1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
|
//==-- MemProfContextDisambiguation.cpp - Disambiguate contexts -------------=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements support for context disambiguation of allocation
// calls for profile guided heap optimization. Specifically, it uses Memprof
// profiles which indicate context specific allocation behavior (currently
// distinguishing cold vs hot memory allocations). Cloning is performed to
// expose the cold allocation call contexts, and the allocation calls are
// subsequently annotated with an attribute for later transformation.
//
// The transformations can be performed either directly on IR (regular LTO), or
// on a ThinLTO index (and later applied to the IR during the ThinLTO backend).
// Both types of LTO operate on a the same base graph representation, which
// uses CRTP to support either IR or Index formats.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/MemProfContextDisambiguation.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryProfileInfo.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <sstream>
#include <vector>
using namespace llvm;
using namespace llvm::memprof;
#define DEBUG_TYPE "memprof-context-disambiguation"
STATISTIC(FunctionClonesAnalysis,
"Number of function clones created during whole program analysis");
STATISTIC(FunctionClonesThinBackend,
"Number of function clones created during ThinLTO backend");
STATISTIC(FunctionsClonedThinBackend,
"Number of functions that had clones created during ThinLTO backend");
STATISTIC(AllocTypeNotCold, "Number of not cold static allocations (possibly "
"cloned) during whole program analysis");
STATISTIC(AllocTypeCold, "Number of cold static allocations (possibly cloned) "
"during whole program analysis");
STATISTIC(AllocTypeNotColdThinBackend,
"Number of not cold static allocations (possibly cloned) during "
"ThinLTO backend");
STATISTIC(AllocTypeColdThinBackend, "Number of cold static allocations "
"(possibly cloned) during ThinLTO backend");
STATISTIC(OrigAllocsThinBackend,
"Number of original (not cloned) allocations with memprof profiles "
"during ThinLTO backend");
STATISTIC(
AllocVersionsThinBackend,
"Number of allocation versions (including clones) during ThinLTO backend");
STATISTIC(MaxAllocVersionsThinBackend,
"Maximum number of allocation versions created for an original "
"allocation during ThinLTO backend");
STATISTIC(UnclonableAllocsThinBackend,
"Number of unclonable ambigous allocations during ThinLTO backend");
static cl::opt<std::string> DotFilePathPrefix(
"memprof-dot-file-path-prefix", cl::init(""), cl::Hidden,
cl::value_desc("filename"),
cl::desc("Specify the path prefix of the MemProf dot files."));
static cl::opt<bool> ExportToDot("memprof-export-to-dot", cl::init(false),
cl::Hidden,
cl::desc("Export graph to dot files."));
static cl::opt<bool>
DumpCCG("memprof-dump-ccg", cl::init(false), cl::Hidden,
cl::desc("Dump CallingContextGraph to stdout after each stage."));
static cl::opt<bool>
VerifyCCG("memprof-verify-ccg", cl::init(false), cl::Hidden,
cl::desc("Perform verification checks on CallingContextGraph."));
static cl::opt<bool>
VerifyNodes("memprof-verify-nodes", cl::init(false), cl::Hidden,
cl::desc("Perform frequent verification checks on nodes."));
static cl::opt<std::string> MemProfImportSummary(
"memprof-import-summary",
cl::desc("Import summary to use for testing the ThinLTO backend via opt"),
cl::Hidden);
// Indicate we are linking with an allocator that supports hot/cold operator
// new interfaces.
cl::opt<bool> SupportsHotColdNew(
"supports-hot-cold-new", cl::init(false), cl::Hidden,
cl::desc("Linking with hot/cold operator new interfaces"));
namespace {
/// CRTP base for graphs built from either IR or ThinLTO summary index.
///
/// The graph represents the call contexts in all memprof metadata on allocation
/// calls, with nodes for the allocations themselves, as well as for the calls
/// in each context. The graph is initially built from the allocation memprof
/// metadata (or summary) MIBs. It is then updated to match calls with callsite
/// metadata onto the nodes, updating it to reflect any inlining performed on
/// those calls.
///
/// Each MIB (representing an allocation's call context with allocation
/// behavior) is assigned a unique context id during the graph build. The edges
/// and nodes in the graph are decorated with the context ids they carry. This
/// is used to correctly update the graph when cloning is performed so that we
/// can uniquify the context for a single (possibly cloned) allocation.
template <typename DerivedCCG, typename FuncTy, typename CallTy>
class CallsiteContextGraph {
public:
CallsiteContextGraph() = default;
CallsiteContextGraph(const CallsiteContextGraph &) = default;
CallsiteContextGraph(CallsiteContextGraph &&) = default;
/// Main entry point to perform analysis and transformations on graph.
bool process();
/// Perform cloning on the graph necessary to uniquely identify the allocation
/// behavior of an allocation based on its context.
void identifyClones();
/// Assign callsite clones to functions, cloning functions as needed to
/// accommodate the combinations of their callsite clones reached by callers.
/// For regular LTO this clones functions and callsites in the IR, but for
/// ThinLTO the cloning decisions are noted in the summaries and later applied
/// in applyImport.
bool assignFunctions();
void dump() const;
void print(raw_ostream &OS) const;
friend raw_ostream &operator<<(raw_ostream &OS,
const CallsiteContextGraph &CCG) {
CCG.print(OS);
return OS;
}
friend struct GraphTraits<
const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *>;
friend struct DOTGraphTraits<
const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *>;
void exportToDot(std::string Label) const;
/// Represents a function clone via FuncTy pointer and clone number pair.
struct FuncInfo final
: public std::pair<FuncTy *, unsigned /*Clone number*/> {
using Base = std::pair<FuncTy *, unsigned>;
FuncInfo(const Base &B) : Base(B) {}
FuncInfo(FuncTy *F = nullptr, unsigned CloneNo = 0) : Base(F, CloneNo) {}
explicit operator bool() const { return this->first != nullptr; }
FuncTy *func() const { return this->first; }
unsigned cloneNo() const { return this->second; }
};
/// Represents a callsite clone via CallTy and clone number pair.
struct CallInfo final : public std::pair<CallTy, unsigned /*Clone number*/> {
using Base = std::pair<CallTy, unsigned>;
CallInfo(const Base &B) : Base(B) {}
CallInfo(CallTy Call = nullptr, unsigned CloneNo = 0)
: Base(Call, CloneNo) {}
explicit operator bool() const { return (bool)this->first; }
CallTy call() const { return this->first; }
unsigned cloneNo() const { return this->second; }
void setCloneNo(unsigned N) { this->second = N; }
void print(raw_ostream &OS) const {
if (!operator bool()) {
assert(!cloneNo());
OS << "null Call";
return;
}
call()->print(OS);
OS << "\t(clone " << cloneNo() << ")";
}
void dump() const {
print(dbgs());
dbgs() << "\n";
}
friend raw_ostream &operator<<(raw_ostream &OS, const CallInfo &Call) {
Call.print(OS);
return OS;
}
};
struct ContextEdge;
/// Node in the Callsite Context Graph
struct ContextNode {
// Keep this for now since in the IR case where we have an Instruction* it
// is not as immediately discoverable. Used for printing richer information
// when dumping graph.
bool IsAllocation;
// Keeps track of when the Call was reset to null because there was
// recursion.
bool Recursive = false;
// The corresponding allocation or interior call.
CallInfo Call;
// For alloc nodes this is a unique id assigned when constructed, and for
// callsite stack nodes it is the original stack id when the node is
// constructed from the memprof MIB metadata on the alloc nodes. Note that
// this is only used when matching callsite metadata onto the stack nodes
// created when processing the allocation memprof MIBs, and for labeling
// nodes in the dot graph. Therefore we don't bother to assign a value for
// clones.
uint64_t OrigStackOrAllocId = 0;
// This will be formed by ORing together the AllocationType enum values
// for contexts including this node.
uint8_t AllocTypes = 0;
// Edges to all callees in the profiled call stacks.
// TODO: Should this be a map (from Callee node) for more efficient lookup?
std::vector<std::shared_ptr<ContextEdge>> CalleeEdges;
// Edges to all callers in the profiled call stacks.
// TODO: Should this be a map (from Caller node) for more efficient lookup?
std::vector<std::shared_ptr<ContextEdge>> CallerEdges;
// The set of IDs for contexts including this node.
DenseSet<uint32_t> ContextIds;
// List of clones of this ContextNode, initially empty.
std::vector<ContextNode *> Clones;
// If a clone, points to the original uncloned node.
ContextNode *CloneOf = nullptr;
ContextNode(bool IsAllocation) : IsAllocation(IsAllocation), Call() {}
ContextNode(bool IsAllocation, CallInfo C)
: IsAllocation(IsAllocation), Call(C) {}
void addClone(ContextNode *Clone) {
if (CloneOf) {
CloneOf->Clones.push_back(Clone);
Clone->CloneOf = CloneOf;
} else {
Clones.push_back(Clone);
assert(!Clone->CloneOf);
Clone->CloneOf = this;
}
}
ContextNode *getOrigNode() {
if (!CloneOf)
return this;
return CloneOf;
}
void addOrUpdateCallerEdge(ContextNode *Caller, AllocationType AllocType,
unsigned int ContextId);
ContextEdge *findEdgeFromCallee(const ContextNode *Callee);
ContextEdge *findEdgeFromCaller(const ContextNode *Caller);
void eraseCalleeEdge(const ContextEdge *Edge);
void eraseCallerEdge(const ContextEdge *Edge);
void setCall(CallInfo C) { Call = C; }
bool hasCall() const { return (bool)Call.call(); }
void printCall(raw_ostream &OS) const { Call.print(OS); }
// True if this node was effectively removed from the graph, in which case
// its context id set, caller edges, and callee edges should all be empty.
bool isRemoved() const {
assert(ContextIds.empty() ==
(CalleeEdges.empty() && CallerEdges.empty()));
return ContextIds.empty();
}
void dump() const;
void print(raw_ostream &OS) const;
friend raw_ostream &operator<<(raw_ostream &OS, const ContextNode &Node) {
Node.print(OS);
return OS;
}
};
/// Edge in the Callsite Context Graph from a ContextNode N to a caller or
/// callee.
struct ContextEdge {
ContextNode *Callee;
ContextNode *Caller;
// This will be formed by ORing together the AllocationType enum values
// for contexts including this edge.
uint8_t AllocTypes = 0;
// The set of IDs for contexts including this edge.
DenseSet<uint32_t> ContextIds;
ContextEdge(ContextNode *Callee, ContextNode *Caller, uint8_t AllocType,
DenseSet<uint32_t> ContextIds)
: Callee(Callee), Caller(Caller), AllocTypes(AllocType),
ContextIds(ContextIds) {}
DenseSet<uint32_t> &getContextIds() { return ContextIds; }
void dump() const;
void print(raw_ostream &OS) const;
friend raw_ostream &operator<<(raw_ostream &OS, const ContextEdge &Edge) {
Edge.print(OS);
return OS;
}
};
/// Helper to remove callee edges that have allocation type None (due to not
/// carrying any context ids) after transformations.
void removeNoneTypeCalleeEdges(ContextNode *Node);
protected:
/// Get a list of nodes corresponding to the stack ids in the given callsite
/// context.
template <class NodeT, class IteratorT>
std::vector<uint64_t>
getStackIdsWithContextNodes(CallStack<NodeT, IteratorT> &CallsiteContext);
/// Adds nodes for the given allocation and any stack ids on its memprof MIB
/// metadata (or summary).
ContextNode *addAllocNode(CallInfo Call, const FuncTy *F);
/// Adds nodes for the given MIB stack ids.
template <class NodeT, class IteratorT>
void addStackNodesForMIB(ContextNode *AllocNode,
CallStack<NodeT, IteratorT> &StackContext,
CallStack<NodeT, IteratorT> &CallsiteContext,
AllocationType AllocType);
/// Matches all callsite metadata (or summary) to the nodes created for
/// allocation memprof MIB metadata, synthesizing new nodes to reflect any
/// inlining performed on those callsite instructions.
void updateStackNodes();
/// Update graph to conservatively handle any callsite stack nodes that target
/// multiple different callee target functions.
void handleCallsitesWithMultipleTargets();
/// Save lists of calls with MemProf metadata in each function, for faster
/// iteration.
std::vector<std::pair<FuncTy *, std::vector<CallInfo>>>
FuncToCallsWithMetadata;
/// Map from callsite node to the enclosing caller function.
std::map<const ContextNode *, const FuncTy *> NodeToCallingFunc;
private:
using EdgeIter = typename std::vector<std::shared_ptr<ContextEdge>>::iterator;
using CallContextInfo = std::tuple<CallTy, std::vector<uint64_t>,
const FuncTy *, DenseSet<uint32_t>>;
/// Assigns the given Node to calls at or inlined into the location with
/// the Node's stack id, after post order traversing and processing its
/// caller nodes. Uses the call information recorded in the given
/// StackIdToMatchingCalls map, and creates new nodes for inlined sequences
/// as needed. Called by updateStackNodes which sets up the given
/// StackIdToMatchingCalls map.
void assignStackNodesPostOrder(
ContextNode *Node, DenseSet<const ContextNode *> &Visited,
DenseMap<uint64_t, std::vector<CallContextInfo>> &StackIdToMatchingCalls);
/// Duplicates the given set of context ids, updating the provided
/// map from each original id with the newly generated context ids,
/// and returning the new duplicated id set.
DenseSet<uint32_t> duplicateContextIds(
const DenseSet<uint32_t> &StackSequenceContextIds,
DenseMap<uint32_t, DenseSet<uint32_t>> &OldToNewContextIds);
/// Propagates all duplicated context ids across the graph.
void propagateDuplicateContextIds(
const DenseMap<uint32_t, DenseSet<uint32_t>> &OldToNewContextIds);
/// Connect the NewNode to OrigNode's callees if TowardsCallee is true,
/// else to its callers. Also updates OrigNode's edges to remove any context
/// ids moved to the newly created edge.
void connectNewNode(ContextNode *NewNode, ContextNode *OrigNode,
bool TowardsCallee);
/// Get the stack id corresponding to the given Id or Index (for IR this will
/// return itself, for a summary index this will return the id recorded in the
/// index for that stack id index value).
uint64_t getStackId(uint64_t IdOrIndex) const {
return static_cast<const DerivedCCG *>(this)->getStackId(IdOrIndex);
}
/// Returns true if the given call targets the given function.
bool calleeMatchesFunc(CallTy Call, const FuncTy *Func) {
return static_cast<DerivedCCG *>(this)->calleeMatchesFunc(Call, Func);
}
/// Get a list of nodes corresponding to the stack ids in the given
/// callsite's context.
std::vector<uint64_t> getStackIdsWithContextNodesForCall(CallTy Call) {
return static_cast<DerivedCCG *>(this)->getStackIdsWithContextNodesForCall(
Call);
}
/// Get the last stack id in the context for callsite.
uint64_t getLastStackId(CallTy Call) {
return static_cast<DerivedCCG *>(this)->getLastStackId(Call);
}
/// Update the allocation call to record type of allocated memory.
void updateAllocationCall(CallInfo &Call, AllocationType AllocType) {
AllocType == AllocationType::Cold ? AllocTypeCold++ : AllocTypeNotCold++;
static_cast<DerivedCCG *>(this)->updateAllocationCall(Call, AllocType);
}
/// Update non-allocation call to invoke (possibly cloned) function
/// CalleeFunc.
void updateCall(CallInfo &CallerCall, FuncInfo CalleeFunc) {
static_cast<DerivedCCG *>(this)->updateCall(CallerCall, CalleeFunc);
}
/// Clone the given function for the given callsite, recording mapping of all
/// of the functions tracked calls to their new versions in the CallMap.
