1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
|
//===- CoroElide.cpp - Coroutine Frame Allocation Elision Pass ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Coroutines/CoroElide.h"
#include "CoroInternal.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include <optional>
using namespace llvm;
#define DEBUG_TYPE "coro-elide"
STATISTIC(NumOfCoroElided, "The # of coroutine get elided.");
#ifndef NDEBUG
static cl::opt<std::string> CoroElideInfoOutputFilename(
"coro-elide-info-output-file", cl::value_desc("filename"),
cl::desc("File to record the coroutines got elided"), cl::Hidden);
#endif
namespace {
// Created on demand if the coro-elide pass has work to do.
struct Lowerer : coro::LowererBase {
SmallVector<CoroIdInst *, 4> CoroIds;
SmallVector<CoroBeginInst *, 1> CoroBegins;
SmallVector<CoroAllocInst *, 1> CoroAllocs;
SmallVector<CoroSubFnInst *, 4> ResumeAddr;
DenseMap<CoroBeginInst *, SmallVector<CoroSubFnInst *, 4>> DestroyAddr;
SmallPtrSet<const SwitchInst *, 4> CoroSuspendSwitches;
Lowerer(Module &M) : LowererBase(M) {}
void elideHeapAllocations(Function *F, uint64_t FrameSize, Align FrameAlign,
AAResults &AA);
bool shouldElide(Function *F, DominatorTree &DT) const;
void collectPostSplitCoroIds(Function *F);
bool processCoroId(CoroIdInst *, AAResults &AA, DominatorTree &DT,
OptimizationRemarkEmitter &ORE);
bool hasEscapePath(const CoroBeginInst *,
const SmallPtrSetImpl<BasicBlock *> &) const;
};
} // end anonymous namespace
// Go through the list of coro.subfn.addr intrinsics and replace them with the
// provided constant.
static void replaceWithConstant(Constant *Value,
SmallVectorImpl<CoroSubFnInst *> &Users) {
if (Users.empty())
return;
// See if we need to bitcast the constant to match the type of the intrinsic
// being replaced. Note: All coro.subfn.addr intrinsics return the same type,
// so we only need to examine the type of the first one in the list.
Type *IntrTy = Users.front()->getType();
Type *ValueTy = Value->getType();
if (ValueTy != IntrTy) {
// May need to tweak the function type to match the type expected at the
// use site.
assert(ValueTy->isPointerTy() && IntrTy->isPointerTy());
Value = ConstantExpr::getBitCast(Value, IntrTy);
}
// Now the value type matches the type of the intrinsic. Replace them all!
for (CoroSubFnInst *I : Users)
replaceAndRecursivelySimplify(I, Value);
}
// See if any operand of the call instruction references the coroutine frame.
static bool operandReferences(CallInst *CI, AllocaInst *Frame, AAResults &AA) {
for (Value *Op : CI->operand_values())
if (!AA.isNoAlias(Op, Frame))
return true;
return false;
}
// Look for any tail calls referencing the coroutine frame and remove tail
// attribute from them, since now coroutine frame resides on the stack and tail
// call implies that the function does not references anything on the stack.
// However if it's a musttail call, we cannot remove the tailcall attribute.
// It's safe to keep it there as the musttail call is for symmetric transfer,
// and by that point the frame should have been destroyed and hence not
// interfering with operands.
static void removeTailCallAttribute(AllocaInst *Frame, AAResults &AA) {
Function &F = *Frame->getFunction();
for (Instruction &I : instructions(F))
if (auto *Call = dyn_cast<CallInst>(&I))
if (Call->isTailCall() && operandReferences(Call, Frame, AA) &&
!Call->isMustTailCall())
Call->setTailCall(false);
}
// Given a resume function @f.resume(%f.frame* %frame), returns the size
// and expected alignment of %f.frame type.
static std::optional<std::pair<uint64_t, Align>>
getFrameLayout(Function *Resume) {
// Pull information from the function attributes.
auto Size = Resume->getParamDereferenceableBytes(0);
if (!Size)
return std::nullopt;
return std::make_pair(Size, Resume->getParamAlign(0).valueOrOne());
}
// Finds first non alloca instruction in the entry block of a function.
static Instruction *getFirstNonAllocaInTheEntryBlock(Function *F) {
for (Instruction &I : F->getEntryBlock())
if (!isa<AllocaInst>(&I))
return &I;
llvm_unreachable("no terminator in the entry block");
}
#ifndef NDEBUG
static std::unique_ptr<raw_fd_ostream> getOrCreateLogFile() {
assert(!CoroElideInfoOutputFilename.empty() &&
"coro-elide-info-output-file shouldn't be empty");
std::error_code EC;
auto Result = std::make_unique<raw_fd_ostream>(CoroElideInfoOutputFilename,
EC, sys::fs::OF_Append);
if (!EC)
return Result;
llvm::errs() << "Error opening coro-elide-info-output-file '"
<< CoroElideInfoOutputFilename << " for appending!\n";
return std::make_unique<raw_fd_ostream>(2, false); // stderr.
