1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
|
//===- InstCombineCalls.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitCall, visitInvoke, and visitCallBr functions.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLFunctionalExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumeBundleQueries.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/AttributeMask.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/IntrinsicsHexagon.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <optional>
#include <utility>
#include <vector>
#define DEBUG_TYPE "instcombine"
#include "llvm/Transforms/Utils/InstructionWorklist.h"
using namespace llvm;
using namespace PatternMatch;
STATISTIC(NumSimplified, "Number of library calls simplified");
static cl::opt<unsigned> GuardWideningWindow(
"instcombine-guard-widening-window",
cl::init(3),
cl::desc("How wide an instruction window to bypass looking for "
"another guard"));
namespace llvm {
/// enable preservation of attributes in assume like:
/// call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
extern cl::opt<bool> EnableKnowledgeRetention;
} // namespace llvm
/// Return the specified type promoted as it would be to pass though a va_arg
/// area.
static Type *getPromotedType(Type *Ty) {
if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
if (ITy->getBitWidth() < 32)
return Type::getInt32Ty(Ty->getContext());
}
return Ty;
}
/// Recognize a memcpy/memmove from a trivially otherwise unused alloca.
/// TODO: This should probably be integrated with visitAllocSites, but that
/// requires a deeper change to allow either unread or unwritten objects.
static bool hasUndefSource(AnyMemTransferInst *MI) {
auto *Src = MI->getRawSource();
while (isa<GetElementPtrInst>(Src) || isa<BitCastInst>(Src)) {
if (!Src->hasOneUse())
return false;
Src = cast<Instruction>(Src)->getOperand(0);
}
return isa<AllocaInst>(Src) && Src->hasOneUse();
}
Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
MaybeAlign CopyDstAlign = MI->getDestAlign();
if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
MI->setDestAlignment(DstAlign);
return MI;
}
Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
MaybeAlign CopySrcAlign = MI->getSourceAlign();
if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
MI->setSourceAlignment(SrcAlign);
return MI;
}
// If we have a store to a location which is known constant, we can conclude
// that the store must be storing the constant value (else the memory
// wouldn't be constant), and this must be a noop.
if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
// Set the size of the copy to 0, it will be deleted on the next iteration.
MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
return MI;
}
// If the source is provably undef, the memcpy/memmove doesn't do anything
// (unless the transfer is volatile).
if (hasUndefSource(MI) && !MI->isVolatile()) {
// Set the size of the copy to 0, it will be deleted on the next iteration.
MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
return MI;
}
// If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
// load/store.
ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
if (!MemOpLength) return nullptr;
// Source and destination pointer types are always "i8*" for intrinsic. See
// if the size is something we can handle with a single primitive load/store.
// A single load+store correctly handles overlapping memory in the memmove
// case.
uint64_t Size = MemOpLength->getLimitedValue();
assert(Size && "0-sized memory transferring should be removed already.");
if (Size > 8 || (Size&(Size-1)))
return nullptr; // If not 1/2/4/8 bytes, exit.
// If it is an atomic and alignment is less than the size then we will
// introduce the unaligned memory access which will be later transformed
// into libcall in CodeGen. This is not evident performance gain so disable
// it now.
if (isa<AtomicMemTransferInst>(MI))
if (*CopyDstAlign < Size || *CopySrcAlign < Size)
return nullptr;
// Use an integer load+store unless we can find something better.
unsigned SrcAddrSp =
cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
unsigned DstAddrSp =
cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
// If the memcpy has metadata describing the members, see if we can get the
// TBAA tag describing our copy.
MDNode *CopyMD = nullptr;
if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
CopyMD = M;
} else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
if (M->getNumOperands() == 3 && M->getOperand(0) &&
mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
M->getOperand(1) &&
mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
Size &&
M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
CopyMD = cast<MDNode>(M->getOperand(2));
}
Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
LoadInst *L = Builder.CreateLoad(IntType, Src);
// Alignment from the mem intrinsic will be better, so use it.
L->setAlignment(*CopySrcAlign);
if (CopyMD)
L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
MDNode *LoopMemParallelMD =
MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
if (LoopMemParallelMD)
L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
if (AccessGroupMD)
L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
StoreInst *S = Builder.CreateStore(L, Dest);
// Alignment from the mem intrinsic will be better, so use it.
S->setAlignment(*CopyDstAlign);
if (CopyMD)
S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
if (LoopMemParallelMD)
S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
if (AccessGroupMD)
S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
// non-atomics can be volatile
L->setVolatile(MT->isVolatile());
S->setVolatile(MT->isVolatile());
}
if (isa<AtomicMemTransferInst>(MI)) {
// atomics have to be unordered
L->setOrdering(AtomicOrdering::Unordered);
S->setOrdering(AtomicOrdering::Unordered);
}
// Set the size of the copy to 0, it will be deleted on the next iteration.