/// Assigns new clones to clone number CloneNo.
FuncInfo cloneFunctionForCallsite(
FuncInfo &Func, CallInfo &Call, std::map<CallInfo, CallInfo> &CallMap,
std::vector<CallInfo> &CallsWithMetadataInFunc, unsigned CloneNo) {
return static_cast<DerivedCCG *>(this)->cloneFunctionForCallsite(
Func, Call, CallMap, CallsWithMetadataInFunc, CloneNo);
}
/// Gets a label to use in the dot graph for the given call clone in the given
/// function.
std::string getLabel(const FuncTy *Func, const CallTy Call,
unsigned CloneNo) const {
return static_cast<const DerivedCCG *>(this)->getLabel(Func, Call, CloneNo);
}
/// Helpers to find the node corresponding to the given call or stackid.
ContextNode *getNodeForInst(const CallInfo &C);
ContextNode *getNodeForAlloc(const CallInfo &C);
ContextNode *getNodeForStackId(uint64_t StackId);
/// Removes the node information recorded for the given call.
void unsetNodeForInst(const CallInfo &C);
/// Computes the alloc type corresponding to the given context ids, by
/// unioning their recorded alloc types.
uint8_t computeAllocType(DenseSet<uint32_t> &ContextIds);
/// Returns the alloction type of the intersection of the contexts of two
/// nodes (based on their provided context id sets), optimized for the case
/// when Node1Ids is smaller than Node2Ids.
uint8_t intersectAllocTypesImpl(const DenseSet<uint32_t> &Node1Ids,
const DenseSet<uint32_t> &Node2Ids);
/// Returns the alloction type of the intersection of the contexts of two
/// nodes (based on their provided context id sets).
uint8_t intersectAllocTypes(const DenseSet<uint32_t> &Node1Ids,
const DenseSet<uint32_t> &Node2Ids);
/// Create a clone of Edge's callee and move Edge to that new callee node,
/// performing the necessary context id and allocation type updates.
/// If callee's caller edge iterator is supplied, it is updated when removing
/// the edge from that list.
ContextNode *
moveEdgeToNewCalleeClone(const std::shared_ptr<ContextEdge> &Edge,
EdgeIter *CallerEdgeI = nullptr);
/// Change the callee of Edge to existing callee clone NewCallee, performing
/// the necessary context id and allocation type updates.
/// If callee's caller edge iterator is supplied, it is updated when removing
/// the edge from that list.
void moveEdgeToExistingCalleeClone(const std::shared_ptr<ContextEdge> &Edge,
ContextNode *NewCallee,
EdgeIter *CallerEdgeI = nullptr,
bool NewClone = false);
/// Recursively perform cloning on the graph for the given Node and its
/// callers, in order to uniquely identify the allocation behavior of an
/// allocation given its context.
void identifyClones(ContextNode *Node,
DenseSet<const ContextNode *> &Visited);
/// Map from each context ID to the AllocationType assigned to that context.
std::map<uint32_t, AllocationType> ContextIdToAllocationType;
/// Identifies the context node created for a stack id when adding the MIB
/// contexts to the graph. This is used to locate the context nodes when
/// trying to assign the corresponding callsites with those stack ids to these
/// nodes.
std::map<uint64_t, ContextNode *> StackEntryIdToContextNodeMap;
/// Maps to track the calls to their corresponding nodes in the graph.
MapVector<CallInfo, ContextNode *> AllocationCallToContextNodeMap;
MapVector<CallInfo, ContextNode *> NonAllocationCallToContextNodeMap;
/// Owner of all ContextNode unique_ptrs.
std::vector<std::unique_ptr<ContextNode>> NodeOwner;
/// Perform sanity checks on graph when requested.
void check() const;
/// Keeps track of the last unique context id assigned.
unsigned int LastContextId = 0;
};
template <typename DerivedCCG, typename FuncTy, typename CallTy>
using ContextNode =
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode;
template <typename DerivedCCG, typename FuncTy, typename CallTy>
using ContextEdge =
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextEdge;
template <typename DerivedCCG, typename FuncTy, typename CallTy>
using FuncInfo =
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::FuncInfo;
template <typename DerivedCCG, typename FuncTy, typename CallTy>
using CallInfo =
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::CallInfo;
/// CRTP derived class for graphs built from IR (regular LTO).
class ModuleCallsiteContextGraph
: public CallsiteContextGraph<ModuleCallsiteContextGraph, Function,
Instruction *> {
public:
ModuleCallsiteContextGraph(
Module &M,
function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter);
private:
friend CallsiteContextGraph<ModuleCallsiteContextGraph, Function,
Instruction *>;
uint64_t getStackId(uint64_t IdOrIndex) const;
bool calleeMatchesFunc(Instruction *Call, const Function *Func);
uint64_t getLastStackId(Instruction *Call);
std::vector<uint64_t> getStackIdsWithContextNodesForCall(Instruction *Call);
void updateAllocationCall(CallInfo &Call, AllocationType AllocType);
void updateCall(CallInfo &CallerCall, FuncInfo CalleeFunc);
CallsiteContextGraph<ModuleCallsiteContextGraph, Function,
Instruction *>::FuncInfo
cloneFunctionForCallsite(FuncInfo &Func, CallInfo &Call,
std::map<CallInfo, CallInfo> &CallMap,
std::vector<CallInfo> &CallsWithMetadataInFunc,
unsigned CloneNo);
std::string getLabel(const Function *Func, const Instruction *Call,
unsigned CloneNo) const;
const Module &Mod;
function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
};
/// Represents a call in the summary index graph, which can either be an
/// allocation or an interior callsite node in an allocation's context.
/// Holds a pointer to the corresponding data structure in the index.
struct IndexCall : public PointerUnion<CallsiteInfo *, AllocInfo *> {
IndexCall() : PointerUnion() {}
IndexCall(std::nullptr_t) : IndexCall() {}
IndexCall(CallsiteInfo *StackNode) : PointerUnion(StackNode) {}
IndexCall(AllocInfo *AllocNode) : PointerUnion(AllocNode) {}
IndexCall(PointerUnion PT) : PointerUnion(PT) {}
IndexCall *operator->() { return this; }
PointerUnion<CallsiteInfo *, AllocInfo *> getBase() const { return *this; }
void print(raw_ostream &OS) const {
if (auto *AI = llvm::dyn_cast_if_present<AllocInfo *>(getBase())) {
OS << *AI;
} else {
auto *CI = llvm::dyn_cast_if_present<CallsiteInfo *>(getBase());
assert(CI);
OS << *CI;
}
}
};
/// CRTP derived class for graphs built from summary index (ThinLTO).
class IndexCallsiteContextGraph
: public CallsiteContextGraph<IndexCallsiteContextGraph, FunctionSummary,
IndexCall> {
public:
IndexCallsiteContextGraph(
ModuleSummaryIndex &Index,
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
isPrevailing);
private:
friend CallsiteContextGraph<IndexCallsiteContextGraph, FunctionSummary,
IndexCall>;
uint64_t getStackId(uint64_t IdOrIndex) const;
bool calleeMatchesFunc(IndexCall &Call, const FunctionSummary *Func);
uint64_t getLastStackId(IndexCall &Call);
std::vector<uint64_t> getStackIdsWithContextNodesForCall(IndexCall &Call);
void updateAllocationCall(CallInfo &Call, AllocationType AllocType);
void updateCall(CallInfo &CallerCall, FuncInfo CalleeFunc);
CallsiteContextGraph<IndexCallsiteContextGraph, FunctionSummary,
IndexCall>::FuncInfo
cloneFunctionForCallsite(FuncInfo &Func, CallInfo &Call,
std::map<CallInfo, CallInfo> &CallMap,
std::vector<CallInfo> &CallsWithMetadataInFunc,
unsigned CloneNo);
std::string getLabel(const FunctionSummary *Func, const IndexCall &Call,
unsigned CloneNo) const;
// Saves mapping from function summaries containing memprof records back to
// its VI, for use in checking and debugging.
std::map<const FunctionSummary *, ValueInfo> FSToVIMap;
const ModuleSummaryIndex &Index;
};
} // namespace
namespace llvm {
template <>
struct DenseMapInfo<typename CallsiteContextGraph<
ModuleCallsiteContextGraph, Function, Instruction *>::CallInfo>
: public DenseMapInfo<std::pair<Instruction *, unsigned>> {};
template <>
struct DenseMapInfo<typename CallsiteContextGraph<
IndexCallsiteContextGraph, FunctionSummary, IndexCall>::CallInfo>
: public DenseMapInfo<std::pair<IndexCall, unsigned>> {};
template <>
struct DenseMapInfo<IndexCall>
: public DenseMapInfo<PointerUnion<CallsiteInfo *, AllocInfo *>> {};
} // end namespace llvm
namespace {
struct FieldSeparator {
bool Skip = true;
const char *Sep;
FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
};
raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
if (FS.Skip) {
FS.Skip = false;
return OS;
}
return OS << FS.Sep;
}
// Map the uint8_t alloc types (which may contain NotCold|Cold) to the alloc
// type we should actually use on the corresponding allocation.
// If we can't clone a node that has NotCold+Cold alloc type, we will fall
// back to using NotCold. So don't bother cloning to distinguish NotCold+Cold
// from NotCold.
AllocationType allocTypeToUse(uint8_t AllocTypes) {
assert(AllocTypes != (uint8_t)AllocationType::None);
if (AllocTypes ==
((uint8_t)AllocationType::NotCold | (uint8_t)AllocationType::Cold))
return AllocationType::NotCold;
else
return (AllocationType)AllocTypes;
}
// Helper to check if the alloc types for all edges recorded in the
// InAllocTypes vector match the alloc types for all edges in the Edges
// vector.
template <typename DerivedCCG, typename FuncTy, typename CallTy>
bool allocTypesMatch(
const std::vector<uint8_t> &InAllocTypes,
const std::vector<std::shared_ptr<ContextEdge<DerivedCCG, FuncTy, CallTy>>>
&Edges) {
return std::equal(
InAllocTypes.begin(), InAllocTypes.end(), Edges.begin(),
[](const uint8_t &l,
const std::shared_ptr<ContextEdge<DerivedCCG, FuncTy, CallTy>> &r) {
// Can share if one of the edges is None type - don't
// care about the type along that edge as it doesn't
// exist for those context ids.
if (l == (uint8_t)AllocationType::None ||
r->AllocTypes == (uint8_t)AllocationType::None)
return true;
return allocTypeToUse(l) == allocTypeToUse(r->AllocTypes);
});
}
} // end anonymous namespace
template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::getNodeForInst(
const CallInfo &C) {
ContextNode *Node = getNodeForAlloc(C);
if (Node)
return Node;
return NonAllocationCallToContextNodeMap.lookup(C);
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::getNodeForAlloc(
const CallInfo &C) {
return AllocationCallToContextNodeMap.lookup(C);
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::getNodeForStackId(
uint64_t StackId) {
auto StackEntryNode = StackEntryIdToContextNodeMap.find(StackId);
if (StackEntryNode != StackEntryIdToContextNodeMap.end())
return StackEntryNode->second;
return nullptr;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::unsetNodeForInst(
const CallInfo &C) {
AllocationCallToContextNodeMap.erase(C) ||
NonAllocationCallToContextNodeMap.erase(C);
assert(!AllocationCallToContextNodeMap.count(C) &&
!NonAllocationCallToContextNodeMap.count(C));
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::
addOrUpdateCallerEdge(ContextNode *Caller, AllocationType AllocType,
unsigned int ContextId) {
for (auto &Edge : CallerEdges) {
if (Edge->Caller == Caller) {
Edge->AllocTypes |= (uint8_t)AllocType;
Edge->getContextIds().insert(ContextId);
return;
}
}
std::shared_ptr<ContextEdge> Edge = std::make_shared<ContextEdge>(
this, Caller, (uint8_t)AllocType, DenseSet<uint32_t>({ContextId}));
CallerEdges.push_back(Edge);
Caller->CalleeEdges.push_back(Edge);
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<
DerivedCCG, FuncTy, CallTy>::removeNoneTypeCalleeEdges(ContextNode *Node) {
for (auto EI = Node->CalleeEdges.begin(); EI != Node->CalleeEdges.end();) {
auto Edge = *EI;
if (Edge->AllocTypes == (uint8_t)AllocationType::None) {
assert(Edge->ContextIds.empty());
Edge->Callee->eraseCallerEdge(Edge.get());
EI = Node->CalleeEdges.erase(EI);
} else
++EI;
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextEdge *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::
findEdgeFromCallee(const ContextNode *Callee) {
for (const auto &Edge : CalleeEdges)
if (Edge->Callee == Callee)
return Edge.get();
return nullptr;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextEdge *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::
findEdgeFromCaller(const ContextNode *Caller) {
for (const auto &Edge : CallerEdges)
if (Edge->Caller == Caller)
return Edge.get();
return nullptr;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::
eraseCalleeEdge(const ContextEdge *Edge) {
auto EI =
std::find_if(CalleeEdges.begin(), CalleeEdges.end(),
[Edge](const std::shared_ptr<ContextEdge> &CalleeEdge) {
return CalleeEdge.get() == Edge;
});
assert(EI != CalleeEdges.end());
CalleeEdges.erase(EI);
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::
eraseCallerEdge(const ContextEdge *Edge) {
auto EI =
std::find_if(CallerEdges.begin(), CallerEdges.end(),
[Edge](const std::shared_ptr<ContextEdge> &CallerEdge) {
return CallerEdge.get() == Edge;
});
assert(EI != CallerEdges.end());
CallerEdges.erase(EI);
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
uint8_t CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::computeAllocType(
DenseSet<uint32_t> &ContextIds) {
uint8_t BothTypes =
(uint8_t)AllocationType::Cold | (uint8_t)AllocationType::NotCold;
uint8_t AllocType = (uint8_t)AllocationType::None;
for (auto Id : ContextIds) {
AllocType |= (uint8_t)ContextIdToAllocationType[Id];
// Bail early if alloc type reached both, no further refinement.
if (AllocType == BothTypes)
return AllocType;
}
return AllocType;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
uint8_t
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::intersectAllocTypesImpl(
const DenseSet<uint32_t> &Node1Ids, const DenseSet<uint32_t> &Node2Ids) {
uint8_t BothTypes =
(uint8_t)AllocationType::Cold | (uint8_t)AllocationType::NotCold;
uint8_t AllocType = (uint8_t)AllocationType::None;
for (auto Id : Node1Ids) {
if (!Node2Ids.count(Id))
continue;
AllocType |= (uint8_t)ContextIdToAllocationType[Id];
// Bail early if alloc type reached both, no further refinement.
if (AllocType == BothTypes)
return AllocType;
}
return AllocType;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
uint8_t CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::intersectAllocTypes(
const DenseSet<uint32_t> &Node1Ids, const DenseSet<uint32_t> &Node2Ids) {
if (Node1Ids.size() < Node2Ids.size())
return intersectAllocTypesImpl(Node1Ids, Node2Ids);
else
return intersectAllocTypesImpl(Node2Ids, Node1Ids);
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::addAllocNode(
CallInfo Call, const FuncTy *F) {
assert(!getNodeForAlloc(Call));
NodeOwner.push_back(
std::make_unique<ContextNode>(/*IsAllocation=*/true, Call));
ContextNode *AllocNode = NodeOwner.back().get();
AllocationCallToContextNodeMap[Call] = AllocNode;
NodeToCallingFunc[AllocNode] = F;
// Use LastContextId as a uniq id for MIB allocation nodes.
AllocNode->OrigStackOrAllocId = LastContextId;
// Alloc type should be updated as we add in the MIBs. We should assert
// afterwards that it is not still None.
