 0);
return MOps.Root == Candidate;
}
/// Match patterns that correspond to "any-bits-set" and "all-bits-set".
/// These will include a chain of 'or' or 'and'-shifted bits from a
/// common source value:
/// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0
/// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
/// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
/// that differ only with a final 'not' of the result. We expect that final
/// 'not' to be folded with the compare that we create here (invert predicate).
static bool foldAnyOrAllBitsSet(Instruction &I) {
// The 'any-bits-set' ('or' chain) pattern is simpler to match because the
// final "and X, 1" instruction must be the final op in the sequence.
bool MatchAllBitsSet;
if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
MatchAllBitsSet = true;
else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
MatchAllBitsSet = false;
else
return false;
MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
if (MatchAllBitsSet) {
if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
return false;
} else {
if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
return false;
}
// The pattern was found. Create a masked compare that replaces all of the
// shift and logic ops.
IRBuilder<> Builder(&I);
Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
Value *And = Builder.CreateAnd(MOps.Root, Mask);
Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask)
: Builder.CreateIsNotNull(And);
Value *Zext = Builder.CreateZExt(Cmp, I.getType());
I.replaceAllUsesWith(Zext);
++NumAnyOrAllBitsSet;
return true;
}
// Try to recognize below function as popcount intrinsic.
// This is the "best" algorithm from
// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
// Also used in TargetLowering::expandCTPOP().
//
// int popcount(unsigned int i) {
// i = i - ((i >> 1) & 0x55555555);
// i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
// i = ((i + (i >> 4)) & 0x0F0F0F0F);
// return (i * 0x01010101) >> 24;
// }
static bool tryToRecognizePopCount(Instruction &I) {
if (I.getOpcode() != Instruction::LShr)
return false;
Type *Ty = I.getType();
if (!Ty->isIntOrIntVectorTy())
return false;
unsigned Len = Ty->getScalarSizeInBits();
// FIXME: fix Len == 8 and other irregular type lengths.
if (!(Len <= 128 && Len > 8 && Len % 8 == 0))
return false;
APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55));
APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33));
APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F));
APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01));
APInt MaskShift = APInt(Len, Len - 8);
Value *Op0 = I.getOperand(0);
Value *Op1 = I.getOperand(1);
Value *MulOp0;
// Matching "(i * 0x01010101...) >> 24".
if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) &&
match(Op1, m_SpecificInt(MaskShift))) {
Value *ShiftOp0;
// Matching "((i + (i >> 4)) & 0x0F0F0F0F...)".
if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)),
m_Deferred(ShiftOp0)),
m_SpecificInt(Mask0F)))) {
Value *AndOp0;
// Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)".
if (match(ShiftOp0,
m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)),
m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)),
m_SpecificInt(Mask33))))) {
Value *Root, *SubOp1;
// Matching "i - ((i >> 1) & 0x55555555...)".
if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) &&
match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)),
m_SpecificInt(Mask55)))) {
LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n");
IRBuilder<> Builder(&I);
Function *Func = Intrinsic::getDeclaration(
I.getModule(), Intrinsic::ctpop, I.getType());
I.replaceAllUsesWith(Builder.CreateCall(Func, {Root}));
++NumPopCountRecognized;
return true;
}
}
}
}
return false;
}
/// Fold smin(smax(fptosi(x), C1), C2) to llvm.fptosi.sat(x), providing C1 and
/// C2 saturate the value of the fp conversion. The transform is not reversable
/// as the fptosi.sat is more defined than the input - all values produce a
/// valid value for the fptosi.sat, where as some produce poison for original
/// that were out of range of the integer conversion. The reversed pattern may
/// use fmax and fmin instead. As we cannot directly reverse the transform, and
/// it is not always profitable, we make it conditional on the cost being
/// reported as lower by TTI.
static bool tryToFPToSat(Instruction &I, TargetTransformInfo &TTI) {
// Look for min(max(fptosi, converting to fptosi_sat.