MI->setLength(Constant::getNullValue(MemOpLength->getType()));
return MI;
}
Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) {
const Align KnownAlignment =
getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
MaybeAlign MemSetAlign = MI->getDestAlign();
if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
MI->setDestAlignment(KnownAlignment);
return MI;
}
// If we have a store to a location which is known constant, we can conclude
// that the store must be storing the constant value (else the memory
// wouldn't be constant), and this must be a noop.
if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
// Set the size of the copy to 0, it will be deleted on the next iteration.
MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
return MI;
}
// Remove memset with an undef value.
// FIXME: This is technically incorrect because it might overwrite a poison
// value. Change to PoisonValue once #52930 is resolved.
if (isa<UndefValue>(MI->getValue())) {
// Set the size of the copy to 0, it will be deleted on the next iteration.
MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
return MI;
}
// Extract the length and alignment and fill if they are constant.
ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
return nullptr;
const uint64_t Len = LenC->getLimitedValue();
assert(Len && "0-sized memory setting should be removed already.");
const Align Alignment = MI->getDestAlign().valueOrOne();
// If it is an atomic and alignment is less than the size then we will
// introduce the unaligned memory access which will be later transformed
// into libcall in CodeGen. This is not evident performance gain so disable
// it now.
if (isa<AtomicMemSetInst>(MI))
if (Alignment < Len)
return nullptr;
// memset(s,c,n) -> store s, c (for n=1,2,4,8)
if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
Value *Dest = MI->getDest();
unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
// Extract the fill value and store.
const uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
Constant *FillVal = ConstantInt::get(ITy, Fill);
StoreInst *S = Builder.CreateStore(FillVal, Dest, MI->isVolatile());
S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
for (auto *DAI : at::getAssignmentMarkers(S)) {
if (any_of(DAI->location_ops(), [&](Value *V) { return V == FillC; }))
DAI->replaceVariableLocationOp(FillC, FillVal);
}
S->setAlignment(Alignment);
if (isa<AtomicMemSetInst>(MI))
S->setOrdering(AtomicOrdering::Unordered);
// Set the size of the copy to 0, it will be deleted on the next iteration.
MI->setLength(Constant::getNullValue(LenC->getType()));
return MI;
}
return nullptr;
}
// TODO, Obvious Missing Transforms:
// * Narrow width by halfs excluding zero/undef lanes
Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) {
Value *LoadPtr = II.getArgOperand(0);
const Align Alignment =
cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
// If the mask is all ones or undefs, this is a plain vector load of the 1st
// argument.
if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
"unmaskedload");
L->copyMetadata(II);
return L;
}
// If we can unconditionally load from this address, replace with a
// load/select idiom. TODO: use DT for context sensitive query
if (isDereferenceablePointer(LoadPtr, II.getType(),
II.getModule()->getDataLayout(), &II, &AC)) {
LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
"unmaskedload");
LI->copyMetadata(II);
return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
}
return nullptr;
}
// TODO, Obvious Missing Transforms:
// * Single constant active lane -> store
// * Narrow width by halfs excluding zero/undef lanes
Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) {
auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
if (!ConstMask)
return nullptr;
// If the mask is all zeros, this instruction does nothing.
if (ConstMask->isNullValue())
return eraseInstFromFunction(II);
// If the mask is all ones, this is a plain vector store of the 1st argument.
if (ConstMask->isAllOnesValue()) {
Value *StorePtr = II.getArgOperand(1);
Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
StoreInst *S =
new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
S->copyMetadata(II);
return S;
}
if (isa<ScalableVectorType>(ConstMask->getType()))
return nullptr;
// Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
APInt UndefElts(DemandedElts.getBitWidth(), 0);
if (Value *V =
SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
return replaceOperand(II, 0, V);
return nullptr;
}
// TODO, Obvious Missing Transforms:
// * Single constant active lane load -> load
// * Dereferenceable address & few lanes -> scalarize speculative load/selects
// * Adjacent vector addresses -> masked.load
// * Narrow width by halfs excluding zero/undef lanes
// * Vector incrementing address -> vector masked load
Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) {
auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
if (!ConstMask)
return nullptr;
// Vector splat address w/known mask -> scalar load
// Fold the gather to load the source vector first lane
// because it is reloading the same value each time
if (ConstMask->isAllOnesValue())
if (auto *SplatPtr = getSplatValue(II.getArgOperand(0))) {
auto *VecTy = cast<VectorType>(II.getType());
const Align Alignment =
cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
LoadInst *L = Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr,
Alignment, "load.scalar");
Value *Shuf =
Builder.CreateVectorSplat(VecTy->getElementCount(), L, "broadcast");
return replaceInstUsesWith(II, cast<Instruction>(Shuf));
}
return nullptr;
}
// TODO, Obvious Missing Transforms:
// * Single constant active lane -> store
// * Adjacent vector addresses -> masked.store
// * Narrow store width by halfs excluding zero/undef lanes
// * Vector incrementing address -> vector masked store
Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) {
auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
if (!ConstMask)
return nullptr;
// If the mask is all zeros, a scatter does nothing.