AllocNode->AllocTypes = (uint8_t)AllocationType::None;
return AllocNode;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
template <class NodeT, class IteratorT>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::addStackNodesForMIB(
ContextNode *AllocNode, CallStack<NodeT, IteratorT> &StackContext,
CallStack<NodeT, IteratorT> &CallsiteContext, AllocationType AllocType) {
// Treating the hot alloc type as NotCold before the disambiguation for "hot"
// is done.
if (AllocType == AllocationType::Hot)
AllocType = AllocationType::NotCold;
ContextIdToAllocationType[++LastContextId] = AllocType;
// Update alloc type and context ids for this MIB.
AllocNode->AllocTypes |= (uint8_t)AllocType;
AllocNode->ContextIds.insert(LastContextId);
// Now add or update nodes for each stack id in alloc's context.
// Later when processing the stack ids on non-alloc callsites we will adjust
// for any inlining in the context.
ContextNode *PrevNode = AllocNode;
// Look for recursion (direct recursion should have been collapsed by
// module summary analysis, here we should just be detecting mutual
// recursion). Mark these nodes so we don't try to clone.
SmallSet<uint64_t, 8> StackIdSet;
// Skip any on the allocation call (inlining).
for (auto ContextIter = StackContext.beginAfterSharedPrefix(CallsiteContext);
ContextIter != StackContext.end(); ++ContextIter) {
auto StackId = getStackId(*ContextIter);
ContextNode *StackNode = getNodeForStackId(StackId);
if (!StackNode) {
NodeOwner.push_back(
std::make_unique<ContextNode>(/*IsAllocation=*/false));
StackNode = NodeOwner.back().get();
StackEntryIdToContextNodeMap[StackId] = StackNode;
StackNode->OrigStackOrAllocId = StackId;
}
auto Ins = StackIdSet.insert(StackId);
if (!Ins.second)
StackNode->Recursive = true;
StackNode->ContextIds.insert(LastContextId);
StackNode->AllocTypes |= (uint8_t)AllocType;
PrevNode->addOrUpdateCallerEdge(StackNode, AllocType, LastContextId);
PrevNode = StackNode;
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
DenseSet<uint32_t>
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::duplicateContextIds(
const DenseSet<uint32_t> &StackSequenceContextIds,
DenseMap<uint32_t, DenseSet<uint32_t>> &OldToNewContextIds) {
DenseSet<uint32_t> NewContextIds;
for (auto OldId : StackSequenceContextIds) {
NewContextIds.insert(++LastContextId);
OldToNewContextIds[OldId].insert(LastContextId);
assert(ContextIdToAllocationType.count(OldId));
// The new context has the same allocation type as original.
ContextIdToAllocationType[LastContextId] = ContextIdToAllocationType[OldId];
}
return NewContextIds;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::
propagateDuplicateContextIds(
const DenseMap<uint32_t, DenseSet<uint32_t>> &OldToNewContextIds) {
// Build a set of duplicated context ids corresponding to the input id set.
auto GetNewIds = [&OldToNewContextIds](const DenseSet<uint32_t> &ContextIds) {
DenseSet<uint32_t> NewIds;
for (auto Id : ContextIds)
if (auto NewId = OldToNewContextIds.find(Id);
NewId != OldToNewContextIds.end())
NewIds.insert(NewId->second.begin(), NewId->second.end());
return NewIds;
};
// Recursively update context ids sets along caller edges.
auto UpdateCallers = [&](ContextNode *Node,
DenseSet<const ContextEdge *> &Visited,
auto &&UpdateCallers) -> void {
for (const auto &Edge : Node->CallerEdges) {
auto Inserted = Visited.insert(Edge.get());
if (!Inserted.second)
continue;
ContextNode *NextNode = Edge->Caller;
DenseSet<uint32_t> NewIdsToAdd = GetNewIds(Edge->getContextIds());
// Only need to recursively iterate to NextNode via this caller edge if
// it resulted in any added ids to NextNode.
if (!NewIdsToAdd.empty()) {
Edge->getContextIds().insert(NewIdsToAdd.begin(), NewIdsToAdd.end());
NextNode->ContextIds.insert(NewIdsToAdd.begin(), NewIdsToAdd.end());
UpdateCallers(NextNode, Visited, UpdateCallers);
}
}
};
DenseSet<const ContextEdge *> Visited;
for (auto &Entry : AllocationCallToContextNodeMap) {
auto *Node = Entry.second;
// Update ids on the allocation nodes before calling the recursive
// update along caller edges, since this simplifies the logic during
// that traversal.
DenseSet<uint32_t> NewIdsToAdd = GetNewIds(Node->ContextIds);
Node->ContextIds.insert(NewIdsToAdd.begin(), NewIdsToAdd.end());
UpdateCallers(Node, Visited, UpdateCallers);
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::connectNewNode(
ContextNode *NewNode, ContextNode *OrigNode, bool TowardsCallee) {
// Make a copy of the context ids, since this will be adjusted below as they
// are moved.
DenseSet<uint32_t> RemainingContextIds = NewNode->ContextIds;
auto &OrigEdges =
TowardsCallee ? OrigNode->CalleeEdges : OrigNode->CallerEdges;
// Increment iterator in loop so that we can remove edges as needed.
for (auto EI = OrigEdges.begin(); EI != OrigEdges.end();) {
auto Edge = *EI;
// Remove any matching context ids from Edge, return set that were found and
// removed, these are the new edge's context ids. Also update the remaining
// (not found ids).
DenseSet<uint32_t> NewEdgeContextIds, NotFoundContextIds;
set_subtract(Edge->getContextIds(), RemainingContextIds, NewEdgeContextIds,
NotFoundContextIds);
RemainingContextIds.swap(NotFoundContextIds);
// If no matching context ids for this edge, skip it.
if (NewEdgeContextIds.empty()) {
++EI;
continue;
}
if (TowardsCallee) {
auto NewEdge = std::make_shared<ContextEdge>(
Edge->Callee, NewNode, computeAllocType(NewEdgeContextIds),
NewEdgeContextIds);
NewNode->CalleeEdges.push_back(NewEdge);
NewEdge->Callee->CallerEdges.push_back(NewEdge);
} else {
auto NewEdge = std::make_shared<ContextEdge>(
NewNode, Edge->Caller, computeAllocType(NewEdgeContextIds),
NewEdgeContextIds);
NewNode->CallerEdges.push_back(NewEdge);
NewEdge->Caller->CalleeEdges.push_back(NewEdge);
}
// Remove old edge if context ids empty.
if (Edge->getContextIds().empty()) {
if (TowardsCallee) {
Edge->Callee->eraseCallerEdge(Edge.get());
EI = OrigNode->CalleeEdges.erase(EI);
} else {
Edge->Caller->eraseCalleeEdge(Edge.get());
EI = OrigNode->CallerEdges.erase(EI);
}
continue;
}
++EI;
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::
assignStackNodesPostOrder(ContextNode *Node,
DenseSet<const ContextNode *> &Visited,
DenseMap<uint64_t, std::vector<CallContextInfo>>
&StackIdToMatchingCalls) {
auto Inserted = Visited.insert(Node);
if (!Inserted.second)
return;
// Post order traversal. Iterate over a copy since we may add nodes and
// therefore new callers during the recursive call, invalidating any
// iterator over the original edge vector. We don't need to process these
// new nodes as they were already processed on creation.
auto CallerEdges = Node->CallerEdges;
for (auto &Edge : CallerEdges) {
// Skip any that have been removed during the recursion.
if (!Edge)
continue;
assignStackNodesPostOrder(Edge->Caller, Visited, StackIdToMatchingCalls);
}
// If this node's stack id is in the map, update the graph to contain new
// nodes representing any inlining at interior callsites. Note we move the
// associated context ids over to the new nodes.
// Ignore this node if it is for an allocation or we didn't record any
// stack id lists ending at it.
if (Node->IsAllocation ||
!StackIdToMatchingCalls.count(Node->OrigStackOrAllocId))
return;
auto &Calls = StackIdToMatchingCalls[Node->OrigStackOrAllocId];
// Handle the simple case first. A single call with a single stack id.
// In this case there is no need to create any new context nodes, simply
// assign the context node for stack id to this Call.
if (Calls.size() == 1) {
auto &[Call, Ids, Func, SavedContextIds] = Calls[0];
if (Ids.size() == 1) {
assert(SavedContextIds.empty());
// It should be this Node
assert(Node == getNodeForStackId(Ids[0]));
if (Node->Recursive)
return;
Node->setCall(Call);
NonAllocationCallToContextNodeMap[Call] = Node;
NodeToCallingFunc[Node] = Func;
return;
}
}
// Find the node for the last stack id, which should be the same
// across all calls recorded for this id, and is this node's id.
uint64_t LastId = Node->OrigStackOrAllocId;
ContextNode *LastNode = getNodeForStackId(LastId);
// We should only have kept stack ids that had nodes.
assert(LastNode);
for (unsigned I = 0; I < Calls.size(); I++) {
auto &[Call, Ids, Func, SavedContextIds] = Calls[I];
// Skip any for which we didn't assign any ids, these don't get a node in
// the graph.
if (SavedContextIds.empty())
continue;
assert(LastId == Ids.back());
ContextNode *FirstNode = getNodeForStackId(Ids[0]);
assert(FirstNode);
// Recompute the context ids for this stack id sequence (the
// intersection of the context ids of the corresponding nodes).
// Start with the ids we saved in the map for this call, which could be
// duplicated context ids. We have to recompute as we might have overlap
// overlap between the saved context ids for different last nodes, and
// removed them already during the post order traversal.
set_intersect(SavedContextIds, FirstNode->ContextIds);
ContextNode *PrevNode = nullptr;
for (auto Id : Ids) {
ContextNode *CurNode = getNodeForStackId(Id);
// We should only have kept stack ids that had nodes and weren't
// recursive.
assert(CurNode);
assert(!CurNode->Recursive);
if (!PrevNode) {
PrevNode = CurNode;
continue;
}
auto *Edge = CurNode->findEdgeFromCallee(PrevNode);
if (!Edge) {
SavedContextIds.clear();
break;
}
PrevNode = CurNode;
set_intersect(SavedContextIds, Edge->getContextIds());
// If we now have no context ids for clone, skip this call.
if (SavedContextIds.empty())
break;
}
if (SavedContextIds.empty())
continue;
// Create new context node.
NodeOwner.push_back(
std::make_unique<ContextNode>(/*IsAllocation=*/false, Call));
ContextNode *NewNode = NodeOwner.back().get();
NodeToCallingFunc[NewNode] = Func;
NonAllocationCallToContextNodeMap[Call] = NewNode;
NewNode->ContextIds = SavedContextIds;
NewNode->AllocTypes = computeAllocType(NewNode->ContextIds);
// Connect to callees of innermost stack frame in inlined call chain.
// This updates context ids for FirstNode's callee's to reflect those
// moved to NewNode.
connectNewNode(NewNode, FirstNode, /*TowardsCallee=*/true);
// Connect to callers of outermost stack frame in inlined call chain.
// This updates context ids for FirstNode's caller's to reflect those
// moved to NewNode.
connectNewNode(NewNode, LastNode, /*TowardsCallee=*/false);
// Now we need to remove context ids from edges/nodes between First and
// Last Node.
PrevNode = nullptr;
for (auto Id : Ids) {
ContextNode *CurNode = getNodeForStackId(Id);
// We should only have kept stack ids that had nodes.
assert(CurNode);
// Remove the context ids moved to NewNode from CurNode, and the
// edge from the prior node.
set_subtract(CurNode->ContextIds, NewNode->ContextIds);
if (PrevNode) {
auto *PrevEdge = CurNode->findEdgeFromCallee(PrevNode);
assert(PrevEdge);
set_subtract(PrevEdge->getContextIds(), NewNode->ContextIds);
if (PrevEdge->getContextIds().empty()) {
PrevNode->eraseCallerEdge(PrevEdge);
CurNode->eraseCalleeEdge(PrevEdge);
}
}
PrevNode = CurNode;
}
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::updateStackNodes() {
// Map of stack id to all calls with that as the last (outermost caller)
// callsite id that has a context node (some might not due to pruning
// performed during matching of the allocation profile contexts).
// The CallContextInfo contains the Call and a list of its stack ids with
// ContextNodes, the function containing Call, and the set of context ids
// the analysis will eventually identify for use in any new node created
// for that callsite.
DenseMap<uint64_t, std::vector<CallContextInfo>> StackIdToMatchingCalls;
for (auto &[Func, CallsWithMetadata] : FuncToCallsWithMetadata) {
for (auto &Call : CallsWithMetadata) {
// Ignore allocations, already handled.
if (AllocationCallToContextNodeMap.count(Call))
continue;
auto StackIdsWithContextNodes =
getStackIdsWithContextNodesForCall(Call.call());
// If there were no nodes created for MIBs on allocs (maybe this was in
// the unambiguous part of the MIB stack that was pruned), ignore.
if (StackIdsWithContextNodes.empty())
continue;
// Otherwise, record this Call along with the list of ids for the last
// (outermost caller) stack id with a node.
StackIdToMatchingCalls[StackIdsWithContextNodes.back()].push_back(
{Call.call(), StackIdsWithContextNodes, Func, {}});
}
}
// First make a pass through all stack ids that correspond to a call,
// as identified in the above loop. Compute the context ids corresponding to
// each of these calls when they correspond to multiple stack ids due to
// due to inlining. Perform any duplication of context ids required when
// there is more than one call with the same stack ids. Their (possibly newly
// duplicated) context ids are saved in the StackIdToMatchingCalls map.
DenseMap<uint32_t, DenseSet<uint32_t>> OldToNewContextIds;
for (auto &It : StackIdToMatchingCalls) {
auto &Calls = It.getSecond();
// Skip single calls with a single stack id. These don't need a new node.
if (Calls.size() == 1) {
auto &Ids = std::get<1>(Calls[0]);
if (Ids.size() == 1)
continue;
}
// In order to do the best and maximal matching of inlined calls to context
// node sequences we will sort the vectors of stack ids in descending order
// of length, and within each length, lexicographically by stack id. The
// latter is so that we can specially handle calls that have identical stack
// id sequences (either due to cloning or artificially because of the MIB
// context pruning).
std::stable_sort(Calls.begin(), Calls.end(),
[](const CallContextInfo &A, const CallContextInfo &B) {
auto &IdsA = std::get<1>(A);
auto &IdsB = std::get<1>(B);
return IdsA.size() > IdsB.size() ||
(IdsA.size() == IdsB.size() && IdsA < IdsB);
});
// Find the node for the last stack id, which should be the same
// across all calls recorded for this id, and is the id for this
// entry in the StackIdToMatchingCalls map.
uint64_t LastId = It.getFirst();
ContextNode *LastNode = getNodeForStackId(LastId);
// We should only have kept stack ids that had nodes.
assert(LastNode);
if (LastNode->Recursive)
continue;
// Initialize the context ids with the last node's. We will subsequently
// refine the context ids by computing the intersection along all edges.
DenseSet<uint32_t> LastNodeContextIds = LastNode->ContextIds;
assert(!LastNodeContextIds.empty());
for (unsigned I = 0; I < Calls.size(); I++) {
auto &[Call, Ids, Func, SavedContextIds] = Calls[I];
assert(SavedContextIds.empty());
assert(LastId == Ids.back());
// First compute the context ids for this stack id sequence (the
// intersection of the context ids of the corresponding nodes).
