1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
|
//===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass promotes "by reference" arguments to be "by value" arguments. In
// practice, this means looking for internal functions that have pointer
// arguments. If it can prove, through the use of alias analysis, that an
// argument is *only* loaded, then it can pass the value into the function
// instead of the address of the value. This can cause recursive simplification
// of code and lead to the elimination of allocas (especially in C++ template
// code like the STL).
//
// This pass also handles aggregate arguments that are passed into a function,
// scalarizing them if the elements of the aggregate are only loaded. Note that
// by default it refuses to scalarize aggregates which would require passing in
// more than three operands to the function, because passing thousands of
// operands for a large array or structure is unprofitable! This limit can be
// configured or disabled, however.
//
// Note that this transformation could also be done for arguments that are only
// stored to (returning the value instead), but does not currently. This case
// would be best handled when and if LLVM begins supporting multiple return
// values from functions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/ArgumentPromotion.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "argpromotion"
STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
namespace {
struct ArgPart {
Type *Ty;
Align Alignment;
/// A representative guaranteed-executed load or store instruction for use by
/// metadata transfer.
Instruction *MustExecInstr;
};
using OffsetAndArgPart = std::pair<int64_t, ArgPart>;
} // end anonymous namespace
static Value *createByteGEP(IRBuilderBase &IRB, const DataLayout &DL,
Value *Ptr, Type *ResElemTy, int64_t Offset) {
if (Offset != 0) {
APInt APOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(APOffset));
}
return Ptr;
}
/// DoPromotion - This method actually performs the promotion of the specified
/// arguments, and returns the new function. At this point, we know that it's
/// safe to do so.
static Function *
doPromotion(Function *F, FunctionAnalysisManager &FAM,
const DenseMap<Argument *, SmallVector<OffsetAndArgPart, 4>>
&ArgsToPromote) {
// Start by computing a new prototype for the function, which is the same as
// the old function, but has modified arguments.
FunctionType *FTy = F->getFunctionType();
std::vector<Type *> Params;
// Attribute - Keep track of the parameter attributes for the arguments
// that we are *not* promoting. For the ones that we do promote, the parameter
// attributes are lost
SmallVector<AttributeSet, 8> ArgAttrVec;
AttributeList PAL = F->getAttributes();
// First, determine the new argument list
unsigned ArgNo = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
++I, ++ArgNo) {
if (!ArgsToPromote.count(&*I)) {
// Unchanged argument
Params.push_back(I->getType());
ArgAttrVec.push_back(PAL.getParamAttrs(ArgNo));
} else if (I->use_empty()) {
// Dead argument (which are always marked as promotable)
++NumArgumentsDead;
} else {
const auto &ArgParts = ArgsToPromote.find(&*I)->second;
for (const auto &Pair : ArgParts) {
Params.push_back(Pair.second.Ty);
ArgAttrVec.push_back(AttributeSet());
}
++NumArgumentsPromoted;
}
}
Type *RetTy = FTy->getReturnType();
// Construct the new function type using the new arguments.
FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
// Create the new function body and insert it into the module.
Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
F->getName());
NF->copyAttributesFrom(F);
NF->copyMetadata(F, 0);
// The new function will have the !dbg metadata copied from the original
// function. The original function may not be deleted, and dbg metadata need
// to be unique, so we need to drop it.
F->setSubprogram(nullptr);
LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
<< "From: " << *F);
uint64_t LargestVectorWidth = 0;
for (auto *I : Params)
if (auto *VT = dyn_cast<llvm::VectorType>(I))
LargestVectorWidth = std::max(
LargestVectorWidth, VT->getPrimitiveSizeInBits().getKnownMinValue());
// Recompute the parameter attributes list based on the new arguments for
// the function.
NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttrs(),
PAL.getRetAttrs(), ArgAttrVec));
AttributeFuncs::updateMinLegalVectorWidthAttr(*NF, LargestVectorWidth);
ArgAttrVec.clear();
F->getParent()->getFunctionList().insert(F->getIterator(), NF);
NF->takeName(F);
// Loop over all the callers of the function, transforming the call sites to
// pass in the loaded pointers.