if (ConstMask->isNullValue())
return eraseInstFromFunction(II);
// Vector splat address -> scalar store
if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) {
// scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr
if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) {
Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
StoreInst *S =
new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false, Alignment);
S->copyMetadata(II);
return S;
}
// scatter(vector, splat(ptr), splat(true)) -> store extract(vector,
// lastlane), ptr
if (ConstMask->isAllOnesValue()) {
Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
VectorType *WideLoadTy = cast<VectorType>(II.getArgOperand(1)->getType());
ElementCount VF = WideLoadTy->getElementCount();
Value *RunTimeVF = Builder.CreateElementCount(Builder.getInt32Ty(), VF);
Value *LastLane = Builder.CreateSub(RunTimeVF, Builder.getInt32(1));
Value *Extract =
Builder.CreateExtractElement(II.getArgOperand(0), LastLane);
StoreInst *S =
new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment);
S->copyMetadata(II);
return S;
}
}
if (isa<ScalableVectorType>(ConstMask->getType()))
return nullptr;
// Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
APInt UndefElts(DemandedElts.getBitWidth(), 0);
if (Value *V =
SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
return replaceOperand(II, 0, V);
if (Value *V =
SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, UndefElts))
return replaceOperand(II, 1, V);
return nullptr;
}
/// This function transforms launder.invariant.group and strip.invariant.group
/// like:
/// launder(launder(%x)) -> launder(%x) (the result is not the argument)
/// launder(strip(%x)) -> launder(%x)
/// strip(strip(%x)) -> strip(%x) (the result is not the argument)
/// strip(launder(%x)) -> strip(%x)
/// This is legal because it preserves the most recent information about
/// the presence or absence of invariant.group.
static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
InstCombinerImpl &IC) {
auto *Arg = II.getArgOperand(0);
auto *StrippedArg = Arg->stripPointerCasts();
auto *StrippedInvariantGroupsArg = StrippedArg;
while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) {
if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
break;
StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
}
if (StrippedArg == StrippedInvariantGroupsArg)
return nullptr; // No launders/strips to remove.
Value *Result = nullptr;
if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
else
llvm_unreachable(
"simplifyInvariantGroupIntrinsic only handles launder and strip");
if (Result->getType()->getPointerAddressSpace() !=
II.getType()->getPointerAddressSpace())
Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
if (Result->getType() != II.getType())
Result = IC.Builder.CreateBitCast(Result, II.getType());
return cast<Instruction>(Result);
}
static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) {
assert((II.getIntrinsicID() == Intrinsic::cttz ||
II.getIntrinsicID() == Intrinsic::ctlz) &&
"Expected cttz or ctlz intrinsic");
bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
Value *Op0 = II.getArgOperand(0);
Value *Op1 = II.getArgOperand(1);
Value *X;
// ctlz(bitreverse(x)) -> cttz(x)
// cttz(bitreverse(x)) -> ctlz(x)
if (match(Op0, m_BitReverse(m_Value(X)))) {
Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType());
return CallInst::Create(F, {X, II.getArgOperand(1)});
}
if (II.getType()->isIntOrIntVectorTy(1)) {
// ctlz/cttz i1 Op0 --> not Op0
if (match(Op1, m_Zero()))
return BinaryOperator::CreateNot(Op0);
// If zero is poison, then the input can be assumed to be "true", so the
// instruction simplifies to "false".
assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1");
return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType()));
}
if (IsTZ) {
// cttz(-x) -> cttz(x)
if (match(Op0, m_Neg(m_Value(X))))
return IC.replaceOperand(II, 0, X);
// cttz(-x & x) -> cttz(x)
if (match(Op0, m_c_And(m_Neg(m_Value(X)), m_Deferred(X))))
return IC.replaceOperand(II, 0, X);
// cttz(sext(x)) -> cttz(zext(x))
if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) {
auto *Zext = IC.Builder.CreateZExt(X, II.getType());
auto *CttzZext =
IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1);
return IC.replaceInstUsesWith(II, CttzZext);
}
// Zext doesn't change the number of trailing zeros, so narrow:
// cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsPoison' parameter is 'true'.