// Start with the remaining saved ids for the last node.
assert(!LastNodeContextIds.empty());
DenseSet<uint32_t> StackSequenceContextIds = LastNodeContextIds;
ContextNode *PrevNode = LastNode;
ContextNode *CurNode = LastNode;
bool Skip = false;
// Iterate backwards through the stack Ids, starting after the last Id
// in the list, which was handled once outside for all Calls.
for (auto IdIter = Ids.rbegin() + 1; IdIter != Ids.rend(); IdIter++) {
auto Id = *IdIter;
CurNode = getNodeForStackId(Id);
// We should only have kept stack ids that had nodes.
assert(CurNode);
if (CurNode->Recursive) {
Skip = true;
break;
}
auto *Edge = CurNode->findEdgeFromCaller(PrevNode);
// If there is no edge then the nodes belong to different MIB contexts,
// and we should skip this inlined context sequence. For example, this
// particular inlined context may include stack ids A->B, and we may
// indeed have nodes for both A and B, but it is possible that they were
// never profiled in sequence in a single MIB for any allocation (i.e.
// we might have profiled an allocation that involves the callsite A,
// but through a different one of its callee callsites, and we might
// have profiled an allocation that involves callsite B, but reached
// from a different caller callsite).
if (!Edge) {
Skip = true;
break;
}
PrevNode = CurNode;
// Update the context ids, which is the intersection of the ids along
// all edges in the sequence.
set_intersect(StackSequenceContextIds, Edge->getContextIds());
// If we now have no context ids for clone, skip this call.
if (StackSequenceContextIds.empty()) {
Skip = true;
break;
}
}
if (Skip)
continue;
// If some of this call's stack ids did not have corresponding nodes (due
// to pruning), don't include any context ids for contexts that extend
// beyond these nodes. Otherwise we would be matching part of unrelated /
// not fully matching stack contexts. To do this, subtract any context ids
// found in caller nodes of the last node found above.
if (Ids.back() != getLastStackId(Call)) {
for (const auto &PE : CurNode->CallerEdges) {
set_subtract(StackSequenceContextIds, PE->getContextIds());
if (StackSequenceContextIds.empty())
break;
}
// If we now have no context ids for clone, skip this call.
if (StackSequenceContextIds.empty())
continue;
}
// Check if the next set of stack ids is the same (since the Calls vector
// of tuples is sorted by the stack ids we can just look at the next one).
bool DuplicateContextIds = false;
if (I + 1 < Calls.size()) {
auto NextIds = std::get<1>(Calls[I + 1]);
DuplicateContextIds = Ids == NextIds;
}
// If we don't have duplicate context ids, then we can assign all the
// context ids computed for the original node sequence to this call.
// If there are duplicate calls with the same stack ids then we synthesize
// new context ids that are duplicates of the originals. These are
// assigned to SavedContextIds, which is a reference into the map entry
// for this call, allowing us to access these ids later on.
OldToNewContextIds.reserve(OldToNewContextIds.size() +
StackSequenceContextIds.size());
SavedContextIds =
DuplicateContextIds
? duplicateContextIds(StackSequenceContextIds, OldToNewContextIds)
: StackSequenceContextIds;
assert(!SavedContextIds.empty());
if (!DuplicateContextIds) {
// Update saved last node's context ids to remove those that are
// assigned to other calls, so that it is ready for the next call at
// this stack id.
set_subtract(LastNodeContextIds, StackSequenceContextIds);
if (LastNodeContextIds.empty())
break;
}
}
}
// Propagate the duplicate context ids over the graph.
propagateDuplicateContextIds(OldToNewContextIds);
if (VerifyCCG)
check();
// Now perform a post-order traversal over the graph, starting with the
// allocation nodes, essentially processing nodes from callers to callees.
// For any that contains an id in the map, update the graph to contain new
// nodes representing any inlining at interior callsites. Note we move the
// associated context ids over to the new nodes.
DenseSet<const ContextNode *> Visited;
for (auto &Entry : AllocationCallToContextNodeMap)
assignStackNodesPostOrder(Entry.second, Visited, StackIdToMatchingCalls);
}
uint64_t ModuleCallsiteContextGraph::getLastStackId(Instruction *Call) {
CallStack<MDNode, MDNode::op_iterator> CallsiteContext(
Call->getMetadata(LLVMContext::MD_callsite));
return CallsiteContext.back();
}
uint64_t IndexCallsiteContextGraph::getLastStackId(IndexCall &Call) {
assert(isa<CallsiteInfo *>(Call.getBase()));
CallStack<CallsiteInfo, SmallVector<unsigned>::const_iterator>
CallsiteContext(dyn_cast_if_present<CallsiteInfo *>(Call.getBase()));
// Need to convert index into stack id.
return Index.getStackIdAtIndex(CallsiteContext.back());
}
static const std::string MemProfCloneSuffix = ".memprof.";
static std::string getMemProfFuncName(Twine Base, unsigned CloneNo) {
// We use CloneNo == 0 to refer to the original version, which doesn't get
// renamed with a suffix.
if (!CloneNo)
return Base.str();
return (Base + MemProfCloneSuffix + Twine(CloneNo)).str();
}
std::string ModuleCallsiteContextGraph::getLabel(const Function *Func,
const Instruction *Call,
unsigned CloneNo) const {
return (Twine(Call->getFunction()->getName()) + " -> " +
cast<CallBase>(Call)->getCalledFunction()->getName())
.str();
}
std::string IndexCallsiteContextGraph::getLabel(const FunctionSummary *Func,
const IndexCall &Call,
unsigned CloneNo) const {
auto VI = FSToVIMap.find(Func);
assert(VI != FSToVIMap.end());
if (isa<AllocInfo *>(Call.getBase()))
return (VI->second.name() + " -> alloc").str();
else {
auto *Callsite = dyn_cast_if_present<CallsiteInfo *>(Call.getBase());
return (VI->second.name() + " -> " +
getMemProfFuncName(Callsite->Callee.name(),
Callsite->Clones[CloneNo]))
.str();
}
}
std::vector<uint64_t>
ModuleCallsiteContextGraph::getStackIdsWithContextNodesForCall(
Instruction *Call) {
CallStack<MDNode, MDNode::op_iterator> CallsiteContext(
Call->getMetadata(LLVMContext::MD_callsite));
return getStackIdsWithContextNodes<MDNode, MDNode::op_iterator>(
CallsiteContext);
}
std::vector<uint64_t>
IndexCallsiteContextGraph::getStackIdsWithContextNodesForCall(IndexCall &Call) {
assert(isa<CallsiteInfo *>(Call.getBase()));
CallStack<CallsiteInfo, SmallVector<unsigned>::const_iterator>
CallsiteContext(dyn_cast_if_present<CallsiteInfo *>(Call.getBase()));
return getStackIdsWithContextNodes<CallsiteInfo,
SmallVector<unsigned>::const_iterator>(
CallsiteContext);
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
template <class NodeT, class IteratorT>
std::vector<uint64_t>
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::getStackIdsWithContextNodes(
CallStack<NodeT, IteratorT> &CallsiteContext) {
std::vector<uint64_t> StackIds;
for (auto IdOrIndex : CallsiteContext) {
auto StackId = getStackId(IdOrIndex);
ContextNode *Node = getNodeForStackId(StackId);
if (!Node)
break;
StackIds.push_back(StackId);
}
return StackIds;
}
ModuleCallsiteContextGraph::ModuleCallsiteContextGraph(
Module &M, function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter)
: Mod(M), OREGetter(OREGetter) {
for (auto &F : M) {
std::vector<CallInfo> CallsWithMetadata;
for (auto &BB : F) {
for (auto &I : BB) {
if (!isa<CallBase>(I))
continue;
if (auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof)) {
CallsWithMetadata.push_back(&I);
auto *AllocNode = addAllocNode(&I, &F);
auto *CallsiteMD = I.getMetadata(LLVMContext::MD_callsite);
assert(CallsiteMD);
CallStack<MDNode, MDNode::op_iterator> CallsiteContext(CallsiteMD);
// Add all of the MIBs and their stack nodes.
for (auto &MDOp : MemProfMD->operands()) {
auto *MIBMD = cast<const MDNode>(MDOp);
MDNode *StackNode = getMIBStackNode(MIBMD);
assert(StackNode);
CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode);
addStackNodesForMIB<MDNode, MDNode::op_iterator>(
AllocNode, StackContext, CallsiteContext,
getMIBAllocType(MIBMD));
}
assert(AllocNode->AllocTypes != (uint8_t)AllocationType::None);
// Memprof and callsite metadata on memory allocations no longer
// needed.
I.setMetadata(LLVMContext::MD_memprof, nullptr);
I.setMetadata(LLVMContext::MD_callsite, nullptr);
}
// For callsite metadata, add to list for this function for later use.
else if (I.getMetadata(LLVMContext::MD_callsite))
CallsWithMetadata.push_back(&I);
}
}
if (!CallsWithMetadata.empty())
FuncToCallsWithMetadata.push_back({&F, CallsWithMetadata});
}
if (DumpCCG) {
dbgs() << "CCG before updating call stack chains:\n";
dbgs() << *this;
}
if (ExportToDot)
exportToDot("prestackupdate");
updateStackNodes();
handleCallsitesWithMultipleTargets();
// Strip off remaining callsite metadata, no longer needed.
for (auto &FuncEntry : FuncToCallsWithMetadata)
for (auto &Call : FuncEntry.second)
Call.call()->setMetadata(LLVMContext::MD_callsite, nullptr);
}
IndexCallsiteContextGraph::IndexCallsiteContextGraph(
ModuleSummaryIndex &Index,
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
isPrevailing)
: Index(Index) {
for (auto &I : Index) {
auto VI = Index.getValueInfo(I);
for (auto &S : VI.getSummaryList()) {
// We should only add the prevailing nodes. Otherwise we may try to clone
// in a weak copy that won't be linked (and may be different than the
// prevailing version).
// We only keep the memprof summary on the prevailing copy now when
// building the combined index, as a space optimization, however don't
// rely on this optimization. The linker doesn't resolve local linkage
// values so don't check whether those are prevailing.
if (!GlobalValue::isLocalLinkage(S->linkage()) &&
!isPrevailing(VI.getGUID(), S.get()))
continue;
auto *FS = dyn_cast<FunctionSummary>(S.get());
if (!FS)
continue;
std::vector<CallInfo> CallsWithMetadata;
if (!FS->allocs().empty()) {
for (auto &AN : FS->mutableAllocs()) {
// This can happen because of recursion elimination handling that
// currently exists in ModuleSummaryAnalysis. Skip these for now.
// We still added them to the summary because we need to be able to
// correlate properly in applyImport in the backends.
if (AN.MIBs.empty())
continue;
CallsWithMetadata.push_back({&AN});
auto *AllocNode = addAllocNode({&AN}, FS);
// Pass an empty CallStack to the CallsiteContext (second)
// parameter, since for ThinLTO we already collapsed out the inlined
// stack ids on the allocation call during ModuleSummaryAnalysis.
CallStack<MIBInfo, SmallVector<unsigned>::const_iterator>
EmptyContext;
// Now add all of the MIBs and their stack nodes.
for (auto &MIB : AN.MIBs) {
CallStack<MIBInfo, SmallVector<unsigned>::const_iterator>
StackContext(&MIB);
addStackNodesForMIB<MIBInfo, SmallVector<unsigned>::const_iterator>(
AllocNode, StackContext, EmptyContext, MIB.AllocType);
}
assert(AllocNode->AllocTypes != (uint8_t)AllocationType::None);
// Initialize version 0 on the summary alloc node to the current alloc
// type, unless it has both types in which case make it default, so
// that in the case where we aren't able to clone the original version
// always ends up with the default allocation behavior.
AN.Versions[0] = (uint8_t)allocTypeToUse(AllocNode->AllocTypes);
}
}
// For callsite metadata, add to list for this function for later use.
if (!FS->callsites().empty())
for (auto &SN : FS->mutableCallsites())
CallsWithMetadata.push_back({&SN});
if (!CallsWithMetadata.empty())
FuncToCallsWithMetadata.push_back({FS, CallsWithMetadata});
if (!FS->allocs().empty() || !FS->callsites().empty())
FSToVIMap[FS] = VI;
}
}
if (DumpCCG) {
dbgs() << "CCG before updating call stack chains:\n";
dbgs() << *this;
}
if (ExportToDot)
exportToDot("prestackupdate");
updateStackNodes();
handleCallsitesWithMultipleTargets();
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy,
CallTy>::handleCallsitesWithMultipleTargets() {
// Look for and workaround callsites that call multiple functions.
// This can happen for indirect calls, which needs better handling, and in
// more rare cases (e.g. macro expansion).
// TODO: To fix this for indirect calls we will want to perform speculative
// devirtualization using either the normal PGO info with ICP, or using the
// information in the profiled MemProf contexts. We can do this prior to
// this transformation for regular LTO, and for ThinLTO we can simulate that
// effect in the summary and perform the actual speculative devirtualization
// while cloning in the ThinLTO backend.
for (auto Entry = NonAllocationCallToContextNodeMap.begin();
Entry != NonAllocationCallToContextNodeMap.end();) {
auto *Node = Entry->second;
assert(Node->Clones.empty());
// Check all node callees and see if in the same function.
bool Removed = false;
auto Call = Node->Call.call();
for (auto &Edge : Node->CalleeEdges) {
if (!Edge->Callee->hasCall())
continue;
assert(NodeToCallingFunc.count(Edge->Callee));
// Check if the called function matches that of the callee node.
if (calleeMatchesFunc(Call, NodeToCallingFunc[Edge->Callee]))
continue;
// Work around by setting Node to have a null call, so it gets
// skipped during cloning. Otherwise assignFunctions will assert
// because its data structures are not designed to handle this case.
Entry = NonAllocationCallToContextNodeMap.erase(Entry);
Node->setCall(CallInfo());
Removed = true;
break;
}
if (!Removed)
Entry++;
}
}
uint64_t ModuleCallsiteContextGraph::getStackId(uint64_t IdOrIndex) const {
// In the Module (IR) case this is already the Id.
return IdOrIndex;
}
uint64_t IndexCallsiteContextGraph::getStackId(uint64_t IdOrIndex) const {
// In the Index case this is an index into the stack id list in the summary
// index, convert it to an Id.
return Index.getStackIdAtIndex(IdOrIndex);
}
bool ModuleCallsiteContextGraph::calleeMatchesFunc(Instruction *Call,
const Function *Func) {
auto *CB = dyn_cast<CallBase>(Call);
if (!CB->getCalledOperand())
return false;
auto *CalleeVal = CB->getCalledOperand()->stripPointerCasts();
auto *CalleeFunc = dyn_cast<Function>(CalleeVal);
if (CalleeFunc == Func)
return true;
auto *Alias = dyn_cast<GlobalAlias>(CalleeVal);
return Alias && Alias->getAliasee() == Func;
}
bool IndexCallsiteContextGraph::calleeMatchesFunc(IndexCall &Call,
const FunctionSummary *Func) {
ValueInfo Callee =
dyn_cast_if_present<CallsiteInfo *>(Call.getBase())->Callee;
// If there is no summary list then this is a call to an externally defined
// symbol.
AliasSummary *Alias =
Callee.getSummaryList().empty()
? nullptr
: dyn_cast<AliasSummary>(Callee.getSummaryList()[0].get());
assert(FSToVIMap.count(Func));
return Callee == FSToVIMap[Func] ||
// If callee is an alias, check the aliasee, since only function
// summary base objects will contain the stack node summaries and thus
// get a context node.