SmallVector<Value *, 16> Args;
const DataLayout &DL = F->getParent()->getDataLayout();
SmallVector<WeakTrackingVH, 16> DeadArgs;
while (!F->use_empty()) {
CallBase &CB = cast<CallBase>(*F->user_back());
assert(CB.getCalledFunction() == F);
const AttributeList &CallPAL = CB.getAttributes();
IRBuilder<NoFolder> IRB(&CB);
// Loop over the operands, inserting GEP and loads in the caller as
// appropriate.
auto *AI = CB.arg_begin();
ArgNo = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
++I, ++AI, ++ArgNo) {
if (!ArgsToPromote.count(&*I)) {
Args.push_back(*AI); // Unmodified argument
ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
} else if (!I->use_empty()) {
Value *V = *AI;
const auto &ArgParts = ArgsToPromote.find(&*I)->second;
for (const auto &Pair : ArgParts) {
LoadInst *LI = IRB.CreateAlignedLoad(
Pair.second.Ty,
createByteGEP(IRB, DL, V, Pair.second.Ty, Pair.first),
Pair.second.Alignment, V->getName() + ".val");
if (Pair.second.MustExecInstr) {
LI->setAAMetadata(Pair.second.MustExecInstr->getAAMetadata());
LI->copyMetadata(*Pair.second.MustExecInstr,
{LLVMContext::MD_dereferenceable,
LLVMContext::MD_dereferenceable_or_null,
LLVMContext::MD_noundef,
LLVMContext::MD_nontemporal});
// Only transfer poison-generating metadata if we also have
// !noundef.
// TODO: Without !noundef, we could merge this metadata across
// all promoted loads.
if (LI->hasMetadata(LLVMContext::MD_noundef))
LI->copyMetadata(*Pair.second.MustExecInstr,
{LLVMContext::MD_range, LLVMContext::MD_nonnull,
LLVMContext::MD_align});
}
Args.push_back(LI);
ArgAttrVec.push_back(AttributeSet());
}
} else {
assert(ArgsToPromote.count(&*I) && I->use_empty());
DeadArgs.emplace_back(AI->get());
}
}
// Push any varargs arguments on the list.
for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
Args.push_back(*AI);
ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
}
SmallVector<OperandBundleDef, 1> OpBundles;
CB.getOperandBundlesAsDefs(OpBundles);
CallBase *NewCS = nullptr;
if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
Args, OpBundles, "", &CB);
} else {
auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
NewCS = NewCall;
}
NewCS->setCallingConv(CB.getCallingConv());
NewCS->setAttributes(AttributeList::get(F->getContext(),
CallPAL.getFnAttrs(),
CallPAL.getRetAttrs(), ArgAttrVec));
NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
Args.clear();
ArgAttrVec.clear();
AttributeFuncs::updateMinLegalVectorWidthAttr(*CB.getCaller(),
LargestVectorWidth);
if (!CB.use_empty()) {
CB.replaceAllUsesWith(NewCS);
NewCS->takeName(&CB);
}
// Finally, remove the old call from the program, reducing the use-count of
// F.
CB.eraseFromParent();
}
RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadArgs);
// Since we have now created the new function, splice the body of the old
// function right into the new function, leaving the old rotting hulk of the
// function empty.
NF->splice(NF->begin(), F);
// We will collect all the new created allocas to promote them into registers
// after the following loop
SmallVector<AllocaInst *, 4> Allocas;
// Loop over the argument list, transferring uses of the old arguments over to
// the new arguments, also transferring over the names as well.
Function::arg_iterator I2 = NF->arg_begin();
for (Argument &Arg : F->args()) {
if (!ArgsToPromote.count(&Arg)) {
// If this is an unmodified argument, move the name and users over to the
// new version.
Arg.replaceAllUsesWith(&*I2);
I2->takeName(&Arg);
++I2;
continue;
}
// There potentially are metadata uses for things like llvm.dbg.value.
// Replace them with undef, after handling the other regular uses.
auto RauwUndefMetadata = make_scope_exit(
[&]() { Arg.replaceAllUsesWith(UndefValue::get(Arg.getType())); });
if (Arg.use_empty())
continue;
// Otherwise, if we promoted this argument, we have to create an alloca in
// the callee for every promotable part and store each of the new incoming
// arguments into the corresponding alloca, what lets the old code (the
// store instructions if they are allowed especially) a chance to work as
// before.