Value *In;
const APInt *MinC, *MaxC;
if (!match(&I, m_SMax(m_OneUse(m_SMin(m_OneUse(m_FPToSI(m_Value(In))),
m_APInt(MinC))),
m_APInt(MaxC))) &&
!match(&I, m_SMin(m_OneUse(m_SMax(m_OneUse(m_FPToSI(m_Value(In))),
m_APInt(MaxC))),
m_APInt(MinC))))
return false;
// Check that the constants clamp a saturate.
if (!(*MinC + 1).isPowerOf2() || -*MaxC != *MinC + 1)
return false;
Type *IntTy = I.getType();
Type *FpTy = In->getType();
Type *SatTy =
IntegerType::get(IntTy->getContext(), (*MinC + 1).exactLogBase2() + 1);
if (auto *VecTy = dyn_cast<VectorType>(IntTy))
SatTy = VectorType::get(SatTy, VecTy->getElementCount());
// Get the cost of the intrinsic, and check that against the cost of
// fptosi+smin+smax
InstructionCost SatCost = TTI.getIntrinsicInstrCost(
IntrinsicCostAttributes(Intrinsic::fptosi_sat, SatTy, {In}, {FpTy}),
TTI::TCK_RecipThroughput);
SatCost += TTI.getCastInstrCost(Instruction::SExt, SatTy, IntTy,
TTI::CastContextHint::None,
TTI::TCK_RecipThroughput);
InstructionCost MinMaxCost = TTI.getCastInstrCost(
Instruction::FPToSI, IntTy, FpTy, TTI::CastContextHint::None,
TTI::TCK_RecipThroughput);
MinMaxCost += TTI.getIntrinsicInstrCost(
IntrinsicCostAttributes(Intrinsic::smin, IntTy, {IntTy}),
TTI::TCK_RecipThroughput);
MinMaxCost += TTI.getIntrinsicInstrCost(
IntrinsicCostAttributes(Intrinsic::smax, IntTy, {IntTy}),
TTI::TCK_RecipThroughput);
if (SatCost >= MinMaxCost)
return false;
IRBuilder<> Builder(&I);
Function *Fn = Intrinsic::getDeclaration(I.getModule(), Intrinsic::fptosi_sat,
{SatTy, FpTy});
Value *Sat = Builder.CreateCall(Fn, In);
I.replaceAllUsesWith(Builder.CreateSExt(Sat, IntTy));
return true;
}
/// Try to replace a mathlib call to sqrt with the LLVM intrinsic. This avoids
/// pessimistic codegen that has to account for setting errno and can enable
/// vectorization.
static bool foldSqrt(Instruction &I, TargetTransformInfo &TTI,
TargetLibraryInfo &TLI, AssumptionCache &AC,
DominatorTree &DT) {
// Match a call to sqrt mathlib function.
auto *Call = dyn_cast<CallInst>(&I);
if (!Call)
return false;
Module *M = Call->getModule();
LibFunc Func;
if (!TLI.getLibFunc(*Call, Func) || !isLibFuncEmittable(M, &TLI, Func))
return false;
if (Func != LibFunc_sqrt && Func != LibFunc_sqrtf && Func != LibFunc_sqrtl)
return false;
// If (1) this is a sqrt libcall, (2) we can assume that NAN is not created
// (because NNAN or the operand arg must not be less than -0.0) and (2) we
// would not end up lowering to a libcall anyway (which could change the value
// of errno), then:
// (1) errno won't be set.
// (2) it is safe to convert this to an intrinsic call.
Type *Ty = Call->getType();
Value *Arg = Call->getArgOperand(0);
if (TTI.haveFastSqrt(Ty) &&
(Call->hasNoNaNs() ||
cannotBeOrderedLessThanZero(Arg, M->getDataLayout(), &TLI, 0, &AC, &I,
&DT))) {
IRBuilder<> Builder(&I);
IRBuilderBase::FastMathFlagGuard Guard(Builder);
Builder.setFastMathFlags(Call->getFastMathFlags());
Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, Ty);
Value *NewSqrt = Builder.CreateCall(Sqrt, Arg, "sqrt");
I.replaceAllUsesWith(NewSqrt);
// Explicitly erase the old call because a call with side effects is not
// trivially dead.
I.eraseFromParent();
return true;
}
return false;
}
// Check if this array of constants represents a cttz table.