(Alias && Alias->getAliaseeVI() == FSToVIMap[Func]);
}
static std::string getAllocTypeString(uint8_t AllocTypes) {
if (!AllocTypes)
return "None";
std::string Str;
if (AllocTypes & (uint8_t)AllocationType::NotCold)
Str += "NotCold";
if (AllocTypes & (uint8_t)AllocationType::Cold)
Str += "Cold";
return Str;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::dump()
const {
print(dbgs());
dbgs() << "\n";
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::print(
raw_ostream &OS) const {
OS << "Node " << this << "\n";
OS << "\t";
printCall(OS);
if (Recursive)
OS << " (recursive)";
OS << "\n";
OS << "\tAllocTypes: " << getAllocTypeString(AllocTypes) << "\n";
OS << "\tContextIds:";
std::vector<uint32_t> SortedIds(ContextIds.begin(), ContextIds.end());
std::sort(SortedIds.begin(), SortedIds.end());
for (auto Id : SortedIds)
OS << " " << Id;
OS << "\n";
OS << "\tCalleeEdges:\n";
for (auto &Edge : CalleeEdges)
OS << "\t\t" << *Edge << "\n";
OS << "\tCallerEdges:\n";
for (auto &Edge : CallerEdges)
OS << "\t\t" << *Edge << "\n";
if (!Clones.empty()) {
OS << "\tClones: ";
FieldSeparator FS;
for (auto *Clone : Clones)
OS << FS << Clone;
OS << "\n";
} else if (CloneOf) {
OS << "\tClone of " << CloneOf << "\n";
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextEdge::dump()
const {
print(dbgs());
dbgs() << "\n";
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextEdge::print(
raw_ostream &OS) const {
OS << "Edge from Callee " << Callee << " to Caller: " << Caller
<< " AllocTypes: " << getAllocTypeString(AllocTypes);
OS << " ContextIds:";
std::vector<uint32_t> SortedIds(ContextIds.begin(), ContextIds.end());
std::sort(SortedIds.begin(), SortedIds.end());
for (auto Id : SortedIds)
OS << " " << Id;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::dump() const {
print(dbgs());
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::print(
raw_ostream &OS) const {
OS << "Callsite Context Graph:\n";
using GraphType = const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *;
for (const auto Node : nodes<GraphType>(this)) {
if (Node->isRemoved())
continue;
Node->print(OS);
OS << "\n";
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
static void checkEdge(
const std::shared_ptr<ContextEdge<DerivedCCG, FuncTy, CallTy>> &Edge) {
// Confirm that alloc type is not None and that we have at least one context
// id.
assert(Edge->AllocTypes != (uint8_t)AllocationType::None);
assert(!Edge->ContextIds.empty());
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
static void checkNode(const ContextNode<DerivedCCG, FuncTy, CallTy> *Node,
bool CheckEdges = true) {
if (Node->isRemoved())
return;
// Node's context ids should be the union of both its callee and caller edge
// context ids.
if (Node->CallerEdges.size()) {
auto EI = Node->CallerEdges.begin();
auto &FirstEdge = *EI;
EI++;
DenseSet<uint32_t> CallerEdgeContextIds(FirstEdge->ContextIds);
for (; EI != Node->CallerEdges.end(); EI++) {
const auto &Edge = *EI;
if (CheckEdges)
checkEdge<DerivedCCG, FuncTy, CallTy>(Edge);
set_union(CallerEdgeContextIds, Edge->ContextIds);
}
// Node can have more context ids than callers if some contexts terminate at
// node and some are longer.
assert(Node->ContextIds == CallerEdgeContextIds ||
set_is_subset(CallerEdgeContextIds, Node->ContextIds));
}
if (Node->CalleeEdges.size()) {
auto EI = Node->CalleeEdges.begin();
auto &FirstEdge = *EI;
EI++;
DenseSet<uint32_t> CalleeEdgeContextIds(FirstEdge->ContextIds);
for (; EI != Node->CalleeEdges.end(); EI++) {
const auto &Edge = *EI;
if (CheckEdges)
checkEdge<DerivedCCG, FuncTy, CallTy>(Edge);
set_union(CalleeEdgeContextIds, Edge->ContextIds);
}
assert(Node->ContextIds == CalleeEdgeContextIds);
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::check() const {
using GraphType = const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *;
for (const auto Node : nodes<GraphType>(this)) {
checkNode<DerivedCCG, FuncTy, CallTy>(Node, /*CheckEdges=*/false);
for (auto &Edge : Node->CallerEdges)
checkEdge<DerivedCCG, FuncTy, CallTy>(Edge);
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
struct GraphTraits<const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *> {
using GraphType = const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *;
using NodeRef = const ContextNode<DerivedCCG, FuncTy, CallTy> *;
using NodePtrTy = std::unique_ptr<ContextNode<DerivedCCG, FuncTy, CallTy>>;
static NodeRef getNode(const NodePtrTy &P) { return P.get(); }
using nodes_iterator =
mapped_iterator<typename std::vector<NodePtrTy>::const_iterator,
decltype(&getNode)>;
static nodes_iterator nodes_begin(GraphType G) {
return nodes_iterator(G->NodeOwner.begin(), &getNode);
}
static nodes_iterator nodes_end(GraphType G) {
return nodes_iterator(G->NodeOwner.end(), &getNode);
}
static NodeRef getEntryNode(GraphType G) {
return G->NodeOwner.begin()->get();
}
using EdgePtrTy = std::shared_ptr<ContextEdge<DerivedCCG, FuncTy, CallTy>>;
static const ContextNode<DerivedCCG, FuncTy, CallTy> *
GetCallee(const EdgePtrTy &P) {
return P->Callee;
}
using ChildIteratorType =
mapped_iterator<typename std::vector<std::shared_ptr<ContextEdge<
DerivedCCG, FuncTy, CallTy>>>::const_iterator,
decltype(&GetCallee)>;
static ChildIteratorType child_begin(NodeRef N) {
return ChildIteratorType(N->CalleeEdges.begin(), &GetCallee);
}
static ChildIteratorType child_end(NodeRef N) {
return ChildIteratorType(N->CalleeEdges.end(), &GetCallee);
}
};
template <typename DerivedCCG, typename FuncTy, typename CallTy>
struct DOTGraphTraits<const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *>
: public DefaultDOTGraphTraits {
DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
using GraphType = const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *;
using GTraits = GraphTraits<GraphType>;
using NodeRef = typename GTraits::NodeRef;
using ChildIteratorType = typename GTraits::ChildIteratorType;
static std::string getNodeLabel(NodeRef Node, GraphType G) {
std::string LabelString =
(Twine("OrigId: ") + (Node->IsAllocation ? "Alloc" : "") +
Twine(Node->OrigStackOrAllocId))
.str();
LabelString += "\n";
if (Node->hasCall()) {
auto Func = G->NodeToCallingFunc.find(Node);
assert(Func != G->NodeToCallingFunc.end());
LabelString +=
G->getLabel(Func->second, Node->Call.call(), Node->Call.cloneNo());
} else {
LabelString += "null call";
if (Node->Recursive)
LabelString += " (recursive)";
else
LabelString += " (external)";
}
return LabelString;
}
static std::string getNodeAttributes(NodeRef Node, GraphType) {
std::string AttributeString = (Twine("tooltip=\"") + getNodeId(Node) + " " +
getContextIds(Node->ContextIds) + "\"")
.str();
AttributeString +=
(Twine(",fillcolor=\"") + getColor(Node->AllocTypes) + "\"").str();
AttributeString += ",style=\"filled\"";
if (Node->CloneOf) {
AttributeString += ",color=\"blue\"";
AttributeString += ",style=\"filled,bold,dashed\"";
} else
AttributeString += ",style=\"filled\"";
return AttributeString;
}
static std::string getEdgeAttributes(NodeRef, ChildIteratorType ChildIter,
GraphType) {
auto &Edge = *(ChildIter.getCurrent());
return (Twine("tooltip=\"") + getContextIds(Edge->ContextIds) + "\"" +
Twine(",fillcolor=\"") + getColor(Edge->AllocTypes) + "\"")
.str();
}
// Since the NodeOwners list includes nodes that are no longer connected to
// the graph, skip them here.
static bool isNodeHidden(NodeRef Node, GraphType) {
return Node->isRemoved();
}
private:
static std::string getContextIds(const DenseSet<uint32_t> &ContextIds) {
std::string IdString = "ContextIds:";
if (ContextIds.size() < 100) {
std::vector<uint32_t> SortedIds(ContextIds.begin(), ContextIds.end());
std::sort(SortedIds.begin(), SortedIds.end());
for (auto Id : SortedIds)
IdString += (" " + Twine(Id)).str();
} else {
IdString += (" (" + Twine(ContextIds.size()) + " ids)").str();
}
return IdString;
}
static std::string getColor(uint8_t AllocTypes) {
if (AllocTypes == (uint8_t)AllocationType::NotCold)
// Color "brown1" actually looks like a lighter red.
return "brown1";
if (AllocTypes == (uint8_t)AllocationType::Cold)
return "cyan";
if (AllocTypes ==
((uint8_t)AllocationType::NotCold | (uint8_t)AllocationType::Cold))
// Lighter purple.
return "mediumorchid1";
return "gray";
}
static std::string getNodeId(NodeRef Node) {
std::stringstream SStream;
SStream << std::hex << "N0x" << (unsigned long long)Node;
std::string Result = SStream.str();
return Result;
}
};
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::exportToDot(
std::string Label) const {
WriteGraph(this, "", false, Label,
DotFilePathPrefix + "ccg." + Label + ".dot");
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::moveEdgeToNewCalleeClone(
const std::shared_ptr<ContextEdge> &Edge, EdgeIter *CallerEdgeI) {
ContextNode *Node = Edge->Callee;
NodeOwner.push_back(
std::make_unique<ContextNode>(Node->IsAllocation, Node->Call));
ContextNode *Clone = NodeOwner.back().get();
Node->addClone(Clone);
assert(NodeToCallingFunc.count(Node));
NodeToCallingFunc[Clone] = NodeToCallingFunc[Node];
moveEdgeToExistingCalleeClone(Edge, Clone, CallerEdgeI, /*NewClone=*/true);
return Clone;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::
moveEdgeToExistingCalleeClone(const std::shared_ptr<ContextEdge> &Edge,
ContextNode *NewCallee, EdgeIter *CallerEdgeI,
bool NewClone) {
// NewCallee and Edge's current callee must be clones of the same original
// node (Edge's current callee may be the original node too).
assert(NewCallee->getOrigNode() == Edge->Callee->getOrigNode());
auto &EdgeContextIds = Edge->getContextIds();
ContextNode *OldCallee = Edge->Callee;
if (CallerEdgeI)
*CallerEdgeI = OldCallee->CallerEdges.erase(*CallerEdgeI);
else
OldCallee->eraseCallerEdge(Edge.get());
Edge->Callee = NewCallee;
NewCallee->CallerEdges.push_back(Edge);
// Don't need to update Edge's context ids since we are simply reconnecting
// it.
set_subtract(OldCallee->ContextIds, EdgeContextIds);
NewCallee->ContextIds.insert(EdgeContextIds.begin(), EdgeContextIds.end());
NewCallee->AllocTypes |= Edge->AllocTypes;
OldCallee->AllocTypes = computeAllocType(OldCallee->ContextIds);
// OldCallee alloc type should be None iff its context id set is now empty.
assert((OldCallee->AllocTypes == (uint8_t)AllocationType::None) ==
OldCallee->ContextIds.empty());
// Now walk the old callee node's callee edges and move Edge's context ids
// over to the corresponding edge into the clone (which is created here if
// this is a newly created clone).
for (auto &OldCalleeEdge : OldCallee->CalleeEdges) {
// The context ids moving to the new callee are the subset of this edge's
// context ids and the context ids on the caller edge being moved.
DenseSet<uint32_t> EdgeContextIdsToMove =
set_intersection(OldCalleeEdge->getContextIds(), EdgeContextIds);
set_subtract(OldCalleeEdge->getContextIds(), EdgeContextIdsToMove);
OldCalleeEdge->AllocTypes =
computeAllocType(OldCalleeEdge->getContextIds());
if (!NewClone) {
// Update context ids / alloc type on corresponding edge to NewCallee.
// There is a chance this may not exist if we are reusing an existing
// clone, specifically during function assignment, where we would have
// removed none type edges after creating the clone. If we can't find
// a corresponding edge there, fall through to the cloning below.
if (auto *NewCalleeEdge =
NewCallee->findEdgeFromCallee(OldCalleeEdge->Callee)) {
NewCalleeEdge->getContextIds().insert(EdgeContextIdsToMove.begin(),
EdgeContextIdsToMove.end());
NewCalleeEdge->AllocTypes |= computeAllocType(EdgeContextIdsToMove);
continue;
}
}
auto NewEdge = std::make_shared<ContextEdge>(
OldCalleeEdge->Callee, NewCallee,
computeAllocType(EdgeContextIdsToMove), EdgeContextIdsToMove);
NewCallee->CalleeEdges.push_back(NewEdge);
NewEdge->Callee->CallerEdges.push_back(NewEdge);
}
if (VerifyCCG) {
checkNode<DerivedCCG, FuncTy, CallTy>(OldCallee, /*CheckEdges=*/false);
checkNode<DerivedCCG, FuncTy, CallTy>(NewCallee, /*CheckEdges=*/false);
for (const auto &OldCalleeEdge : OldCallee->CalleeEdges)
checkNode<DerivedCCG, FuncTy, CallTy>(OldCalleeEdge->Callee,
/*CheckEdges=*/false);
for (const auto &NewCalleeEdge : NewCallee->CalleeEdges)
checkNode<DerivedCCG, FuncTy, CallTy>(NewCalleeEdge->Callee,
/*CheckEdges=*/false);
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::identifyClones() {
DenseSet<const ContextNode *> Visited;
for (auto &Entry : AllocationCallToContextNodeMap)
identifyClones(Entry.second, Visited);
}
// helper function to check an AllocType is cold or notcold or both.
bool checkColdOrNotCold(uint8_t AllocType) {
return (AllocType == (uint8_t)AllocationType::Cold) ||
(AllocType == (uint8_t)AllocationType::NotCold) ||
(AllocType ==
((uint8_t)AllocationType::Cold | (uint8_t)AllocationType::NotCold));
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::identifyClones(
ContextNode *Node, DenseSet<const ContextNode *> &Visited) {
if (VerifyNodes)
checkNode<DerivedCCG, FuncTy, CallTy>(Node);
assert(!Node->CloneOf);
// If Node as a null call, then either it wasn't found in the module (regular
// LTO) or summary index (ThinLTO), or there were other conditions blocking
// cloning (e.g. recursion, calls multiple targets, etc).
// Do this here so that we don't try to recursively clone callers below, which
// isn't useful at least for this node.
if (!Node->hasCall())
return;
#ifndef NDEBUG
auto Insert =
#endif
Visited.insert(Node);
// We should not have visited this node yet.
assert(Insert.second);
// The recursive call to identifyClones may delete the current edge from the
// CallerEdges vector. Make a copy and iterate on that, simpler than passing
// in an iterator and having recursive call erase from it. Other edges may
// also get removed during the recursion, which will have null Callee and
// Caller pointers (and are deleted later), so we skip those below.
{
auto CallerEdges = Node->CallerEdges;
for (auto &Edge : CallerEdges) {
// Skip any that have been removed by an earlier recursive call.
if (Edge->Callee == nullptr && Edge->Caller == nullptr) {
assert(!std::count(Node->CallerEdges.begin(), Node->CallerEdges.end(),
Edge));
continue;
}
// Ignore any caller we previously visited via another edge.
if (!Visited.count(Edge->Caller) && !Edge->Caller->CloneOf) {
identifyClones(Edge->Caller, Visited);
}
}
}
// Check if we reached an unambiguous call or have have only a single caller.
if (hasSingleAllocType(Node->AllocTypes) || Node->CallerEdges.size() <= 1)
return;
// We need to clone.