assert(Arg.getType()->isPointerTy() &&
"Only arguments with a pointer type are promotable");
IRBuilder<NoFolder> IRB(&NF->begin()->front());
// Add only the promoted elements, so parts from ArgsToPromote
SmallDenseMap<int64_t, AllocaInst *> OffsetToAlloca;
for (const auto &Pair : ArgsToPromote.find(&Arg)->second) {
int64_t Offset = Pair.first;
const ArgPart &Part = Pair.second;
Argument *NewArg = I2++;
NewArg->setName(Arg.getName() + "." + Twine(Offset) + ".val");
AllocaInst *NewAlloca = IRB.CreateAlloca(
Part.Ty, nullptr, Arg.getName() + "." + Twine(Offset) + ".allc");
NewAlloca->setAlignment(Pair.second.Alignment);
IRB.CreateAlignedStore(NewArg, NewAlloca, Pair.second.Alignment);
// Collect the alloca to retarget the users to
OffsetToAlloca.insert({Offset, NewAlloca});
}
auto GetAlloca = [&](Value *Ptr) {
APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
/* AllowNonInbounds */ true);
assert(Ptr == &Arg && "Not constant offset from arg?");
return OffsetToAlloca.lookup(Offset.getSExtValue());
};
// Cleanup the code from the dead instructions: GEPs and BitCasts in between
// the original argument and its users: loads and stores. Retarget every
// user to the new created alloca.
SmallVector<Value *, 16> Worklist;
SmallVector<Instruction *, 16> DeadInsts;
append_range(Worklist, Arg.users());
while (!Worklist.empty()) {
Value *V = Worklist.pop_back_val();
if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V)) {
DeadInsts.push_back(cast<Instruction>(V));
append_range(Worklist, V->users());
continue;
}
if (auto *LI = dyn_cast<LoadInst>(V)) {
Value *Ptr = LI->getPointerOperand();
LI->setOperand(LoadInst::getPointerOperandIndex(), GetAlloca(Ptr));
continue;
}
if (auto *SI = dyn_cast<StoreInst>(V)) {
assert(!SI->isVolatile() && "Volatile operations can't be promoted.");
Value *Ptr = SI->getPointerOperand();
SI->setOperand(StoreInst::getPointerOperandIndex(), GetAlloca(Ptr));
continue;
}
llvm_unreachable("Unexpected user");
}
for (Instruction *I : DeadInsts) {
I->replaceAllUsesWith(PoisonValue::get(I->getType()));
I->eraseFromParent();
}
// Collect the allocas for promotion
for (const auto &Pair : OffsetToAlloca) {
assert(isAllocaPromotable(Pair.second) &&
"By design, only promotable allocas should be produced.");
Allocas.push_back(Pair.second);
}
}
LLVM_DEBUG(dbgs() << "ARG PROMOTION: " << Allocas.size()
<< " alloca(s) are promotable by Mem2Reg\n");
if (!Allocas.empty()) {
// And we are able to call the `promoteMemoryToRegister()` function.
// Our earlier checks have ensured that PromoteMemToReg() will
// succeed.
auto &DT = FAM.getResult<DominatorTreeAnalysis>(*NF);
auto &AC = FAM.getResult<AssumptionAnalysis>(*NF);
PromoteMemToReg(Allocas, DT, &AC);
}
return NF;
}
/// Return true if we can prove that all callees pass in a valid pointer for the
/// specified function argument.
static bool allCallersPassValidPointerForArgument(Argument *Arg,
Align NeededAlign,
uint64_t NeededDerefBytes) {
Function *Callee = Arg->getParent();
const DataLayout &DL = Callee->getParent()->getDataLayout();
APInt Bytes(64, NeededDerefBytes);
// Check if the argument itself is marked dereferenceable and aligned.
if (isDereferenceableAndAlignedPointer(Arg, NeededAlign, Bytes, DL))
return true;
// Look at all call sites of the function. At this point we know we only have
// direct callees.
return all_of(Callee->users(), [&](User *U) {
CallBase &CB = cast<CallBase>(*U);
return isDereferenceableAndAlignedPointer(CB.getArgOperand(Arg->getArgNo()),
NeededAlign, Bytes, DL);
});
}
/// Determine that this argument is safe to promote, and find the argument
/// parts it can be promoted into.
static bool findArgParts(Argument *Arg, const DataLayout &DL, AAResults &AAR,
unsigned MaxElements, bool IsRecursive,
SmallVectorImpl<OffsetAndArgPart> &ArgPartsVec) {
// Quick exit for unused arguments
if (Arg->use_empty())
return true;
// We can only promote this argument if all the uses are loads at known
// offsets.