// Iterate over the elements from \p Table by trying to find/match all
// the numbers from 0 to \p InputBits that should represent cttz results.
static bool isCTTZTable(const ConstantDataArray &Table, uint64_t Mul,
uint64_t Shift, uint64_t InputBits) {
unsigned Length = Table.getNumElements();
if (Length < InputBits || Length > InputBits * 2)
return false;
APInt Mask = APInt::getBitsSetFrom(InputBits, Shift);
unsigned Matched = 0;
for (unsigned i = 0; i < Length; i++) {
uint64_t Element = Table.getElementAsInteger(i);
if (Element >= InputBits)
continue;
// Check if \p Element matches a concrete answer. It could fail for some
// elements that are never accessed, so we keep iterating over each element
// from the table. The number of matched elements should be equal to the
// number of potential right answers which is \p InputBits actually.
if ((((Mul << Element) & Mask.getZExtValue()) >> Shift) == i)
Matched++;
}
return Matched == InputBits;
}
// Try to recognize table-based ctz implementation.
// E.g., an example in C (for more cases please see the llvm/tests):
// int f(unsigned x) {
// static const char table[32] =
// {0, 1, 28, 2, 29, 14, 24, 3, 30,
// 22, 20, 15, 25, 17, 4, 8, 31, 27,
// 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9};
// return table[((unsigned)((x & -x) * 0x077CB531U)) >> 27];
// }
// this can be lowered to `cttz` instruction.
// There is also a special case when the element is 0.
//
// Here are some examples or LLVM IR for a 64-bit target:
//
// CASE 1:
// %sub = sub i32 0, %x
// %and = and i32 %sub, %x
// %mul = mul i32 %and, 125613361
// %shr = lshr i32 %mul, 27
// %idxprom = zext i32 %shr to i64
// %arrayidx = getelementptr inbounds [32 x i8], [32 x i8]* @ctz1.table, i64 0,
// i64 %idxprom %0 = load i8, i8* %arrayidx, align 1, !tbaa !8
//
// CASE 2:
// %sub = sub i32 0, %x
// %and = and i32 %sub, %x
// %mul = mul i32 %and, 72416175
// %shr = lshr i32 %mul, 26
// %idxprom = zext i32 %shr to i64
// %arrayidx = getelementptr inbounds [64 x i16], [64 x i16]* @ctz2.table, i64
// 0, i64 %idxprom %0 = load i16, i16* %arrayidx, align 2, !tbaa !8
//
// CASE 3:
// %sub = sub i32 0, %x
// %and = and i32 %sub, %x
// %mul = mul i32 %and, 81224991
// %shr = lshr i32 %mul, 27
// %idxprom = zext i32 %shr to i64
// %arrayidx = getelementptr inbounds [32 x i32], [32 x i32]* @ctz3.table, i64
// 0, i64 %idxprom %0 = load i32, i32* %arrayidx, align 4, !tbaa !8
//
// CASE 4:
// %sub = sub i64 0, %x
// %and = and i64 %sub, %x
// %mul = mul i64 %and, 283881067100198605
// %shr = lshr i64 %mul, 58
// %arrayidx = getelementptr inbounds [64 x i8], [64 x i8]* @table, i64 0, i64
// %shr %0 = load i8, i8* %arrayidx, align 1, !tbaa !8
//
// All this can be lowered to @llvm.cttz.i32/64 intrinsic.
static bool tryToRecognizeTableBasedCttz(Instruction &I) {
LoadInst *LI = dyn_cast<LoadInst>(&I);
if (!LI)
return false;
Type *AccessType = LI->getType();
if (!AccessType->isIntegerTy())
return false;
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getPointerOperand());
if (!GEP || !GEP->isInBounds() || GEP->getNumIndices() != 2)
return false;
if (!GEP->getSourceElementType()->isArrayTy())
return false;
uint64_t ArraySize = GEP->getSourceElementType()->getArrayNumElements();
if (ArraySize != 32 && ArraySize != 64)
return false;
GlobalVariable *GVTable = dyn_cast<GlobalVariable>(GEP->getPointerOperand());
if (!GVTable || !GVTable->hasInitializer() || !GVTable->isConstant())
return false;
ConstantDataArray *ConstData =
dyn_cast<ConstantDataArray>(GVTable->getInitializer());
if (!ConstData)
return false;
if (!match(GEP->idx_begin()->get(), m_ZeroInt()))
return false;
Value *Idx2 = std::next(GEP->idx_begin())->get();
Value *X1;
uint64_t MulConst, ShiftConst;
// FIXME: 64-bit targets have `i64` type for the GEP index, so this match will
// probably fail for other (e.g. 32-bit) targets.