// Try to keep the original version as alloc type NotCold. This will make
// cases with indirect calls or any other situation with an unknown call to
// the original function get the default behavior. We do this by sorting the
// CallerEdges of the Node we will clone by alloc type.
//
// Give NotCold edge the lowest sort priority so those edges are at the end of
// the caller edges vector, and stay on the original version (since the below
// code clones greedily until it finds all remaining edges have the same type
// and leaves the remaining ones on the original Node).
//
// We shouldn't actually have any None type edges, so the sorting priority for
// that is arbitrary, and we assert in that case below.
const unsigned AllocTypeCloningPriority[] = {/*None*/ 3, /*NotCold*/ 4,
/*Cold*/ 1,
/*NotColdCold*/ 2};
std::stable_sort(Node->CallerEdges.begin(), Node->CallerEdges.end(),
[&](const std::shared_ptr<ContextEdge> &A,
const std::shared_ptr<ContextEdge> &B) {
assert(checkColdOrNotCold(A->AllocTypes) &&
checkColdOrNotCold(B->AllocTypes));
if (A->AllocTypes == B->AllocTypes)
// Use the first context id for each edge as a
// tie-breaker.
return *A->ContextIds.begin() < *B->ContextIds.begin();
return AllocTypeCloningPriority[A->AllocTypes] <
AllocTypeCloningPriority[B->AllocTypes];
});
assert(Node->AllocTypes != (uint8_t)AllocationType::None);
// Iterate until we find no more opportunities for disambiguating the alloc
// types via cloning. In most cases this loop will terminate once the Node
// has a single allocation type, in which case no more cloning is needed.
// We need to be able to remove Edge from CallerEdges, so need to adjust
// iterator inside the loop.
for (auto EI = Node->CallerEdges.begin(); EI != Node->CallerEdges.end();) {
auto CallerEdge = *EI;
// See if cloning the prior caller edge left this node with a single alloc
// type or a single caller. In that case no more cloning of Node is needed.
if (hasSingleAllocType(Node->AllocTypes) || Node->CallerEdges.size() <= 1)
break;
// Compute the node callee edge alloc types corresponding to the context ids
// for this caller edge.
std::vector<uint8_t> CalleeEdgeAllocTypesForCallerEdge;
CalleeEdgeAllocTypesForCallerEdge.reserve(Node->CalleeEdges.size());
for (auto &CalleeEdge : Node->CalleeEdges)
CalleeEdgeAllocTypesForCallerEdge.push_back(intersectAllocTypes(
CalleeEdge->getContextIds(), CallerEdge->getContextIds()));
// Don't clone if doing so will not disambiguate any alloc types amongst
// caller edges (including the callee edges that would be cloned).
// Otherwise we will simply move all edges to the clone.
//
// First check if by cloning we will disambiguate the caller allocation
// type from node's allocation type. Query allocTypeToUse so that we don't
// bother cloning to distinguish NotCold+Cold from NotCold. Note that
// neither of these should be None type.
//
// Then check if by cloning node at least one of the callee edges will be
// disambiguated by splitting out different context ids.
assert(CallerEdge->AllocTypes != (uint8_t)AllocationType::None);
assert(Node->AllocTypes != (uint8_t)AllocationType::None);
if (allocTypeToUse(CallerEdge->AllocTypes) ==
allocTypeToUse(Node->AllocTypes) &&
allocTypesMatch<DerivedCCG, FuncTy, CallTy>(
CalleeEdgeAllocTypesForCallerEdge, Node->CalleeEdges)) {
++EI;
continue;
}
// First see if we can use an existing clone. Check each clone and its
// callee edges for matching alloc types.
ContextNode *Clone = nullptr;
for (auto *CurClone : Node->Clones) {
if (allocTypeToUse(CurClone->AllocTypes) !=
allocTypeToUse(CallerEdge->AllocTypes))
continue;
if (!allocTypesMatch<DerivedCCG, FuncTy, CallTy>(
CalleeEdgeAllocTypesForCallerEdge, CurClone->CalleeEdges))
continue;
Clone = CurClone;
break;
}
// The edge iterator is adjusted when we move the CallerEdge to the clone.
if (Clone)
moveEdgeToExistingCalleeClone(CallerEdge, Clone, &EI);
else
Clone = moveEdgeToNewCalleeClone(CallerEdge, &EI);
assert(EI == Node->CallerEdges.end() ||
Node->AllocTypes != (uint8_t)AllocationType::None);
// Sanity check that no alloc types on clone or its edges are None.
assert(Clone->AllocTypes != (uint8_t)AllocationType::None);
assert(llvm::none_of(
Clone->CallerEdges, [&](const std::shared_ptr<ContextEdge> &E) {
return E->AllocTypes == (uint8_t)AllocationType::None;
}));
}
// Cloning may have resulted in some cloned callee edges with type None,
// because they aren't carrying any contexts. Remove those edges.
for (auto *Clone : Node->Clones) {
removeNoneTypeCalleeEdges(Clone);
if (VerifyNodes)
checkNode<DerivedCCG, FuncTy, CallTy>(Clone);
}
// We should still have some context ids on the original Node.
assert(!Node->ContextIds.empty());
// Remove any callee edges that ended up with alloc type None after creating
// clones and updating callee edges.
removeNoneTypeCalleeEdges(Node);
// Sanity check that no alloc types on node or edges are None.
assert(Node->AllocTypes != (uint8_t)AllocationType::None);
assert(llvm::none_of(Node->CalleeEdges,
[&](const std::shared_ptr<ContextEdge> &E) {
return E->AllocTypes == (uint8_t)AllocationType::None;
}));
assert(llvm::none_of(Node->CallerEdges,
[&](const std::shared_ptr<ContextEdge> &E) {
return E->AllocTypes == (uint8_t)AllocationType::None;
}));
if (VerifyNodes)
checkNode<DerivedCCG, FuncTy, CallTy>(Node);
}
void ModuleCallsiteContextGraph::updateAllocationCall(
CallInfo &Call, AllocationType AllocType) {
std::string AllocTypeString = getAllocTypeAttributeString(AllocType);
auto A = llvm::Attribute::get(Call.call()->getFunction()->getContext(),
"memprof", AllocTypeString);
cast<CallBase>(Call.call())->addFnAttr(A);
OREGetter(Call.call()->getFunction())
.emit(OptimizationRemark(DEBUG_TYPE, "MemprofAttribute", Call.call())
<< ore::NV("AllocationCall", Call.call()) << " in clone "
<< ore::NV("Caller", Call.call()->getFunction())
<< " marked with memprof allocation attribute "
<< ore::NV("Attribute", AllocTypeString));
}
void IndexCallsiteContextGraph::updateAllocationCall(CallInfo &Call,
AllocationType AllocType) {
auto *AI = Call.call().dyn_cast<AllocInfo *>();
assert(AI);
assert(AI->Versions.size() > Call.cloneNo());
AI->Versions[Call.cloneNo()] = (uint8_t)AllocType;
}
void ModuleCallsiteContextGraph::updateCall(CallInfo &CallerCall,
FuncInfo CalleeFunc) {
if (CalleeFunc.cloneNo() > 0)
cast<CallBase>(CallerCall.call())->setCalledFunction(CalleeFunc.func());
OREGetter(CallerCall.call()->getFunction())
.emit(OptimizationRemark(DEBUG_TYPE, "MemprofCall", CallerCall.call())
<< ore::NV("Call", CallerCall.call()) << " in clone "
<< ore::NV("Caller", CallerCall.call()->getFunction())
<< " assigned to call function clone "
<< ore::NV("Callee", CalleeFunc.func()));
}
void IndexCallsiteContextGraph::updateCall(CallInfo &CallerCall,
FuncInfo CalleeFunc) {
auto *CI = CallerCall.call().dyn_cast<CallsiteInfo *>();
assert(CI &&
"Caller cannot be an allocation which should not have profiled calls");
assert(CI->Clones.size() > CallerCall.cloneNo());
CI->Clones[CallerCall.cloneNo()] = CalleeFunc.cloneNo();
}
CallsiteContextGraph<ModuleCallsiteContextGraph, Function,
Instruction *>::FuncInfo
ModuleCallsiteContextGraph::cloneFunctionForCallsite(
FuncInfo &Func, CallInfo &Call, std::map<CallInfo, CallInfo> &CallMap,
std::vector<CallInfo> &CallsWithMetadataInFunc, unsigned CloneNo) {
// Use existing LLVM facilities for cloning and obtaining Call in clone
ValueToValueMapTy VMap;
auto *NewFunc = CloneFunction(Func.func(), VMap);
std::string Name = getMemProfFuncName(Func.func()->getName(), CloneNo);
assert(!Func.func()->getParent()->getFunction(Name));
NewFunc->setName(Name);
for (auto &Inst : CallsWithMetadataInFunc) {
// This map always has the initial version in it.
assert(Inst.cloneNo() == 0);
CallMap[Inst] = {cast<Instruction>(VMap[Inst.call()]), CloneNo};
}
OREGetter(Func.func())
.emit(OptimizationRemark(DEBUG_TYPE, "MemprofClone", Func.func())
<< "created clone " << ore::NV("NewFunction", NewFunc));
return {NewFunc, CloneNo};
}
CallsiteContextGraph<IndexCallsiteContextGraph, FunctionSummary,
IndexCall>::FuncInfo
IndexCallsiteContextGraph::cloneFunctionForCallsite(
FuncInfo &Func, CallInfo &Call, std::map<CallInfo, CallInfo> &CallMap,
std::vector<CallInfo> &CallsWithMetadataInFunc, unsigned CloneNo) {
// Check how many clones we have of Call (and therefore function).
// The next clone number is the current size of versions array.
// Confirm this matches the CloneNo provided by the caller, which is based on
// the number of function clones we have.
assert(CloneNo ==
(Call.call().is<AllocInfo *>()
? Call.call().dyn_cast<AllocInfo *>()->Versions.size()
: Call.call().dyn_cast<CallsiteInfo *>()->Clones.size()));
// Walk all the instructions in this function. Create a new version for
// each (by adding an entry to the Versions/Clones summary array), and copy
// over the version being called for the function clone being cloned here.
// Additionally, add an entry to the CallMap for the new function clone,
// mapping the original call (clone 0, what is in CallsWithMetadataInFunc)
// to the new call clone.
for (auto &Inst : CallsWithMetadataInFunc) {
// This map always has the initial version in it.
assert(Inst.cloneNo() == 0);
if (auto *AI = Inst.call().dyn_cast<AllocInfo *>()) {
assert(AI->Versions.size() == CloneNo);
// We assign the allocation type later (in updateAllocationCall), just add
// an entry for it here.
AI->Versions.push_back(0);
} else {
auto *CI = Inst.call().dyn_cast<CallsiteInfo *>();
assert(CI && CI->Clones.size() == CloneNo);
// We assign the clone number later (in updateCall), just add an entry for
// it here.
CI->Clones.push_back(0);
}
CallMap[Inst] = {Inst.call(), CloneNo};
}
return {Func.func(), CloneNo};
}
// This method assigns cloned callsites to functions, cloning the functions as
// needed. The assignment is greedy and proceeds roughly as follows:
//
// For each function Func:
// For each call with graph Node having clones:
// Initialize ClonesWorklist to Node and its clones
// Initialize NodeCloneCount to 0
// While ClonesWorklist is not empty:
// Clone = pop front ClonesWorklist
// NodeCloneCount++
// If Func has been cloned less than NodeCloneCount times:
// If NodeCloneCount is 1:
// Assign Clone to original Func
// Continue
// Create a new function clone
// If other callers not assigned to call a function clone yet:
// Assign them to call new function clone
// Continue
// Assign any other caller calling the cloned version to new clone
//
// For each caller of Clone:
// If caller is assigned to call a specific function clone:
// If we cannot assign Clone to that function clone:
// Create new callsite Clone NewClone
// Add NewClone to ClonesWorklist
// Continue
// Assign Clone to existing caller's called function clone
// Else:
// If Clone not already assigned to a function clone:
// Assign to first function clone without assignment
// Assign caller to selected function clone
template <typename DerivedCCG, typename FuncTy, typename CallTy>
bool CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::assignFunctions() {
bool Changed = false;
// Keep track of the assignment of nodes (callsites) to function clones they
// call.
DenseMap<ContextNode *, FuncInfo> CallsiteToCalleeFuncCloneMap;
// Update caller node to call function version CalleeFunc, by recording the
// assignment in CallsiteToCalleeFuncCloneMap.
auto RecordCalleeFuncOfCallsite = [&](ContextNode *Caller,
const FuncInfo &CalleeFunc) {
assert(Caller->hasCall());
CallsiteToCalleeFuncCloneMap[Caller] = CalleeFunc;
};
// Walk all functions for which we saw calls with memprof metadata, and handle
// cloning for each of its calls.
for (auto &[Func, CallsWithMetadata] : FuncToCallsWithMetadata) {
FuncInfo OrigFunc(Func);
// Map from each clone of OrigFunc to a map of remappings of each call of
// interest (from original uncloned call to the corresponding cloned call in
// that function clone).
std::map<FuncInfo, std::map<CallInfo, CallInfo>> FuncClonesToCallMap;
for (auto &Call : CallsWithMetadata) {
ContextNode *Node = getNodeForInst(Call);
// Skip call if we do not have a node for it (all uses of its stack ids
// were either on inlined chains or pruned from the MIBs), or if we did
// not create any clones for it.
if (!Node || Node->Clones.empty())
continue;
assert(Node->hasCall() &&
"Not having a call should have prevented cloning");
// Track the assignment of function clones to clones of the current
// callsite Node being handled.
std::map<FuncInfo, ContextNode *> FuncCloneToCurNodeCloneMap;
// Assign callsite version CallsiteClone to function version FuncClone,
// and also assign (possibly cloned) Call to CallsiteClone.
auto AssignCallsiteCloneToFuncClone = [&](const FuncInfo &FuncClone,
CallInfo &Call,
ContextNode *CallsiteClone,
bool IsAlloc) {
// Record the clone of callsite node assigned to this function clone.
FuncCloneToCurNodeCloneMap[FuncClone] = CallsiteClone;
assert(FuncClonesToCallMap.count(FuncClone));
std::map<CallInfo, CallInfo> &CallMap = FuncClonesToCallMap[FuncClone];
CallInfo CallClone(Call);
if (CallMap.count(Call))
CallClone = CallMap[Call];
CallsiteClone->setCall(CallClone);
};
// Keep track of the clones of callsite Node that need to be assigned to
// function clones. This list may be expanded in the loop body below if we
// find additional cloning is required.
std::deque<ContextNode *> ClonesWorklist;
// Ignore original Node if we moved all of its contexts to clones.
if (!Node->ContextIds.empty())
ClonesWorklist.push_back(Node);
ClonesWorklist.insert(ClonesWorklist.end(), Node->Clones.begin(),
Node->Clones.end());
// Now walk through all of the clones of this callsite Node that we need,
// and determine the assignment to a corresponding clone of the current
// function (creating new function clones as needed).
unsigned NodeCloneCount = 0;
while (!ClonesWorklist.empty()) {
ContextNode *Clone = ClonesWorklist.front();
ClonesWorklist.pop_front();
NodeCloneCount++;
if (VerifyNodes)
checkNode<DerivedCCG, FuncTy, CallTy>(Clone);
// Need to create a new function clone if we have more callsite clones
// than existing function clones, which would have been assigned to an
// earlier clone in the list (we assign callsite clones to function
// clones greedily).
if (FuncClonesToCallMap.size() < NodeCloneCount) {
// If this is the first callsite copy, assign to original function.
if (NodeCloneCount == 1) {
// Since FuncClonesToCallMap is empty in this case, no clones have
// been created for this function yet, and no callers should have
// been assigned a function clone for this callee node yet.
assert(llvm::none_of(
Clone->CallerEdges, [&](const std::shared_ptr<ContextEdge> &E) {
return CallsiteToCalleeFuncCloneMap.count(E->Caller);
}));
// Initialize with empty call map, assign Clone to original function
// and its callers, and skip to the next clone.