}
#endif
// To elide heap allocations we need to suppress code blocks guarded by
// llvm.coro.alloc and llvm.coro.free instructions.
void Lowerer::elideHeapAllocations(Function *F, uint64_t FrameSize,
Align FrameAlign, AAResults &AA) {
LLVMContext &C = F->getContext();
auto *InsertPt =
getFirstNonAllocaInTheEntryBlock(CoroIds.front()->getFunction());
// Replacing llvm.coro.alloc with false will suppress dynamic
// allocation as it is expected for the frontend to generate the code that
// looks like:
// id = coro.id(...)
// mem = coro.alloc(id) ? malloc(coro.size()) : 0;
// coro.begin(id, mem)
auto *False = ConstantInt::getFalse(C);
for (auto *CA : CoroAllocs) {
CA->replaceAllUsesWith(False);
CA->eraseFromParent();
}
// FIXME: Design how to transmit alignment information for every alloca that
// is spilled into the coroutine frame and recreate the alignment information
// here. Possibly we will need to do a mini SROA here and break the coroutine
// frame into individual AllocaInst recreating the original alignment.
const DataLayout &DL = F->getParent()->getDataLayout();
auto FrameTy = ArrayType::get(Type::getInt8Ty(C), FrameSize);
auto *Frame = new AllocaInst(FrameTy, DL.getAllocaAddrSpace(), "", InsertPt);
Frame->setAlignment(FrameAlign);
auto *FrameVoidPtr =
new BitCastInst(Frame, Type::getInt8PtrTy(C), "vFrame", InsertPt);
for (auto *CB : CoroBegins) {
CB->replaceAllUsesWith(FrameVoidPtr);
CB->eraseFromParent();
}
// Since now coroutine frame lives on the stack we need to make sure that
// any tail call referencing it, must be made non-tail call.
removeTailCallAttribute(Frame, AA);
}
bool Lowerer::hasEscapePath(const CoroBeginInst *CB,
const SmallPtrSetImpl<BasicBlock *> &TIs) const {
const auto &It = DestroyAddr.find(CB);
assert(It != DestroyAddr.end());
// Limit the number of blocks we visit.
unsigned Limit = 32 * (1 + It->second.size());
SmallVector<const BasicBlock *, 32> Worklist;
Worklist.push_back(CB->getParent());
SmallPtrSet<const BasicBlock *, 32> Visited;
// Consider basicblock of coro.destroy as visited one, so that we
// skip the path pass through coro.destroy.
for (auto *DA : It->second)
Visited.insert(DA->getParent());
SmallPtrSet<const BasicBlock *, 32> EscapingBBs;
for (auto *U : CB->users()) {
// The use from coroutine intrinsics are not a problem.
if (isa<CoroFreeInst, CoroSubFnInst, CoroSaveInst>(U))
continue;
// Think all other usages may be an escaping candidate conservatively.
//
// Note that the major user of switch ABI coroutine (the C++) will store
// resume.fn, destroy.fn and the index to the coroutine frame immediately.
// So the parent of the coro.begin in C++ will be always escaping.
// Then we can't get any performance benefits for C++ by improving the
// precision of the method.
//
// The reason why we still judge it is we want to make LLVM Coroutine in
// switch ABIs to be self contained as much as possible instead of a
// by-product of C++20 Coroutines.
EscapingBBs.insert(cast<Instruction>(U)->getParent());
}
bool PotentiallyEscaped = false;
do {
const auto *BB = Worklist.pop_back_val();
if (!Visited.insert(BB).second)
continue;
// A Path insensitive marker to test whether the coro.begin escapes.
// It is intentional to make it path insensitive while it may not be
// precise since we don't want the process to be too slow.