//
// Promoting the argument causes it to be loaded in the caller
// unconditionally. This is only safe if we can prove that either the load
// would have happened in the callee anyway (ie, there is a load in the entry
// block) or the pointer passed in at every call site is guaranteed to be
// valid.
// In the former case, invalid loads can happen, but would have happened
// anyway, in the latter case, invalid loads won't happen. This prevents us
// from introducing an invalid load that wouldn't have happened in the
// original code.
SmallDenseMap<int64_t, ArgPart, 4> ArgParts;
Align NeededAlign(1);
uint64_t NeededDerefBytes = 0;
// And if this is a byval argument we also allow to have store instructions.
// Only handle in such way arguments with specified alignment;
// if it's unspecified, the actual alignment of the argument is
// target-specific.
bool AreStoresAllowed = Arg->getParamByValType() && Arg->getParamAlign();
// An end user of a pointer argument is a load or store instruction.
// Returns std::nullopt if this load or store is not based on the argument.
// Return true if we can promote the instruction, false otherwise.
auto HandleEndUser = [&](auto *I, Type *Ty,
bool GuaranteedToExecute) -> std::optional<bool> {
// Don't promote volatile or atomic instructions.
if (!I->isSimple())
return false;
Value *Ptr = I->getPointerOperand();
APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
/* AllowNonInbounds */ true);
if (Ptr != Arg)
return std::nullopt;
if (Offset.getSignificantBits() >= 64)
return false;
TypeSize Size = DL.getTypeStoreSize(Ty);
// Don't try to promote scalable types.
if (Size.isScalable())
return false;
// If this is a recursive function and one of the types is a pointer,
// then promoting it might lead to recursive promotion.
if (IsRecursive && Ty->isPointerTy())
return false;
int64_t Off = Offset.getSExtValue();
auto Pair = ArgParts.try_emplace(
Off, ArgPart{Ty, I->getAlign(), GuaranteedToExecute ? I : nullptr});
ArgPart &Part = Pair.first->second;
bool OffsetNotSeenBefore = Pair.second;
// We limit promotion to only promoting up to a fixed number of elements of
// the aggregate.
if (MaxElements > 0 && ArgParts.size() > MaxElements) {
LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: "
<< "more than " << MaxElements << " parts\n");
return false;
}
// For now, we only support loading/storing one specific type at a given
// offset.
if (Part.Ty != Ty) {
LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: "
<< "accessed as both " << *Part.Ty << " and " << *Ty
<< " at offset " << Off << "\n");
return false;
}
// If this instruction is not guaranteed to execute, and we haven't seen a
// load or store at this offset before (or it had lower alignment), then we
// need to remember that requirement.
// Note that skipping instructions of previously seen offsets is only
// correct because we only allow a single type for a given offset, which
// also means that the number of accessed bytes will be the same.
if (!GuaranteedToExecute &&
(OffsetNotSeenBefore || Part.Alignment < I->getAlign())) {
// We won't be able to prove dereferenceability for negative offsets.
if (Off < 0)
return false;
// If the offset is not aligned, an aligned base pointer won't help.
if (!isAligned(I->getAlign(), Off))
return false;
NeededDerefBytes = std::max(NeededDerefBytes, Off + Size.getFixedValue());
NeededAlign = std::max(NeededAlign, I->getAlign());
}
Part.Alignment = std::max(Part.Alignment, I->getAlign());
return true;
};
// Look for loads and stores that are guaranteed to execute on entry.
for (Instruction &I : Arg->getParent()->getEntryBlock()) {
std::optional<bool> Res{};
if (LoadInst *LI = dyn_cast<LoadInst>(&I))
Res = HandleEndUser(LI, LI->getType(), /* GuaranteedToExecute */ true);
else if (StoreInst *SI = dyn_cast<StoreInst>(&I))
Res = HandleEndUser(SI, SI->getValueOperand()->getType(),
/* GuaranteedToExecute */ true);
if (Res && !*Res)
return false;
if (!isGuaranteedToTransferExecutionToSuccessor(&I))
break;
}
// Now look at all loads of the argument. Remember the load instructions
// for the aliasing check below.