if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) {
auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X,
IC.Builder.getTrue());
auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType());
return IC.replaceInstUsesWith(II, ZextCttz);
}
// cttz(abs(x)) -> cttz(x)
// cttz(nabs(x)) -> cttz(x)
Value *Y;
SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
if (SPF == SPF_ABS || SPF == SPF_NABS)
return IC.replaceOperand(II, 0, X);
if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
return IC.replaceOperand(II, 0, X);
}
KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
// Create a mask for bits above (ctlz) or below (cttz) the first known one.
unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
: Known.countMaxLeadingZeros();
unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
: Known.countMinLeadingZeros();
// If all bits above (ctlz) or below (cttz) the first known one are known
// zero, this value is constant.
// FIXME: This should be in InstSimplify because we're replacing an
// instruction with a constant.
if (PossibleZeros == DefiniteZeros) {
auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
return IC.replaceInstUsesWith(II, C);
}
// If the input to cttz/ctlz is known to be non-zero,
// then change the 'ZeroIsPoison' parameter to 'true'
// because we know the zero behavior can't affect the result.
if (!Known.One.isZero() ||
isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
&IC.getDominatorTree())) {
if (!match(II.getArgOperand(1), m_One()))
return IC.replaceOperand(II, 1, IC.Builder.getTrue());
}
// Add range metadata since known bits can't completely reflect what we know.
auto *IT = cast<IntegerType>(Op0->getType()->getScalarType());
if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
Metadata *LowAndHigh[] = {
ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
II.setMetadata(LLVMContext::MD_range,
MDNode::get(II.getContext(), LowAndHigh));
return &II;
}
return nullptr;
}
static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) {
assert(II.getIntrinsicID() == Intrinsic::ctpop &&
"Expected ctpop intrinsic");
Type *Ty = II.getType();
unsigned BitWidth = Ty->getScalarSizeInBits();
Value *Op0 = II.getArgOperand(0);
Value *X, *Y;
// ctpop(bitreverse(x)) -> ctpop(x)
// ctpop(bswap(x)) -> ctpop(x)
if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X))))
return IC.replaceOperand(II, 0, X);
// ctpop(rot(x)) -> ctpop(x)
if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) ||
match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) &&
X == Y)
return IC.replaceOperand(II, 0, X);
// ctpop(x | -x) -> bitwidth - cttz(x, false)
if (Op0->hasOneUse() &&
match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) {
Function *F =
Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()});
auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
}
// ctpop(~x & (x - 1)) -> cttz(x, false)
if (match(Op0,
m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) {
Function *F =
Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
return CallInst::Create(F, {X, IC.Builder.getFalse()});
}
// Zext doesn't change the number of set bits, so narrow:
// ctpop (zext X) --> zext (ctpop X)
if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X);
return CastInst::Create(Instruction::ZExt, NarrowPop, Ty);
}
KnownBits Known(BitWidth);
IC.computeKnownBits(Op0, Known, 0, &II);
// If all bits are zero except for exactly one fixed bit, then the result
// must be 0 or 1, and we can get that answer by shifting to LSB:
// ctpop (X & 32) --> (X & 32) >> 5
// TODO: Investigate removing this as its likely unnecessary given the below
// `isKnownToBeAPowerOfTwo` check.
if ((~Known.Zero).isPowerOf2())
return BinaryOperator::CreateLShr(
Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2()));
// More generally we can also handle non-constant power of 2 patterns such as
// shl/shr(Pow2, X), (X & -X), etc... by transforming:
// ctpop(Pow2OrZero) --> icmp ne X, 0
if (IC.isKnownToBeAPowerOfTwo(Op0, /* OrZero */ true))
return CastInst::Create(Instruction::ZExt,
IC.Builder.CreateICmp(ICmpInst::ICMP_NE, Op0,
Constant::getNullValue(Ty)),
Ty);
// Add range metadata since known bits can't completely reflect what we know.
auto *IT = cast<IntegerType>(Ty->getScalarType());
unsigned MinCount = Known.countMinPopulation();
unsigned MaxCount = Known.countMaxPopulation();
if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
Metadata *LowAndHigh[] = {
ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
II.setMetadata(LLVMContext::MD_range,
MDNode::get(II.getContext(), LowAndHigh));
return &II;
}
return nullptr;
}
/// Convert a table lookup to shufflevector if the mask is constant.
/// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
/// which case we could lower the shufflevector with rev64 instructions
/// as it's actually a byte reverse.
static Value *simplifyNeonTbl1(const IntrinsicInst &II,
InstCombiner::BuilderTy &Builder) {
// Bail out if the mask is not a constant.
auto *C = dyn_cast<Constant>(II.getArgOperand(1));
if (!C)
return nullptr;
auto *VecTy = cast<FixedVectorType>(II.getType());
unsigned NumElts = VecTy->getNumElements();
// Only perform this transformation for <8 x i8> vector types.
if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
return nullptr;
int Indexes[8];
for (unsigned I = 0; I < NumElts; ++I) {
Constant *COp = C->getAggregateElement(I);
if (!COp || !isa<ConstantInt>(COp))
return nullptr;
Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
// Make sure the mask indices are in range.
if ((unsigned)Indexes[I] >= NumElts)
return nullptr;
}
auto *V1 = II.getArgOperand(0);
auto *V2 = Constant::getNullValue(V1->getType());
return Builder.CreateShuffleVector(V1, V2, ArrayRef(Indexes));
}
// Returns true iff the 2 intrinsics have the same operands, limiting the
// comparison to the first NumOperands.
static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
unsigned NumOperands) {
assert(I.arg_size() >= NumOperands && "Not enough operands");
assert(E.arg_size() >= NumOperands && "Not enough operands");
for (unsigned i = 0; i < NumOperands; i++)
if (I.getArgOperand(i) != E.getArgOperand(i))
return false;
return true;
}
// Remove trivially empty start/end intrinsic ranges, i.e. a start
// immediately followed by an end (ignoring debuginfo or other
// start/end intrinsics in between). As this handles only the most trivial
// cases, tracking the nesting level is not needed:
//
// call @llvm.foo.start(i1 0)
// call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
// call @llvm.foo.end(i1 0)
// call @llvm.foo.end(i1 0) ; &I
static bool
removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC,
std::function<bool(const IntrinsicInst &)> IsStart) {
// We start from the end intrinsic and scan backwards, so that InstCombine
// has already processed (and potentially removed) all the instructions
// before the end intrinsic.
BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
for (; BI != BE; ++BI) {
if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) {
if (I->isDebugOrPseudoInst() ||
I->getIntrinsicID() == EndI.getIntrinsicID())
continue;
if (IsStart(*I)) {
if (haveSameOperands(EndI, *I, EndI.arg_size())) {
IC.eraseInstFromFunction(*I);
IC.eraseInstFromFunction(EndI);
return true;
}
// Skip start intrinsics that don't pair with this end intrinsic.
continue;
}
}
break;
}
return false;
}
Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) {
removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) {
return I.getIntrinsicID() == Intrinsic::vastart ||
I.getIntrinsicID() == Intrinsic::vacopy;
});
return nullptr;
}
static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) {
assert(Call.arg_size() > 1 && "Need at least 2 args to swap");
Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
Call.setArgOperand(0, Arg1);
Call.setArgOperand(1, Arg0);
return &Call;
}
return nullptr;
}
/// Creates a result tuple for an overflow intrinsic \p II with a given
/// \p Result and a constant \p Overflow value.
static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result,
Constant *Overflow) {
Constant *V[] = {PoisonValue::get(Result->getType()), Overflow};
StructType *ST = cast<StructType>(II->getType());
Constant *Struct = ConstantStruct::get(ST, V);
return InsertValueInst::Create(Struct, Result, 0);
}
Instruction *
InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
WithOverflowInst *WO = cast<WithOverflowInst>(II);
Value *OperationResult = nullptr;
Constant *OverflowResult = nullptr;
if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
WO->getRHS(), *WO, OperationResult, OverflowResult))
return createOverflowTuple(WO, OperationResult, OverflowResult);
return nullptr;
}
static bool inputDenormalIsIEEE(const Function &F, const Type *Ty) {