PotentiallyEscaped |= EscapingBBs.count(BB);
if (TIs.count(BB)) {
if (!BB->getTerminator()->isExceptionalTerminator() || PotentiallyEscaped)
return true;
// If the function ends with the exceptional terminator, the memory used
// by the coroutine frame can be released by stack unwinding
// automatically. So we can think the coro.begin doesn't escape if it
// exits the function by exceptional terminator.
continue;
}
// Conservatively say that there is potentially a path.
if (!--Limit)
return true;
auto TI = BB->getTerminator();
// Although the default dest of coro.suspend switches is suspend pointer
// which means a escape path to normal terminator, it is reasonable to skip
// it since coroutine frame doesn't change outside the coroutine body.
if (isa<SwitchInst>(TI) &&
CoroSuspendSwitches.count(cast<SwitchInst>(TI))) {
Worklist.push_back(cast<SwitchInst>(TI)->getSuccessor(1));
Worklist.push_back(cast<SwitchInst>(TI)->getSuccessor(2));
} else
Worklist.append(succ_begin(BB), succ_end(BB));
} while (!Worklist.empty());
// We have exhausted all possible paths and are certain that coro.begin can
// not reach to any of terminators.
return false;
}
bool Lowerer::shouldElide(Function *F, DominatorTree &DT) const {
// If no CoroAllocs, we cannot suppress allocation, so elision is not
// possible.
if (CoroAllocs.empty())
return false;
// Check that for every coro.begin there is at least one coro.destroy directly
// referencing the SSA value of that coro.begin along each
// non-exceptional path.
// If the value escaped, then coro.destroy would have been referencing a
// memory location storing that value and not the virtual register.
SmallPtrSet<BasicBlock *, 8> Terminators;
// First gather all of the terminators for the function.
// Consider the final coro.suspend as the real terminator when the current
// function is a coroutine.
for (BasicBlock &B : *F) {
auto *TI = B.getTerminator();
if (TI->getNumSuccessors() != 0 || isa<UnreachableInst>(TI))
continue;
Terminators.insert(&B);
}
// Filter out the coro.destroy that lie along exceptional paths.
SmallPtrSet<CoroBeginInst *, 8> ReferencedCoroBegins;
for (const auto &It : DestroyAddr) {
// If every terminators is dominated by coro.destroy, we could know the
// corresponding coro.begin wouldn't escape.
//
// Otherwise hasEscapePath would decide whether there is any paths from
// coro.begin to Terminators which not pass through any of the
// coro.destroys.
//
// hasEscapePath is relatively slow, so we avoid to run it as much as
// possible.
if (llvm::all_of(Terminators,
[&](auto *TI) {
return llvm::any_of(It.second, [&](auto *DA) {
return DT.dominates(DA, TI->getTerminator());
});
}) ||
!hasEscapePath(It.first, Terminators))
ReferencedCoroBegins.insert(It.first);
}
// If size of the set is the same as total number of coro.begin, that means we
// found a coro.free or coro.destroy referencing each coro.begin, so we can
// perform heap elision.
return ReferencedCoroBegins.size() == CoroBegins.size();
}
void Lowerer::collectPostSplitCoroIds(Function *F) {
CoroIds.clear();
CoroSuspendSwitches.clear();
for (auto &I : instructions(F)) {
if (auto *CII = dyn_cast<CoroIdInst>(&I))
if (CII->getInfo().isPostSplit())
// If it is the coroutine itself, don't touch it.
if (CII->getCoroutine() != CII->getFunction())
CoroIds.push_back(CII);
// Consider case like:
// %0 = call i8 @llvm.coro.suspend(...)
// switch i8 %0, label %suspend [i8 0, label %resume
// i8 1, label %cleanup]
// and collect the SwitchInsts which are used by escape analysis later.
if (auto *CSI = dyn_cast<CoroSuspendInst>(&I))
if (CSI->hasOneUse() && isa<SwitchInst>(CSI->use_begin()->getUser())) {
SwitchInst *SWI = cast<SwitchInst>(CSI->use_begin()->getUser());
if (SWI->getNumCases() == 2)
CoroSuspendSwitches.insert(SWI);
}
}
}
bool Lowerer::processCoroId(CoroIdInst *CoroId, AAResults &AA,
DominatorTree &DT, OptimizationRemarkEmitter &ORE) {
CoroBegins.clear();
CoroAllocs.clear();
ResumeAddr.clear();
DestroyAddr.clear();
// Collect all coro.begin and coro.allocs associated with this coro.id.
for (User *U : CoroId->users()) {
if (auto *CB = dyn_cast<CoroBeginInst>(U))
CoroBegins.push_back(CB);
else if (auto *CA = dyn_cast<CoroAllocInst>(U))
CoroAllocs.push_back(CA);
}
// Collect all coro.subfn.addrs associated with coro.begin.