FuncClonesToCallMap[OrigFunc] = {};
AssignCallsiteCloneToFuncClone(
OrigFunc, Call, Clone,
AllocationCallToContextNodeMap.count(Call));
for (auto &CE : Clone->CallerEdges) {
// Ignore any caller that does not have a recorded callsite Call.
if (!CE->Caller->hasCall())
continue;
RecordCalleeFuncOfCallsite(CE->Caller, OrigFunc);
}
continue;
}
// First locate which copy of OrigFunc to clone again. If a caller
// of this callsite clone was already assigned to call a particular
// function clone, we need to redirect all of those callers to the
// new function clone, and update their other callees within this
// function.
FuncInfo PreviousAssignedFuncClone;
auto EI = llvm::find_if(
Clone->CallerEdges, [&](const std::shared_ptr<ContextEdge> &E) {
return CallsiteToCalleeFuncCloneMap.count(E->Caller);
});
bool CallerAssignedToCloneOfFunc = false;
if (EI != Clone->CallerEdges.end()) {
const std::shared_ptr<ContextEdge> &Edge = *EI;
PreviousAssignedFuncClone =
CallsiteToCalleeFuncCloneMap[Edge->Caller];
CallerAssignedToCloneOfFunc = true;
}
// Clone function and save it along with the CallInfo map created
// during cloning in the FuncClonesToCallMap.
std::map<CallInfo, CallInfo> NewCallMap;
unsigned CloneNo = FuncClonesToCallMap.size();
assert(CloneNo > 0 && "Clone 0 is the original function, which "
"should already exist in the map");
FuncInfo NewFuncClone = cloneFunctionForCallsite(
OrigFunc, Call, NewCallMap, CallsWithMetadata, CloneNo);
FuncClonesToCallMap.emplace(NewFuncClone, std::move(NewCallMap));
FunctionClonesAnalysis++;
Changed = true;
// If no caller callsites were already assigned to a clone of this
// function, we can simply assign this clone to the new func clone
// and update all callers to it, then skip to the next clone.
if (!CallerAssignedToCloneOfFunc) {
AssignCallsiteCloneToFuncClone(
NewFuncClone, Call, Clone,
AllocationCallToContextNodeMap.count(Call));
for (auto &CE : Clone->CallerEdges) {
// Ignore any caller that does not have a recorded callsite Call.
if (!CE->Caller->hasCall())
continue;
RecordCalleeFuncOfCallsite(CE->Caller, NewFuncClone);
}
continue;
}
// We may need to do additional node cloning in this case.
// Reset the CallsiteToCalleeFuncCloneMap entry for any callers
// that were previously assigned to call PreviousAssignedFuncClone,
// to record that they now call NewFuncClone.
for (auto CE : Clone->CallerEdges) {
// Ignore any caller that does not have a recorded callsite Call.
if (!CE->Caller->hasCall())
continue;
if (!CallsiteToCalleeFuncCloneMap.count(CE->Caller) ||
// We subsequently fall through to later handling that
// will perform any additional cloning required for
// callers that were calling other function clones.
CallsiteToCalleeFuncCloneMap[CE->Caller] !=
PreviousAssignedFuncClone)
continue;
RecordCalleeFuncOfCallsite(CE->Caller, NewFuncClone);
// If we are cloning a function that was already assigned to some
// callers, then essentially we are creating new callsite clones
// of the other callsites in that function that are reached by those
// callers. Clone the other callees of the current callsite's caller
// that were already assigned to PreviousAssignedFuncClone
// accordingly. This is important since we subsequently update the
// calls from the nodes in the graph and their assignments to callee
// functions recorded in CallsiteToCalleeFuncCloneMap.
for (auto CalleeEdge : CE->Caller->CalleeEdges) {
// Skip any that have been removed on an earlier iteration when
// cleaning up newly None type callee edges.
if (!CalleeEdge)
continue;
ContextNode *Callee = CalleeEdge->Callee;
// Skip the current callsite, we are looking for other
// callsites Caller calls, as well as any that does not have a
// recorded callsite Call.
if (Callee == Clone || !Callee->hasCall())
continue;
ContextNode *NewClone = moveEdgeToNewCalleeClone(CalleeEdge);
removeNoneTypeCalleeEdges(NewClone);
// Moving the edge may have resulted in some none type
// callee edges on the original Callee.
removeNoneTypeCalleeEdges(Callee);
assert(NewClone->AllocTypes != (uint8_t)AllocationType::None);
// If the Callee node was already assigned to call a specific
// function version, make sure its new clone is assigned to call
// that same function clone.
if (CallsiteToCalleeFuncCloneMap.count(Callee))
RecordCalleeFuncOfCallsite(
NewClone, CallsiteToCalleeFuncCloneMap[Callee]);
// Update NewClone with the new Call clone of this callsite's Call
// created for the new function clone created earlier.
// Recall that we have already ensured when building the graph
// that each caller can only call callsites within the same
// function, so we are guaranteed that Callee Call is in the
// current OrigFunc.
// CallMap is set up as indexed by original Call at clone 0.
CallInfo OrigCall(Callee->getOrigNode()->Call);
OrigCall.setCloneNo(0);
std::map<CallInfo, CallInfo> &CallMap =
FuncClonesToCallMap[NewFuncClone];
assert(CallMap.count(OrigCall));
CallInfo NewCall(CallMap[OrigCall]);
assert(NewCall);
NewClone->setCall(NewCall);
}
}
// Fall through to handling below to perform the recording of the
// function for this callsite clone. This enables handling of cases
// where the callers were assigned to different clones of a function.
}
// See if we can use existing function clone. Walk through
// all caller edges to see if any have already been assigned to
// a clone of this callsite's function. If we can use it, do so. If not,
// because that function clone is already assigned to a different clone
// of this callsite, then we need to clone again.
// Basically, this checking is needed to handle the case where different
// caller functions/callsites may need versions of this function
// containing different mixes of callsite clones across the different
// callsites within the function. If that happens, we need to create
// additional function clones to handle the various combinations.
//
// Keep track of any new clones of this callsite created by the
// following loop, as well as any existing clone that we decided to
// assign this clone to.
std::map<FuncInfo, ContextNode *> FuncCloneToNewCallsiteCloneMap;
FuncInfo FuncCloneAssignedToCurCallsiteClone;
// We need to be able to remove Edge from CallerEdges, so need to adjust
// iterator in the loop.
for (auto EI = Clone->CallerEdges.begin();
EI != Clone->CallerEdges.end();) {
auto Edge = *EI;
// Ignore any caller that does not have a recorded callsite Call.
if (!Edge->Caller->hasCall()) {
EI++;
continue;
}
// If this caller already assigned to call a version of OrigFunc, need
// to ensure we can assign this callsite clone to that function clone.
if (CallsiteToCalleeFuncCloneMap.count(Edge->Caller)) {
FuncInfo FuncCloneCalledByCaller =
CallsiteToCalleeFuncCloneMap[Edge->Caller];
// First we need to confirm that this function clone is available
// for use by this callsite node clone.
//
// While FuncCloneToCurNodeCloneMap is built only for this Node and
// its callsite clones, one of those callsite clones X could have
// been assigned to the same function clone called by Edge's caller
// - if Edge's caller calls another callsite within Node's original
// function, and that callsite has another caller reaching clone X.
// We need to clone Node again in this case.
if ((FuncCloneToCurNodeCloneMap.count(FuncCloneCalledByCaller) &&
FuncCloneToCurNodeCloneMap[FuncCloneCalledByCaller] !=
Clone) ||
// Detect when we have multiple callers of this callsite that
// have already been assigned to specific, and different, clones
// of OrigFunc (due to other unrelated callsites in Func they
// reach via call contexts). Is this Clone of callsite Node
// assigned to a different clone of OrigFunc? If so, clone Node
// again.
(FuncCloneAssignedToCurCallsiteClone &&
FuncCloneAssignedToCurCallsiteClone !=
FuncCloneCalledByCaller)) {
// We need to use a different newly created callsite clone, in
// order to assign it to another new function clone on a
// subsequent iteration over the Clones array (adjusted below).
// Note we specifically do not reset the
// CallsiteToCalleeFuncCloneMap entry for this caller, so that
// when this new clone is processed later we know which version of
// the function to copy (so that other callsite clones we have
// assigned to that function clone are properly cloned over). See
// comments in the function cloning handling earlier.
// Check if we already have cloned this callsite again while
// walking through caller edges, for a caller calling the same
// function clone. If so, we can move this edge to that new clone
// rather than creating yet another new clone.
if (FuncCloneToNewCallsiteCloneMap.count(
FuncCloneCalledByCaller)) {
ContextNode *NewClone =
FuncCloneToNewCallsiteCloneMap[FuncCloneCalledByCaller];
moveEdgeToExistingCalleeClone(Edge, NewClone, &EI);
// Cleanup any none type edges cloned over.
removeNoneTypeCalleeEdges(NewClone);
} else {
// Create a new callsite clone.
ContextNode *NewClone = moveEdgeToNewCalleeClone(Edge, &EI);
removeNoneTypeCalleeEdges(NewClone);
FuncCloneToNewCallsiteCloneMap[FuncCloneCalledByCaller] =
NewClone;
// Add to list of clones and process later.
ClonesWorklist.push_back(NewClone);
assert(EI == Clone->CallerEdges.end() ||
Clone->AllocTypes != (uint8_t)AllocationType::None);
assert(NewClone->AllocTypes != (uint8_t)AllocationType::None);
}
// Moving the caller edge may have resulted in some none type
// callee edges.
removeNoneTypeCalleeEdges(Clone);
// We will handle the newly created callsite clone in a subsequent
// iteration over this Node's Clones. Continue here since we
// already adjusted iterator EI while moving the edge.
continue;
}
// Otherwise, we can use the function clone already assigned to this
// caller.
if (!FuncCloneAssignedToCurCallsiteClone) {
FuncCloneAssignedToCurCallsiteClone = FuncCloneCalledByCaller;
// Assign Clone to FuncCloneCalledByCaller
AssignCallsiteCloneToFuncClone(
FuncCloneCalledByCaller, Call, Clone,
AllocationCallToContextNodeMap.count(Call));
} else
// Don't need to do anything - callsite is already calling this
// function clone.
assert(FuncCloneAssignedToCurCallsiteClone ==
FuncCloneCalledByCaller);
} else {
// We have not already assigned this caller to a version of
// OrigFunc. Do the assignment now.
// First check if we have already assigned this callsite clone to a
// clone of OrigFunc for another caller during this iteration over
// its caller edges.
if (!FuncCloneAssignedToCurCallsiteClone) {
// Find first function in FuncClonesToCallMap without an assigned
// clone of this callsite Node. We should always have one
// available at this point due to the earlier cloning when the
// FuncClonesToCallMap size was smaller than the clone number.
for (auto &CF : FuncClonesToCallMap) {
if (!FuncCloneToCurNodeCloneMap.count(CF.first)) {
FuncCloneAssignedToCurCallsiteClone = CF.first;
break;
}
}
assert(FuncCloneAssignedToCurCallsiteClone);
// Assign Clone to FuncCloneAssignedToCurCallsiteClone
AssignCallsiteCloneToFuncClone(
FuncCloneAssignedToCurCallsiteClone, Call, Clone,
AllocationCallToContextNodeMap.count(Call));
} else
assert(FuncCloneToCurNodeCloneMap
[FuncCloneAssignedToCurCallsiteClone] == Clone);
// Update callers to record function version called.
RecordCalleeFuncOfCallsite(Edge->Caller,
FuncCloneAssignedToCurCallsiteClone);
}
EI++;
}
}
if (VerifyCCG) {
checkNode<DerivedCCG, FuncTy, CallTy>(Node);
for (const auto &PE : Node->CalleeEdges)
checkNode<DerivedCCG, FuncTy, CallTy>(PE->Callee);
for (const auto &CE : Node->CallerEdges)
checkNode<DerivedCCG, FuncTy, CallTy>(CE->Caller);
for (auto *Clone : Node->Clones) {
checkNode<DerivedCCG, FuncTy, CallTy>(Clone);
for (const auto &PE : Clone->CalleeEdges)
checkNode<DerivedCCG, FuncTy, CallTy>(PE->Callee);
for (const auto &CE : Clone->CallerEdges)
checkNode<DerivedCCG, FuncTy, CallTy>(CE->Caller);
}
}
}
}
auto UpdateCalls = [&](ContextNode *Node,
DenseSet<const ContextNode *> &Visited,
auto &&UpdateCalls) {
auto Inserted = Visited.insert(Node);
if (!Inserted.second)
return;
for (auto *Clone : Node->Clones)
UpdateCalls(Clone, Visited, UpdateCalls);
for (auto &Edge : Node->CallerEdges)
UpdateCalls(Edge->Caller, Visited, UpdateCalls);
// Skip if either no call to update, or if we ended up with no context ids
// (we moved all edges onto other clones).
if (!Node->hasCall() || Node->ContextIds.empty())
return;
if (Node->IsAllocation) {
updateAllocationCall(Node->Call, allocTypeToUse(Node->AllocTypes));
return;
}
if (!CallsiteToCalleeFuncCloneMap.count(Node))
return;
auto CalleeFunc = CallsiteToCalleeFuncCloneMap[Node];
updateCall(Node->Call, CalleeFunc);
};
// Performs DFS traversal starting from allocation nodes to update calls to
// reflect cloning decisions recorded earlier. For regular LTO this will
// update the actual calls in the IR to call the appropriate function clone
// (and add attributes to allocation calls), whereas for ThinLTO the decisions
// are recorded in the summary entries.
DenseSet<const ContextNode *> Visited;
for (auto &Entry : AllocationCallToContextNodeMap)
UpdateCalls(Entry.second, Visited, UpdateCalls);
return Changed;
}
static SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> createFunctionClones(
Function &F, unsigned NumClones, Module &M, OptimizationRemarkEmitter &ORE,
std::map<const Function *, SmallPtrSet<const GlobalAlias *, 1>>
&FuncToAliasMap) {
// The first "clone" is the original copy, we should only call this if we
// needed to create new clones.
assert(NumClones > 1);
SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
VMaps.reserve(NumClones - 1);
FunctionsClonedThinBackend++;
for (unsigned I = 1; I < NumClones; I++) {
VMaps.emplace_back(std::make_unique<ValueToValueMapTy>());
auto *NewF = CloneFunction(&F, *VMaps.back());
FunctionClonesThinBackend++;
// Strip memprof and callsite metadata from clone as they are no longer
// needed.
for (auto &BB : *NewF) {
for (auto &Inst : BB) {
Inst.setMetadata(LLVMContext::MD_memprof, nullptr);
Inst.setMetadata(LLVMContext::MD_callsite, nullptr);
}
}
std::string Name = getMemProfFuncName(F.getName(), I);
auto *PrevF = M.getFunction(Name);
if (PrevF) {
// We might have created this when adjusting callsite in another
// function. It should be a declaration.
assert(PrevF->isDeclaration());
NewF->takeName(PrevF);
PrevF->replaceAllUsesWith(NewF);
PrevF->eraseFromParent();
} else
NewF->setName(Name);
ORE.emit(OptimizationRemark(DEBUG_TYPE, "MemprofClone", &F)
<< "created clone " << ore::NV("NewFunction", NewF));
// Now handle aliases to this function, and clone those as well.
if (!FuncToAliasMap.count(&F))
continue;
for (auto *A : FuncToAliasMap[&F]) {
std::string Name = getMemProfFuncName(A->getName(), I);
auto *PrevA = M.getNamedAlias(Name);
auto *NewA = GlobalAlias::create(A->getValueType(),
A->getType()->getPointerAddressSpace(),
A->getLinkage(), Name, NewF);
NewA->copyAttributesFrom(A);
if (PrevA) {
// We might have created this when adjusting callsite in another
// function. It should be a declaration.
assert(PrevA->isDeclaration());
NewA->takeName(PrevA);
PrevA->replaceAllUsesWith(NewA);
PrevA->eraseFromParent();
}
}
}
return VMaps;
}
// Locate the summary for F. This is complicated by the fact that it might
// have been internalized or promoted.
static ValueInfo findValueInfoForFunc(const Function &F, const Module &M,
const ModuleSummaryIndex *ImportSummary) {
// FIXME: Ideally we would retain the original GUID in some fashion on the
// function (e.g. as metadata), but for now do our best to locate the
// summary without that information.