if (!match(Idx2, m_ZExtOrSelf(
m_LShr(m_Mul(m_c_And(m_Neg(m_Value(X1)), m_Deferred(X1)),
m_ConstantInt(MulConst)),
m_ConstantInt(ShiftConst)))))
return false;
unsigned InputBits = X1->getType()->getScalarSizeInBits();
if (InputBits != 32 && InputBits != 64)
return false;
// Shift should extract top 5..7 bits.
if (InputBits - Log2_32(InputBits) != ShiftConst &&
InputBits - Log2_32(InputBits) - 1 != ShiftConst)
return false;
if (!isCTTZTable(*ConstData, MulConst, ShiftConst, InputBits))
return false;
auto ZeroTableElem = ConstData->getElementAsInteger(0);
bool DefinedForZero = ZeroTableElem == InputBits;
IRBuilder<> B(LI);
ConstantInt *BoolConst = B.getInt1(!DefinedForZero);
Type *XType = X1->getType();
auto Cttz = B.CreateIntrinsic(Intrinsic::cttz, {XType}, {X1, BoolConst});
Value *ZExtOrTrunc = nullptr;
if (DefinedForZero) {
ZExtOrTrunc = B.CreateZExtOrTrunc(Cttz, AccessType);
} else {
// If the value in elem 0 isn't the same as InputBits, we still want to
// produce the value from the table.
auto Cmp = B.CreateICmpEQ(X1, ConstantInt::get(XType, 0));
auto Select =
B.CreateSelect(Cmp, ConstantInt::get(XType, ZeroTableElem), Cttz);
// NOTE: If the table[0] is 0, but the cttz(0) is defined by the Target
// it should be handled as: `cttz(x) & (typeSize - 1)`.
ZExtOrTrunc = B.CreateZExtOrTrunc(Select, AccessType);
}
LI->replaceAllUsesWith(ZExtOrTrunc);
return true;
}
/// This is used by foldLoadsRecursive() to capture a Root Load node which is
/// of type or(load, load) and recursively build the wide load. Also capture the
/// shift amount, zero extend type and loadSize.
struct LoadOps {
LoadInst *Root = nullptr;
LoadInst *RootInsert = nullptr;
bool FoundRoot = false;
uint64_t LoadSize = 0;
const APInt *Shift = nullptr;
Type *ZextType;
AAMDNodes AATags;
};
// Identify and Merge consecutive loads recursively which is of the form
// (ZExt(L1) << shift1) | (ZExt(L2) << shift2) -> ZExt(L3) << shift1
// (ZExt(L1) << shift1) | ZExt(L2) -> ZExt(L3)
static bool foldLoadsRecursive(Value *V, LoadOps &LOps, const DataLayout &DL,
AliasAnalysis &AA) {
const APInt *ShAmt2 = nullptr;
Value *X;
Instruction *L1, *L2;
// Go to the last node with loads.
if (match(V, m_OneUse(m_c_Or(
m_Value(X),
m_OneUse(m_Shl(m_OneUse(m_ZExt(m_OneUse(m_Instruction(L2)))),
m_APInt(ShAmt2)))))) ||
match(V, m_OneUse(m_Or(m_Value(X),
m_OneUse(m_ZExt(m_OneUse(m_Instruction(L2)))))))) {
if (!foldLoadsRecursive(X, LOps, DL, AA) && LOps.FoundRoot)
// Avoid Partial chain merge.
return false;
} else
return false;
// Check if the pattern has loads
LoadInst *LI1 = LOps.Root;
const APInt *ShAmt1 = LOps.Shift;
if (LOps.FoundRoot == false &&
(match(X, m_OneUse(m_ZExt(m_Instruction(L1)))) ||
match(X, m_OneUse(m_Shl(m_OneUse(m_ZExt(m_OneUse(m_Instruction(L1)))),
m_APInt(ShAmt1)))))) {
LI1 = dyn_cast<LoadInst>(L1);
}
LoadInst *LI2 = dyn_cast<LoadInst>(L2);
// Check if loads are same, atomic, volatile and having same address space.
if (LI1 == LI2 || !LI1 || !LI2 || !LI1->isSimple() || !LI2->isSimple() ||
LI1->getPointerAddressSpace() != LI2->getPointerAddressSpace())
return false;
// Check if Loads come from same BB.
if (LI1->getParent() != LI2->getParent())
return false;
// Find the data layout
bool IsBigEndian = DL.isBigEndian();
// Check if loads are consecutive and same size.