SmallVector<const Use *, 16> Worklist;
SmallPtrSet<const Use *, 16> Visited;
SmallVector<LoadInst *, 16> Loads;
auto AppendUses = [&](const Value *V) {
for (const Use &U : V->uses())
if (Visited.insert(&U).second)
Worklist.push_back(&U);
};
AppendUses(Arg);
while (!Worklist.empty()) {
const Use *U = Worklist.pop_back_val();
Value *V = U->getUser();
if (isa<BitCastInst>(V)) {
AppendUses(V);
continue;
}
if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
if (!GEP->hasAllConstantIndices())
return false;
AppendUses(V);
continue;
}
if (auto *LI = dyn_cast<LoadInst>(V)) {
if (!*HandleEndUser(LI, LI->getType(), /* GuaranteedToExecute */ false))
return false;
Loads.push_back(LI);
continue;
}
// Stores are allowed for byval arguments
auto *SI = dyn_cast<StoreInst>(V);
if (AreStoresAllowed && SI &&
U->getOperandNo() == StoreInst::getPointerOperandIndex()) {
if (!*HandleEndUser(SI, SI->getValueOperand()->getType(),
/* GuaranteedToExecute */ false))
return false;
continue;
// Only stores TO the argument is allowed, all the other stores are
// unknown users
}
// Unknown user.
LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: "
<< "unknown user " << *V << "\n");
return false;
}
if (NeededDerefBytes || NeededAlign > 1) {
// Try to prove a required deref / aligned requirement.
if (!allCallersPassValidPointerForArgument(Arg, NeededAlign,
NeededDerefBytes)) {
LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: "
<< "not dereferenceable or aligned\n");
return false;
}
}
if (ArgParts.empty())
return true; // No users, this is a dead argument.
// Sort parts by offset.
append_range(ArgPartsVec, ArgParts);
sort(ArgPartsVec, llvm::less_first());
// Make sure the parts are non-overlapping.
int64_t Offset = ArgPartsVec[0].first;
for (const auto &Pair : ArgPartsVec) {
if (Pair.first < Offset)
return false; // Overlap with previous part.
Offset = Pair.first + DL.getTypeStoreSize(Pair.second.Ty);
}
// If store instructions are allowed, the path from the entry of the function
// to each load may be not free of instructions that potentially invalidate
// the load, and this is an admissible situation.
if (AreStoresAllowed)
return true;
// Okay, now we know that the argument is only used by load instructions, and
// it is safe to unconditionally perform all of them. Use alias analysis to
// check to see if the pointer is guaranteed to not be modified from entry of
// the function to each of the load instructions.
// Because there could be several/many load instructions, remember which
// blocks we know to be transparent to the load.
df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
for (LoadInst *Load : Loads) {
// Check to see if the load is invalidated from the start of the block to
// the load itself.
BasicBlock *BB = Load->getParent();
MemoryLocation Loc = MemoryLocation::get(Load);
if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
return false; // Pointer is invalidated!
// Now check every path from the entry block to the load for transparency.
// To do this, we perform a depth first search on the inverse CFG from the
// loading block.
for (BasicBlock *P : predecessors(BB)) {
for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
if (AAR.canBasicBlockModify(*TranspBB, Loc))
return false;
}
}
// If the path from the entry of the function to each load is free of
// instructions that potentially invalidate the load, we can make the
// transformation!
return true;
}
/// Check if callers and callee agree on how promoted arguments would be
/// passed.
static bool areTypesABICompatible(ArrayRef<Type *> Types, const Function &F,
const TargetTransformInfo &TTI) {
return all_of(F.uses(), [&](const Use &U) {
CallBase *CB = dyn_cast<CallBase>(U.getUser());
if (!CB)
return false;
const Function *Caller = CB->getCaller();
const Function *Callee = CB->getCalledFunction();
return TTI.areTypesABICompatible(Caller, Callee, Types);
});
}
/// PromoteArguments - This method checks the specified function to see if there
/// are any promotable arguments and if it is safe to promote the function (for
/// example, all callers are direct). If safe to promote some arguments, it
/// calls the DoPromotion method.
static Function *promoteArguments(Function *F, FunctionAnalysisManager &FAM,
unsigned MaxElements, bool IsRecursive) {
// Don't perform argument promotion for naked functions; otherwise we can end
// up removing parameters that are seemingly 'not used' as they are referred
// to in the assembly.
if (F->hasFnAttribute(Attribute::Naked))
return nullptr;
// Make sure that it is local to this module.
if (!F->hasLocalLinkage())
return nullptr;
// Don't promote arguments for variadic functions. Adding, removing, or
// changing non-pack parameters can change the classification of pack
// parameters. Frontends encode that classification at the call site in the
// IR, while in the callee the classification is determined dynamically based
// on the number of registers consumed so far.
if (F->isVarArg())
return nullptr;
// Don't transform functions that receive inallocas, as the transformation may
// not be safe depending on calling convention.
if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
return nullptr;
// First check: see if there are any pointer arguments! If not, quick exit.