Ty = Ty->getScalarType();
return F.getDenormalMode(Ty->getFltSemantics()).Input == DenormalMode::IEEE;
}
static bool inputDenormalIsDAZ(const Function &F, const Type *Ty) {
Ty = Ty->getScalarType();
return F.getDenormalMode(Ty->getFltSemantics()).inputsAreZero();
}
/// \returns the compare predicate type if the test performed by
/// llvm.is.fpclass(x, \p Mask) is equivalent to fcmp o__ x, 0.0 with the
/// floating-point environment assumed for \p F for type \p Ty
static FCmpInst::Predicate fpclassTestIsFCmp0(FPClassTest Mask,
const Function &F, Type *Ty) {
switch (static_cast<unsigned>(Mask)) {
case fcZero:
if (inputDenormalIsIEEE(F, Ty))
return FCmpInst::FCMP_OEQ;
break;
case fcZero | fcSubnormal:
if (inputDenormalIsDAZ(F, Ty))
return FCmpInst::FCMP_OEQ;
break;
case fcPositive | fcNegZero:
if (inputDenormalIsIEEE(F, Ty))
return FCmpInst::FCMP_OGE;
break;
case fcPositive | fcNegZero | fcNegSubnormal:
if (inputDenormalIsDAZ(F, Ty))
return FCmpInst::FCMP_OGE;
break;
case fcPosSubnormal | fcPosNormal | fcPosInf:
if (inputDenormalIsIEEE(F, Ty))
return FCmpInst::FCMP_OGT;
break;
case fcNegative | fcPosZero:
if (inputDenormalIsIEEE(F, Ty))
return FCmpInst::FCMP_OLE;
break;
case fcNegative | fcPosZero | fcPosSubnormal:
if (inputDenormalIsDAZ(F, Ty))
return FCmpInst::FCMP_OLE;
break;
case fcNegSubnormal | fcNegNormal | fcNegInf:
if (inputDenormalIsIEEE(F, Ty))
return FCmpInst::FCMP_OLT;
break;
case fcPosNormal | fcPosInf:
if (inputDenormalIsDAZ(F, Ty))
return FCmpInst::FCMP_OGT;
break;
case fcNegNormal | fcNegInf:
if (inputDenormalIsDAZ(F, Ty))
return FCmpInst::FCMP_OLT;
break;
case ~fcZero & ~fcNan:
if (inputDenormalIsIEEE(F, Ty))
return FCmpInst::FCMP_ONE;
break;
case ~(fcZero | fcSubnormal) & ~fcNan:
if (inputDenormalIsDAZ(F, Ty))
return FCmpInst::FCMP_ONE;
break;
default:
break;
}
return FCmpInst::BAD_FCMP_PREDICATE;
}
Instruction *InstCombinerImpl::foldIntrinsicIsFPClass(IntrinsicInst &II) {
Value *Src0 = II.getArgOperand(0);
Value *Src1 = II.getArgOperand(1);
const ConstantInt *CMask = cast<ConstantInt>(Src1);
FPClassTest Mask = static_cast<FPClassTest>(CMask->getZExtValue());
const bool IsUnordered = (Mask & fcNan) == fcNan;
const bool IsOrdered = (Mask & fcNan) == fcNone;
const FPClassTest OrderedMask = Mask & ~fcNan;
const FPClassTest OrderedInvertedMask = ~OrderedMask & ~fcNan;
const bool IsStrict = II.isStrictFP();
Value *FNegSrc;
if (match(Src0, m_FNeg(m_Value(FNegSrc)))) {
// is.fpclass (fneg x), mask -> is.fpclass x, (fneg mask)
II.setArgOperand(1, ConstantInt::get(Src1->getType(), fneg(Mask)));
return replaceOperand(II, 0, FNegSrc);
}
Value *FAbsSrc;
if (match(Src0, m_FAbs(m_Value(FAbsSrc)))) {
II.setArgOperand(1, ConstantInt::get(Src1->getType(), fabs(Mask)));
return replaceOperand(II, 0, FAbsSrc);
}
// TODO: is.fpclass(x, fcInf) -> fabs(x) == inf
if ((OrderedMask == fcPosInf || OrderedMask == fcNegInf) &&
(IsOrdered || IsUnordered) && !IsStrict) {
// is.fpclass(x, fcPosInf) -> fcmp oeq x, +inf
// is.fpclass(x, fcNegInf) -> fcmp oeq x, -inf
// is.fpclass(x, fcPosInf|fcNan) -> fcmp ueq x, +inf
// is.fpclass(x, fcNegInf|fcNan) -> fcmp ueq x, -inf
Constant *Inf =
ConstantFP::getInfinity(Src0->getType(), OrderedMask == fcNegInf);
Value *EqInf = IsUnordered ? Builder.CreateFCmpUEQ(Src0, Inf)
: Builder.CreateFCmpOEQ(Src0, Inf);
EqInf->takeName(&II);
return replaceInstUsesWith(II, EqInf);
}
if ((OrderedInvertedMask == fcPosInf || OrderedInvertedMask == fcNegInf) &&
(IsOrdered || IsUnordered) && !IsStrict) {
// is.fpclass(x, ~fcPosInf) -> fcmp one x, +inf
// is.fpclass(x, ~fcNegInf) -> fcmp one x, -inf
// is.fpclass(x, ~fcPosInf|fcNan) -> fcmp une x, +inf
// is.fpclass(x, ~fcNegInf|fcNan) -> fcmp une x, -inf
Constant *Inf = ConstantFP::getInfinity(Src0->getType(),
OrderedInvertedMask == fcNegInf);
Value *NeInf = IsUnordered ? Builder.CreateFCmpUNE(Src0, Inf)
: Builder.CreateFCmpONE(Src0, Inf);
NeInf->takeName(&II);
return replaceInstUsesWith(II, NeInf);
}
if (Mask == fcNan && !IsStrict) {
// Equivalent of isnan. Replace with standard fcmp if we don't care about FP
// exceptions.