Value *Load1Ptr = LI1->getPointerOperand();
APInt Offset1(DL.getIndexTypeSizeInBits(Load1Ptr->getType()), 0);
Load1Ptr =
Load1Ptr->stripAndAccumulateConstantOffsets(DL, Offset1,
/* AllowNonInbounds */ true);
Value *Load2Ptr = LI2->getPointerOperand();
APInt Offset2(DL.getIndexTypeSizeInBits(Load2Ptr->getType()), 0);
Load2Ptr =
Load2Ptr->stripAndAccumulateConstantOffsets(DL, Offset2,
/* AllowNonInbounds */ true);
// Verify if both loads have same base pointers and load sizes are same.
uint64_t LoadSize1 = LI1->getType()->getPrimitiveSizeInBits();
uint64_t LoadSize2 = LI2->getType()->getPrimitiveSizeInBits();
if (Load1Ptr != Load2Ptr || LoadSize1 != LoadSize2)
return false;
// Support Loadsizes greater or equal to 8bits and only power of 2.
if (LoadSize1 < 8 || !isPowerOf2_64(LoadSize1))
return false;
// Alias Analysis to check for stores b/w the loads.
LoadInst *Start = LOps.FoundRoot ? LOps.RootInsert : LI1, *End = LI2;
MemoryLocation Loc;
if (!Start->comesBefore(End)) {
std::swap(Start, End);
Loc = MemoryLocation::get(End);
if (LOps.FoundRoot)
Loc = Loc.getWithNewSize(LOps.LoadSize);
} else
Loc = MemoryLocation::get(End);
unsigned NumScanned = 0;
for (Instruction &Inst :
make_range(Start->getIterator(), End->getIterator())) {
if (Inst.mayWriteToMemory() && isModSet(AA.getModRefInfo(&Inst, Loc)))
return false;
if (++NumScanned > MaxInstrsToScan)
return false;
}
// Make sure Load with lower Offset is at LI1
bool Reverse = false;
if (Offset2.slt(Offset1)) {
std::swap(LI1, LI2);
std::swap(ShAmt1, ShAmt2);
std::swap(Offset1, Offset2);
std::swap(Load1Ptr, Load2Ptr);
std::swap(LoadSize1, LoadSize2);
Reverse = true;
}
// Big endian swap the shifts
if (IsBigEndian)
std::swap(ShAmt1, ShAmt2);
// Find Shifts values.
uint64_t Shift1 = 0, Shift2 = 0;
if (ShAmt1)
Shift1 = ShAmt1->getZExtValue();
if (ShAmt2)
Shift2 = ShAmt2->getZExtValue();
// First load is always LI1. This is where we put the new load.
// Use the merged load size available from LI1 for forward loads.
if (LOps.FoundRoot) {
if (!Reverse)
LoadSize1 = LOps.LoadSize;
else
LoadSize2 = LOps.LoadSize;
}
// Verify if shift amount and load index aligns and verifies that loads
// are consecutive.
uint64_t ShiftDiff = IsBigEndian ? LoadSize2 : LoadSize1;
uint64_t PrevSize =
DL.getTypeStoreSize(IntegerType::get(LI1->getContext(), LoadSize1));
if ((Shift2 - Shift1) != ShiftDiff || (Offset2 - Offset1) != PrevSize)
return false;
// Update LOps
AAMDNodes AATags1 = LOps.AATags;
AAMDNodes AATags2 = LI2->getAAMetadata();
if (LOps.FoundRoot == false) {
LOps.FoundRoot = true;
AATags1 = LI1->getAAMetadata();
}
LOps.LoadSize = LoadSize1 + LoadSize2;
LOps.RootInsert = Start;
// Concatenate the AATags of the Merged Loads.