ValueInfo TheFnVI = ImportSummary->getValueInfo(F.getGUID());
if (!TheFnVI)
// See if theFn was internalized, by checking index directly with
// original name (this avoids the name adjustment done by getGUID() for
// internal symbols).
TheFnVI = ImportSummary->getValueInfo(GlobalValue::getGUID(F.getName()));
if (TheFnVI)
return TheFnVI;
// Now query with the original name before any promotion was performed.
StringRef OrigName =
ModuleSummaryIndex::getOriginalNameBeforePromote(F.getName());
std::string OrigId = GlobalValue::getGlobalIdentifier(
OrigName, GlobalValue::InternalLinkage, M.getSourceFileName());
TheFnVI = ImportSummary->getValueInfo(GlobalValue::getGUID(OrigId));
if (TheFnVI)
return TheFnVI;
// Could be a promoted local imported from another module. We need to pass
// down more info here to find the original module id. For now, try with
// the OrigName which might have been stored in the OidGuidMap in the
// index. This would not work if there were same-named locals in multiple
// modules, however.
auto OrigGUID =
ImportSummary->getGUIDFromOriginalID(GlobalValue::getGUID(OrigName));
if (OrigGUID)
TheFnVI = ImportSummary->getValueInfo(OrigGUID);
return TheFnVI;
}
bool MemProfContextDisambiguation::applyImport(Module &M) {
assert(ImportSummary);
bool Changed = false;
auto IsMemProfClone = [](const Function &F) {
return F.getName().contains(MemProfCloneSuffix);
};
// We also need to clone any aliases that reference cloned functions, because
// the modified callsites may invoke via the alias. Keep track of the aliases
// for each function.
std::map<const Function *, SmallPtrSet<const GlobalAlias *, 1>>
FuncToAliasMap;
for (auto &A : M.aliases()) {
auto *Aliasee = A.getAliaseeObject();
if (auto *F = dyn_cast<Function>(Aliasee))
FuncToAliasMap[F].insert(&A);
}
for (auto &F : M) {
if (F.isDeclaration() || IsMemProfClone(F))
continue;
OptimizationRemarkEmitter ORE(&F);
SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
bool ClonesCreated = false;
unsigned NumClonesCreated = 0;
auto CloneFuncIfNeeded = [&](unsigned NumClones) {
// We should at least have version 0 which is the original copy.
assert(NumClones > 0);
// If only one copy needed use original.
if (NumClones == 1)
return;
// If we already performed cloning of this function, confirm that the
// requested number of clones matches (the thin link should ensure the
// number of clones for each constituent callsite is consistent within
// each function), before returning.
if (ClonesCreated) {
assert(NumClonesCreated == NumClones);
return;
}
VMaps = createFunctionClones(F, NumClones, M, ORE, FuncToAliasMap);
// The first "clone" is the original copy, which doesn't have a VMap.
assert(VMaps.size() == NumClones - 1);
Changed = true;
ClonesCreated = true;
NumClonesCreated = NumClones;
};
// Locate the summary for F.
ValueInfo TheFnVI = findValueInfoForFunc(F, M, ImportSummary);
// If not found, this could be an imported local (see comment in
// findValueInfoForFunc). Skip for now as it will be cloned in its original
// module (where it would have been promoted to global scope so should
// satisfy any reference in this module).
if (!TheFnVI)
continue;
auto *GVSummary =
ImportSummary->findSummaryInModule(TheFnVI, M.getModuleIdentifier());
if (!GVSummary)
// Must have been imported, use the first summary (might be multiple if
// this was a linkonce_odr).
GVSummary = TheFnVI.getSummaryList().front().get();
// If this was an imported alias skip it as we won't have the function
// summary, and it should be cloned in the original module.
if (isa<AliasSummary>(GVSummary))
continue;
auto *FS = cast<FunctionSummary>(GVSummary->getBaseObject());
if (FS->allocs().empty() && FS->callsites().empty())
continue;
auto SI = FS->callsites().begin();
auto AI = FS->allocs().begin();
// Assume for now that the instructions are in the exact same order
// as when the summary was created, but confirm this is correct by
// matching the stack ids.
for (auto &BB : F) {
for (auto &I : BB) {
auto *CB = dyn_cast<CallBase>(&I);
// Same handling as when creating module summary.
if (!mayHaveMemprofSummary(CB))
continue;
CallStack<MDNode, MDNode::op_iterator> CallsiteContext(
I.getMetadata(LLVMContext::MD_callsite));
auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof);
// Include allocs that were already assigned a memprof function
// attribute in the statistics.
if (CB->getAttributes().hasFnAttr("memprof")) {
assert(!MemProfMD);
CB->getAttributes().getFnAttr("memprof").getValueAsString() == "cold"
? AllocTypeColdThinBackend++
: AllocTypeNotColdThinBackend++;
OrigAllocsThinBackend++;
AllocVersionsThinBackend++;
if (!MaxAllocVersionsThinBackend)
MaxAllocVersionsThinBackend = 1;
// Remove any remaining callsite metadata and we can skip the rest of
// the handling for this instruction, since no cloning needed.
I.setMetadata(LLVMContext::MD_callsite, nullptr);
continue;
}
if (MemProfMD) {
// Consult the next alloc node.
assert(AI != FS->allocs().end());
auto &AllocNode = *(AI++);
// Sanity check that the MIB stack ids match between the summary and
// instruction metadata.
auto MIBIter = AllocNode.MIBs.begin();
for (auto &MDOp : MemProfMD->operands()) {
assert(MIBIter != AllocNode.MIBs.end());
LLVM_ATTRIBUTE_UNUSED auto StackIdIndexIter =
MIBIter->StackIdIndices.begin();
auto *MIBMD = cast<const MDNode>(MDOp);
MDNode *StackMDNode = getMIBStackNode(MIBMD);
assert(StackMDNode);
SmallVector<unsigned> StackIdsFromMetadata;
CallStack<MDNode, MDNode::op_iterator> StackContext(StackMDNode);
for (auto ContextIter =
StackContext.beginAfterSharedPrefix(CallsiteContext);
ContextIter != StackContext.end(); ++ContextIter) {
// If this is a direct recursion, simply skip the duplicate
// entries, to be consistent with how the summary ids were
// generated during ModuleSummaryAnalysis.
if (!StackIdsFromMetadata.empty() &&
StackIdsFromMetadata.back() == *ContextIter)
continue;
assert(StackIdIndexIter != MIBIter->StackIdIndices.end());
assert(ImportSummary->getStackIdAtIndex(*StackIdIndexIter) ==
*ContextIter);
StackIdIndexIter++;
}
MIBIter++;
}
// Perform cloning if not yet done.
CloneFuncIfNeeded(/*NumClones=*/AllocNode.Versions.size());
OrigAllocsThinBackend++;
AllocVersionsThinBackend += AllocNode.Versions.size();
if (MaxAllocVersionsThinBackend < AllocNode.Versions.size())
MaxAllocVersionsThinBackend = AllocNode.Versions.size();
// If there is only one version that means we didn't end up
// considering this function for cloning, and in that case the alloc
// will still be none type or should have gotten the default NotCold.
// Skip that after calling clone helper since that does some sanity
// checks that confirm we haven't decided yet that we need cloning.
if (AllocNode.Versions.size() == 1) {
assert((AllocationType)AllocNode.Versions[0] ==
AllocationType::NotCold ||
(AllocationType)AllocNode.Versions[0] ==
AllocationType::None);
UnclonableAllocsThinBackend++;
continue;
}
// All versions should have a singular allocation type.
assert(llvm::none_of(AllocNode.Versions, [](uint8_t Type) {
return Type == ((uint8_t)AllocationType::NotCold |
(uint8_t)AllocationType::Cold);
}));
// Update the allocation types per the summary info.
for (unsigned J = 0; J < AllocNode.Versions.size(); J++) {
// Ignore any that didn't get an assigned allocation type.
if (AllocNode.Versions[J] == (uint8_t)AllocationType::None)
continue;
AllocationType AllocTy = (AllocationType)AllocNode.Versions[J];
AllocTy == AllocationType::Cold ? AllocTypeColdThinBackend++
: AllocTypeNotColdThinBackend++;
std::string AllocTypeString = getAllocTypeAttributeString(AllocTy);
auto A = llvm::Attribute::get(F.getContext(), "memprof",
AllocTypeString);
CallBase *CBClone;
// Copy 0 is the original function.
if (!J)
CBClone = CB;
else
// Since VMaps are only created for new clones, we index with
// clone J-1 (J==0 is the original clone and does not have a VMaps
// entry).
CBClone = cast<CallBase>((*VMaps[J - 1])[CB]);
CBClone->addFnAttr(A);
ORE.emit(OptimizationRemark(DEBUG_TYPE, "MemprofAttribute", CBClone)
<< ore::NV("AllocationCall", CBClone) << " in clone "
<< ore::NV("Caller", CBClone->getFunction())
<< " marked with memprof allocation attribute "
<< ore::NV("Attribute", AllocTypeString));
}
} else if (!CallsiteContext.empty()) {
// Consult the next callsite node.
assert(SI != FS->callsites().end());
auto &StackNode = *(SI++);
#ifndef NDEBUG
// Sanity check that the stack ids match between the summary and
// instruction metadata.
auto StackIdIndexIter = StackNode.StackIdIndices.begin();
for (auto StackId : CallsiteContext) {
assert(StackIdIndexIter != StackNode.StackIdIndices.end());
assert(ImportSummary->getStackIdAtIndex(*StackIdIndexIter) ==
StackId);
StackIdIndexIter++;
}
#endif
// Perform cloning if not yet done.
CloneFuncIfNeeded(/*NumClones=*/StackNode.Clones.size());
// Should have skipped indirect calls via mayHaveMemprofSummary.
assert(CB->getCalledFunction());
assert(!IsMemProfClone(*CB->getCalledFunction()));
// Update the calls per the summary info.
// Save orig name since it gets updated in the first iteration
// below.
auto CalleeOrigName = CB->getCalledFunction()->getName();
for (unsigned J = 0; J < StackNode.Clones.size(); J++) {
// Do nothing if this version calls the original version of its
// callee.
if (!StackNode.Clones[J])
continue;
auto NewF = M.getOrInsertFunction(
getMemProfFuncName(CalleeOrigName, StackNode.Clones[J]),
CB->getCalledFunction()->getFunctionType());
CallBase *CBClone;
// Copy 0 is the original function.
if (!J)
CBClone = CB;
else
CBClone = cast<CallBase>((*VMaps[J - 1])[CB]);
CBClone->setCalledFunction(NewF);
ORE.emit(OptimizationRemark(DEBUG_TYPE, "MemprofCall", CBClone)
<< ore::NV("Call", CBClone) << " in clone "
<< ore::NV("Caller", CBClone->getFunction())
<< " assigned to call function clone "
<< ore::NV("Callee", NewF.getCallee()));
}
}
// Memprof and callsite metadata on memory allocations no longer needed.
I.setMetadata(LLVMContext::MD_memprof, nullptr);
I.setMetadata(LLVMContext::MD_callsite, nullptr);
}
}
}
return Changed;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
bool CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::process() {
if (DumpCCG) {
dbgs() << "CCG before cloning:\n";
dbgs() << *this;
}
if (ExportToDot)
exportToDot("postbuild");
if (VerifyCCG) {
check();
}
identifyClones();
if (VerifyCCG) {
check();
}
if (DumpCCG) {
dbgs() << "CCG after cloning:\n";
dbgs() << *this;
}
if (ExportToDot)
exportToDot("cloned");
bool Changed = assignFunctions();
if (DumpCCG) {
dbgs() << "CCG after assigning function clones:\n";
dbgs() << *this;
}
if (ExportToDot)
exportToDot("clonefuncassign");
return Changed;
}
bool MemProfContextDisambiguation::processModule(
Module &M,
function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
// If we have an import summary, then the cloning decisions were made during
// the thin link on the index. Apply them and return.
if (ImportSummary)
return applyImport(M);
// TODO: If/when other types of memprof cloning are enabled beyond just for
// hot and cold, we will need to change this to individually control the
// AllocationType passed to addStackNodesForMIB during CCG construction.
// Note that we specifically check this after applying imports above, so that
// the option isn't needed to be passed to distributed ThinLTO backend
// clang processes, which won't necessarily have visibility into the linker
// dependences. Instead the information is communicated from the LTO link to
// the backends via the combined summary index.
if (!SupportsHotColdNew)
return false;
ModuleCallsiteContextGraph CCG(M, OREGetter);
return CCG.process();
}
MemProfContextDisambiguation::MemProfContextDisambiguation(
const ModuleSummaryIndex *Summary)
: ImportSummary(Summary) {
if (ImportSummary) {
// The MemProfImportSummary should only be used for testing ThinLTO
// distributed backend handling via opt, in which case we don't have a
// summary from the pass pipeline.
assert(MemProfImportSummary.empty());
return;
}
if (MemProfImportSummary.empty())
return;
auto ReadSummaryFile =
errorOrToExpected(MemoryBuffer::getFile(MemProfImportSummary));
if (!ReadSummaryFile) {
logAllUnhandledErrors(ReadSummaryFile.takeError(), errs(),
"Error loading file '" + MemProfImportSummary +
"': ");
return;
}
auto ImportSummaryForTestingOrErr = getModuleSummaryIndex(**ReadSummaryFile);
if (!ImportSummaryForTestingOrErr) {
logAllUnhandledErrors(ImportSummaryForTestingOrErr.takeError(), errs(),
"Error parsing file '" + MemProfImportSummary +
"': ");
return;
}
ImportSummaryForTesting = std::move(*ImportSummaryForTestingOrErr);
ImportSummary = ImportSummaryForTesting.get();
}
PreservedAnalyses MemProfContextDisambiguation::run(Module &M,
ModuleAnalysisManager &AM) {
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
};
if (!processModule(M, OREGetter))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}
void MemProfContextDisambiguation::run(
ModuleSummaryIndex &Index,
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
isPrevailing) {
// TODO: If/when other types of memprof cloning are enabled beyond just for
// hot and cold, we will need to change this to individually control the
// AllocationType passed to addStackNodesForMIB during CCG construction.
// The index was set from the option, so these should be in sync.
assert(Index.withSupportsHotColdNew() == SupportsHotColdNew);
if (!SupportsHotColdNew)
return;
IndexCallsiteContextGraph CCG(Index, isPrevailing);
CCG.process();
}
|