// Note, we only devirtualize the calls if their coro.subfn.addr refers to
// coro.begin directly. If we run into cases where this check is too
// conservative, we can consider relaxing the check.
for (CoroBeginInst *CB : CoroBegins) {
for (User *U : CB->users())
if (auto *II = dyn_cast<CoroSubFnInst>(U))
switch (II->getIndex()) {
case CoroSubFnInst::ResumeIndex:
ResumeAddr.push_back(II);
break;
case CoroSubFnInst::DestroyIndex:
DestroyAddr[CB].push_back(II);
break;
default:
llvm_unreachable("unexpected coro.subfn.addr constant");
}
}
// PostSplit coro.id refers to an array of subfunctions in its Info
// argument.
ConstantArray *Resumers = CoroId->getInfo().Resumers;
assert(Resumers && "PostSplit coro.id Info argument must refer to an array"
"of coroutine subfunctions");
auto *ResumeAddrConstant =
Resumers->getAggregateElement(CoroSubFnInst::ResumeIndex);
replaceWithConstant(ResumeAddrConstant, ResumeAddr);
bool ShouldElide = shouldElide(CoroId->getFunction(), DT);
if (!ShouldElide)
ORE.emit([&]() {
if (auto FrameSizeAndAlign =
getFrameLayout(cast<Function>(ResumeAddrConstant)))
return OptimizationRemarkMissed(DEBUG_TYPE, "CoroElide", CoroId)
<< "'" << ore::NV("callee", CoroId->getCoroutine()->getName())
<< "' not elided in '"
<< ore::NV("caller", CoroId->getFunction()->getName())
<< "' (frame_size="
<< ore::NV("frame_size", FrameSizeAndAlign->first) << ", align="
<< ore::NV("align", FrameSizeAndAlign->second.value()) << ")";
else
return OptimizationRemarkMissed(DEBUG_TYPE, "CoroElide", CoroId)
<< "'" << ore::NV("callee", CoroId->getCoroutine()->getName())
<< "' not elided in '"
<< ore::NV("caller", CoroId->getFunction()->getName())
<< "' (frame_size=unknown, align=unknown)";
});
auto *DestroyAddrConstant = Resumers->getAggregateElement(
ShouldElide ? CoroSubFnInst::CleanupIndex : CoroSubFnInst::DestroyIndex);
for (auto &It : DestroyAddr)
replaceWithConstant(DestroyAddrConstant, It.second);
if (ShouldElide) {
if (auto FrameSizeAndAlign =
getFrameLayout(cast<Function>(ResumeAddrConstant))) {
elideHeapAllocations(CoroId->getFunction(), FrameSizeAndAlign->first,
FrameSizeAndAlign->second, AA);
coro::replaceCoroFree(CoroId, /*Elide=*/true);
NumOfCoroElided++;
#ifndef NDEBUG
if (!CoroElideInfoOutputFilename.empty())
*getOrCreateLogFile()
<< "Elide " << CoroId->getCoroutine()->getName() << " in "
<< CoroId->getFunction()->getName() << "\n";
#endif
ORE.emit([&]() {
return OptimizationRemark(DEBUG_TYPE, "CoroElide", CoroId)
<< "'" << ore::NV("callee", CoroId->getCoroutine()->getName())
<< "' elided in '"
<< ore::NV("caller", CoroId->getFunction()->getName())
<< "' (frame_size="
<< ore::NV("frame_size", FrameSizeAndAlign->first) << ", align="
<< ore::NV("align", FrameSizeAndAlign->second.value()) << ")";
});
} else {
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "CoroElide", CoroId)
<< "'" << ore::NV("callee", CoroId->getCoroutine()->getName())
<< "' not elided in '"
<< ore::NV("caller", CoroId->getFunction()->getName())
<< "' (frame_size=unknown, align=unknown)";
});
}
}
return true;
}
static bool declaresCoroElideIntrinsics(Module &M) {
return coro::declaresIntrinsics(M, {"llvm.coro.id", "llvm.coro.id.async"});
}
PreservedAnalyses CoroElidePass::run(Function &F, FunctionAnalysisManager &AM) {
auto &M = *F.getParent();
if (!declaresCoroElideIntrinsics(M))
return PreservedAnalyses::all();
Lowerer L(M);
L.CoroIds.clear();
L.collectPostSplitCoroIds(&F);
// If we did not find any coro.id, there is nothing to do.
if (L.CoroIds.empty())
return PreservedAnalyses::all();
AAResults &AA = AM.getResult<AAManager>(F);
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
bool Changed = false;
for (auto *CII : L.CoroIds)
Changed |= L.processCoroId(CII, AA, DT, ORE);
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}
|