LOps.AATags = AATags1.concat(AATags2);
LOps.Root = LI1;
LOps.Shift = ShAmt1;
LOps.ZextType = X->getType();
return true;
}
// For a given BB instruction, evaluate all loads in the chain that form a
// pattern which suggests that the loads can be combined. The one and only use
// of the loads is to form a wider load.
static bool foldConsecutiveLoads(Instruction &I, const DataLayout &DL,
TargetTransformInfo &TTI, AliasAnalysis &AA,
const DominatorTree &DT) {
// Only consider load chains of scalar values.
if (isa<VectorType>(I.getType()))
return false;
LoadOps LOps;
if (!foldLoadsRecursive(&I, LOps, DL, AA) || !LOps.FoundRoot)
return false;
IRBuilder<> Builder(&I);
LoadInst *NewLoad = nullptr, *LI1 = LOps.Root;
IntegerType *WiderType = IntegerType::get(I.getContext(), LOps.LoadSize);
// TTI based checks if we want to proceed with wider load
bool Allowed = TTI.isTypeLegal(WiderType);
if (!Allowed)
return false;
unsigned AS = LI1->getPointerAddressSpace();
unsigned Fast = 0;
Allowed = TTI.allowsMisalignedMemoryAccesses(I.getContext(), LOps.LoadSize,
AS, LI1->getAlign(), &Fast);
if (!Allowed || !Fast)
return false;
// Get the Index and Ptr for the new GEP.
Value *Load1Ptr = LI1->getPointerOperand();
Builder.SetInsertPoint(LOps.RootInsert);
if (!DT.dominates(Load1Ptr, LOps.RootInsert)) {
APInt Offset1(DL.getIndexTypeSizeInBits(Load1Ptr->getType()), 0);
Load1Ptr = Load1Ptr->stripAndAccumulateConstantOffsets(
DL, Offset1, /* AllowNonInbounds */ true);
Load1Ptr = Builder.CreateGEP(Builder.getInt8Ty(), Load1Ptr,
Builder.getInt32(Offset1.getZExtValue()));
}
// Generate wider load.
NewLoad = Builder.CreateAlignedLoad(WiderType, Load1Ptr, LI1->getAlign(),
LI1->isVolatile(), "");
NewLoad->takeName(LI1);
// Set the New Load AATags Metadata.
if (LOps.AATags)
NewLoad->setAAMetadata(LOps.AATags);
Value *NewOp = NewLoad;
// Check if zero extend needed.
if (LOps.ZextType)
NewOp = Builder.CreateZExt(NewOp, LOps.ZextType);
// Check if shift needed. We need to shift with the amount of load1
// shift if not zero.
if (LOps.Shift)
NewOp = Builder.CreateShl(NewOp, ConstantInt::get(I.getContext(), *LOps.Shift));
I.replaceAllUsesWith(NewOp);
return true;
}
// Calculate GEP Stride and accumulated const ModOffset. Return Stride and
// ModOffset
static std::pair<APInt, APInt>
getStrideAndModOffsetOfGEP(Value *PtrOp, const DataLayout &DL) {
unsigned BW = DL.getIndexTypeSizeInBits(PtrOp->getType());
std::optional<APInt> Stride;
APInt ModOffset(BW, 0);
// Return a minimum gep stride, greatest common divisor of consective gep
// index scales(c.f. Bézout's identity).
while (auto *GEP = dyn_cast<GEPOperator>(PtrOp)) {
MapVector<Value *, APInt> VarOffsets;
if (!GEP->collectOffset(DL, BW, VarOffsets, ModOffset))
break;
for (auto [V, Scale] : VarOffsets) {
// Only keep a power of two factor for non-inbounds
if (!GEP->isInBounds())
Scale = APInt::getOneBitSet(Scale.getBitWidth(), Scale.countr_zero());
if (!Stride)
Stride = Scale;
else
Stride = APIntOps::GreatestCommonDivisor(*Stride, Scale);
}
PtrOp = GEP->getPointerOperand();
}
// Check whether pointer arrives back at Global Variable via at least one GEP.
// Even if it doesn't, we can check by alignment.
if (!isa<GlobalVariable>(PtrOp) || !Stride)
return {APInt(BW, 1), APInt(BW, 0)};
// In consideration of signed GEP indices, non-negligible offset become
// remainder of division by minimum GEP stride.
ModOffset = ModOffset.srem(*Stride);
if (ModOffset.isNegative())
ModOffset += *Stride;
return {*Stride, ModOffset};
}
/// If C is a constant patterned array and all valid loaded results for given
/// alignment are same to a constant, return that constant.
static bool foldPatternedLoads(Instruction &I, const DataLayout &DL) {
auto *LI = dyn_cast<LoadInst>(&I);
if (!LI || LI->isVolatile())
return false;
// We can only fold the load if it is from a constant global with definitive
// initializer. Skip expensive logic if this is not the case.
auto *PtrOp = LI->getPointerOperand();
auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(PtrOp));
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
return false;
// Bail for large initializers in excess of 4K to avoid too many scans.