SmallVector<Argument *, 16> PointerArgs;
for (Argument &I : F->args())
if (I.getType()->isPointerTy())
PointerArgs.push_back(&I);
if (PointerArgs.empty())
return nullptr;
// Second check: make sure that all callers are direct callers. We can't
// transform functions that have indirect callers. Also see if the function
// is self-recursive.
for (Use &U : F->uses()) {
CallBase *CB = dyn_cast<CallBase>(U.getUser());
// Must be a direct call.
if (CB == nullptr || !CB->isCallee(&U) ||
CB->getFunctionType() != F->getFunctionType())
return nullptr;
// Can't change signature of musttail callee
if (CB->isMustTailCall())
return nullptr;
if (CB->getFunction() == F)
IsRecursive = true;
}
// Can't change signature of musttail caller
// FIXME: Support promoting whole chain of musttail functions
for (BasicBlock &BB : *F)
if (BB.getTerminatingMustTailCall())
return nullptr;
const DataLayout &DL = F->getParent()->getDataLayout();
auto &AAR = FAM.getResult<AAManager>(*F);
const auto &TTI = FAM.getResult<TargetIRAnalysis>(*F);
// Check to see which arguments are promotable. If an argument is promotable,
// add it to ArgsToPromote.
DenseMap<Argument *, SmallVector<OffsetAndArgPart, 4>> ArgsToPromote;
unsigned NumArgsAfterPromote = F->getFunctionType()->getNumParams();
for (Argument *PtrArg : PointerArgs) {
// Replace sret attribute with noalias. This reduces register pressure by
// avoiding a register copy.
if (PtrArg->hasStructRetAttr()) {
unsigned ArgNo = PtrArg->getArgNo();
F->removeParamAttr(ArgNo, Attribute::StructRet);
F->addParamAttr(ArgNo, Attribute::NoAlias);
for (Use &U : F->uses()) {
CallBase &CB = cast<CallBase>(*U.getUser());
CB.removeParamAttr(ArgNo, Attribute::StructRet);
CB.addParamAttr(ArgNo, Attribute::NoAlias);
}
}
// If we can promote the pointer to its value.
SmallVector<OffsetAndArgPart, 4> ArgParts;
if (findArgParts(PtrArg, DL, AAR, MaxElements, IsRecursive, ArgParts)) {
SmallVector<Type *, 4> Types;
for (const auto &Pair : ArgParts)
Types.push_back(Pair.second.Ty);
if (areTypesABICompatible(Types, *F, TTI)) {
NumArgsAfterPromote += ArgParts.size() - 1;
ArgsToPromote.insert({PtrArg, std::move(ArgParts)});
}
}
}
// No promotable pointer arguments.
if (ArgsToPromote.empty())
return nullptr;
if (NumArgsAfterPromote > TTI.getMaxNumArgs())
return nullptr;
return doPromotion(F, FAM, ArgsToPromote);
}
PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
CGSCCAnalysisManager &AM,
LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
bool Changed = false, LocalChange;
// Iterate until we stop promoting from this SCC.
do {
LocalChange = false;
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
bool IsRecursive = C.size() > 1;
for (LazyCallGraph::Node &N : C) {
Function &OldF = N.getFunction();
Function *NewF = promoteArguments(&OldF, FAM, MaxElements, IsRecursive);
if (!NewF)
continue;
LocalChange = true;
// Directly substitute the functions in the call graph. Note that this
// requires the old function to be completely dead and completely
// replaced by the new function. It does no call graph updates, it merely
// swaps out the particular function mapped to a particular node in the
// graph.
C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
FAM.clear(OldF, OldF.getName());
OldF.eraseFromParent();
PreservedAnalyses FuncPA;
FuncPA.preserveSet<CFGAnalyses>();
for (auto *U : NewF->users()) {
auto *UserF = cast<CallBase>(U)->getFunction();
FAM.invalidate(*UserF, FuncPA);
}
}
Changed |= LocalChange;
} while (LocalChange);
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
// We've cleared out analyses for deleted functions.
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
// We've manually invalidated analyses for functions we've modified.
PA.preserveSet<AllAnalysesOn<Function>>();
return PA;
}
|