Constant *C = GV->getInitializer();
uint64_t GVSize = DL.getTypeAllocSize(C->getType());
if (!GVSize || 4096 < GVSize)
return false;
Type *LoadTy = LI->getType();
unsigned BW = DL.getIndexTypeSizeInBits(PtrOp->getType());
auto [Stride, ConstOffset] = getStrideAndModOffsetOfGEP(PtrOp, DL);
// Any possible offset could be multiple of GEP stride. And any valid
// offset is multiple of load alignment, so checking only multiples of bigger
// one is sufficient to say results' equality.
if (auto LA = LI->getAlign();
LA <= GV->getAlign().valueOrOne() && Stride.getZExtValue() < LA.value()) {
ConstOffset = APInt(BW, 0);
Stride = APInt(BW, LA.value());
}
Constant *Ca = ConstantFoldLoadFromConst(C, LoadTy, ConstOffset, DL);
if (!Ca)
return false;
unsigned E = GVSize - DL.getTypeStoreSize(LoadTy);
for (; ConstOffset.getZExtValue() <= E; ConstOffset += Stride)
if (Ca != ConstantFoldLoadFromConst(C, LoadTy, ConstOffset, DL))
return false;
I.replaceAllUsesWith(Ca);
return true;
}
/// This is the entry point for folds that could be implemented in regular
/// InstCombine, but they are separated because they are not expected to
/// occur frequently and/or have more than a constant-length pattern match.
static bool foldUnusualPatterns(Function &F, DominatorTree &DT,
TargetTransformInfo &TTI,
TargetLibraryInfo &TLI, AliasAnalysis &AA,
AssumptionCache &AC) {
bool MadeChange = false;
for (BasicBlock &BB : F) {
// Ignore unreachable basic blocks.
if (!DT.isReachableFromEntry(&BB))
continue;
const DataLayout &DL = F.getParent()->getDataLayout();
// Walk the block backwards for efficiency. We're matching a chain of
// use->defs, so we're more likely to succeed by starting from the bottom.
// Also, we want to avoid matching partial patterns.
// TODO: It would be more efficient if we removed dead instructions
// iteratively in this loop rather than waiting until the end.
for (Instruction &I : make_early_inc_range(llvm::reverse(BB))) {
MadeChange |= foldAnyOrAllBitsSet(I);
MadeChange |= foldGuardedFunnelShift(I, DT);
MadeChange |= tryToRecognizePopCount(I);
MadeChange |= tryToFPToSat(I, TTI);
MadeChange |= tryToRecognizeTableBasedCttz(I);
MadeChange |= foldConsecutiveLoads(I, DL, TTI, AA, DT);
MadeChange |= foldPatternedLoads(I, DL);
// NOTE: This function introduces erasing of the instruction `I`, so it
// needs to be called at the end of this sequence, otherwise we may make
// bugs.
MadeChange |= foldSqrt(I, TTI, TLI, AC, DT);
}
}
// We're done with transforms, so remove dead instructions.
if (MadeChange)
for (BasicBlock &BB : F)
SimplifyInstructionsInBlock(&BB);
return MadeChange;
}
/// This is the entry point for all transforms. Pass manager differences are
/// handled in the callers of this function.
static bool runImpl(Function &F, AssumptionCache &AC, TargetTransformInfo &TTI,
TargetLibraryInfo &TLI, DominatorTree &DT,
AliasAnalysis &AA) {
bool MadeChange = false;
const DataLayout &DL = F.getParent()->getDataLayout();
TruncInstCombine TIC(AC, TLI, DL, DT);
MadeChange |= TIC.run(F);
MadeChange |= foldUnusualPatterns(F, DT, TTI, TLI, AA, AC);
return MadeChange;
}
PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &AC = AM.getResult<AssumptionAnalysis>(F);
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
auto &AA = AM.getResult<AAManager>(F);
if (!runImpl(F, AC, TTI, TLI, DT, AA)) {
// No changes, all analyses are preserved.
return PreservedAnalyses::all();
}
// Mark all the analyses that instcombine updates as preserved.
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}
|