Value *IsNan =
Builder.CreateFCmpUNO(Src0, ConstantFP::getZero(Src0->getType()));
IsNan->takeName(&II);
return replaceInstUsesWith(II, IsNan);
}
if (Mask == (~fcNan & fcAllFlags) && !IsStrict) {
// Equivalent of !isnan. Replace with standard fcmp.
Value *FCmp =
Builder.CreateFCmpORD(Src0, ConstantFP::getZero(Src0->getType()));
FCmp->takeName(&II);
return replaceInstUsesWith(II, FCmp);
}
FCmpInst::Predicate PredType = FCmpInst::BAD_FCMP_PREDICATE;
// Try to replace with an fcmp with 0
//
// is.fpclass(x, fcZero) -> fcmp oeq x, 0.0
// is.fpclass(x, fcZero | fcNan) -> fcmp ueq x, 0.0
// is.fpclass(x, ~fcZero & ~fcNan) -> fcmp one x, 0.0
// is.fpclass(x, ~fcZero) -> fcmp une x, 0.0
//
// is.fpclass(x, fcPosSubnormal | fcPosNormal | fcPosInf) -> fcmp ogt x, 0.0
// is.fpclass(x, fcPositive | fcNegZero) -> fcmp oge x, 0.0
//
// is.fpclass(x, fcNegSubnormal | fcNegNormal | fcNegInf) -> fcmp olt x, 0.0
// is.fpclass(x, fcNegative | fcPosZero) -> fcmp ole x, 0.0
//
if (!IsStrict && (IsOrdered || IsUnordered) &&
(PredType = fpclassTestIsFCmp0(OrderedMask, *II.getFunction(),
Src0->getType())) !=
FCmpInst::BAD_FCMP_PREDICATE) {
Constant *Zero = ConstantFP::getZero(Src0->getType());
// Equivalent of == 0.
Value *FCmp = Builder.CreateFCmp(
IsUnordered ? FCmpInst::getUnorderedPredicate(PredType) : PredType,
Src0, Zero);
FCmp->takeName(&II);
return replaceInstUsesWith(II, FCmp);
}
KnownFPClass Known = computeKnownFPClass(
Src0, DL, Mask, 0, &getTargetLibraryInfo(), &AC, &II, &DT);
// Clear test bits we know must be false from the source value.
// fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
// fp_class (ninf x), ninf|pinf|other -> fp_class (ninf x), other
if ((Mask & Known.KnownFPClasses) != Mask) {
II.setArgOperand(
1, ConstantInt::get(Src1->getType(), Mask & Known.KnownFPClasses));
return &II;
}
// If none of the tests which can return false are possible, fold to true.
// fp_class (nnan x), ~(qnan|snan) -> true
// fp_class (ninf x), ~(ninf|pinf) -> true
if (Mask == Known.KnownFPClasses)
return replaceInstUsesWith(II, ConstantInt::get(II.getType(), true));
return nullptr;
}
static std::optional<bool> getKnownSign(Value *Op, Instruction *CxtI,
const DataLayout &DL, AssumptionCache *AC,
DominatorTree *DT) {
KnownBits Known = computeKnownBits(Op, DL, 0, AC, CxtI, DT);
if (Known.isNonNegative())
return false;
if (Known.isNegative())
return true;
Value *X, *Y;
if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
return isImpliedByDomCondition(ICmpInst::ICMP_SLT, X, Y, CxtI, DL);
return isImpliedByDomCondition(
ICmpInst::ICMP_SLT, Op, Constant::getNullValue(Op->getType()), CxtI, DL);
}
/// Return true if two values \p Op0 and \p Op1 are known to have the same sign.
static bool signBitMustBeTheSame(Value *Op0, Value *Op1, Instruction *CxtI,
const DataLayout &DL, AssumptionCache *AC,
DominatorTree *DT) {
std::optional<bool> Known1 = getKnownSign(Op1, CxtI, DL, AC, DT);
if (!Known1)
return false;
std::optional<bool> Known0 = getKnownSign(Op0, CxtI, DL, AC, DT);
if (!Known0)
return false;
return *Known0 == *Known1;
}
/// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This
/// can trigger other combines.
static Instruction *moveAddAfterMinMax(IntrinsicInst *II,
InstCombiner::BuilderTy &Builder) {
Intrinsic::ID MinMaxID = II->getIntrinsicID();
assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
"Expected a min or max intrinsic");
// TODO: Match vectors with undef elements, but undef may not propagate.
Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
Value *X;
const APInt *C0, *C1;
if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) ||
!match(Op1, m_APInt(C1)))
return nullptr;
// Check for necessary no-wrap and overflow constraints.
bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
auto *Add = cast<BinaryOperator>(Op0);
if ((IsSigned && !Add->hasNoSignedWrap()) ||
(!IsSigned && !Add->hasNoUnsignedWrap()))
return nullptr;
// If the constant difference overflows, then instsimplify should reduce the
// min/max to the add or C1.
bool Overflow;
APInt CDiff =
IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow);
assert(!Overflow && "Expected simplify of min/max");
// min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0
// Note: the "mismatched" no-overflow setting does not propagate.
Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff);
Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC);
return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1))
: BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1));
}
/// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
Instruction *InstCombinerImpl::matchSAddSubSat(IntrinsicInst &MinMax1) {
Type *Ty = MinMax1.getType();
// We are looking for a tree of:
// max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
// Where the min and max could be reversed
Instruction *MinMax2;
BinaryOperator *AddSub;
const APInt *MinValue, *MaxValue;
if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
return nullptr;
} else if (match(&MinMax1,
m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
return nullptr;
} else
return nullptr;
// Check that the constants clamp a saturate, and that the new type would be
// sensible to convert to.
if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
return nullptr;
// In what bitwidth can this be treated as saturating arithmetics?
unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
// FIXME: This isn't quite right for vectors, but using the scalar type is a
// good first approximation for what should be done there.
if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
return nullptr;
// Also make sure that the inner min/max and the add/sub have one use.
if (!MinMax2->hasOneUse() || !AddSub->hasOneUse())
return nullptr;
// Create the new type (which can be a vector type)
Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
Intrinsic::ID IntrinsicID;
if (AddSub->getOpcode() == Instruction::Add)
IntrinsicID = Intrinsic::sadd_sat;
else if (AddSub->getOpcode() == Instruction::Sub)
IntrinsicID = Intrinsic::ssub_sat;
else
return nullptr;
// The two operands of the add/sub must be nsw-truncatable to the NewTy. This
// is usually achieved via a sext from a smaller type.
if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) >
NewBitWidth ||
ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth)
return nullptr;
// Finally create and return the sat intrinsic, truncated to the new type
Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy);
Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy);
Value *Sat = Builder.CreateCall(F, {AT, BT});
return CastInst::Create(Instruction::SExt, Sat, Ty);
}
/// If we have a clamp pattern like max (min X, 42), 41 -- where the output
/// can only be one of two possible constant values -- turn that into a select
/// of constants.
static Instruction *foldClampRangeOfTwo(IntrinsicInst *II,
InstCombiner::BuilderTy &Builder) {
Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
Value *X;
const APInt *C0, *C1;
if (!match(I1, m_APInt(C1)) || !I0->hasOneUse())
return nullptr;
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
switch (II->getIntrinsicID()) {
case Intrinsic::smax:
if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
Pred = ICmpInst::ICMP_SGT;
break;
case Intrinsic::smin:
if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
Pred = ICmpInst::ICMP_SLT;
break;
case Intrinsic::umax:
if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
Pred = ICmpInst::ICMP_UGT;
break;
case Intrinsic::umin:
if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
Pred = ICmpInst::ICMP_ULT;
break;
default:
llvm_unreachable("Expected min/max intrinsic");
}
if (Pred == CmpInst::BAD_ICMP_PREDICATE)
return nullptr;
// max (min X, 42), 41 --> X > 41 ? 42 : 41
// min (max X, 42), 43 --> X < 43 ? 42 : 43
Value *Cmp = Builder.CreateICmp(Pred, X, I1);
return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1);
}
/// If this min/max has a constant operand and an operand that is a matching
/// min/max with a constant operand, constant-fold the 2 constant operands.
static Value *reassociateMinMaxWithConstants(IntrinsicInst *II,
IRBuilderBase &Builder) {
Intrinsic::ID MinMaxID = II->getIntrinsicID();
auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
if (!LHS || LHS->getIntrinsicID() != MinMaxID)
return nullptr;
Constant *C0, *C1;
if (!match(LHS->getArgOperand(1), m_ImmConstant(C0)) ||
!match(II->getArgOperand(1), m_ImmConstant(C1)))
return nullptr;
// max (max X, C0), C1 --> max X, (max C0, C1) --> max X, NewC
ICmpInst::Predicate Pred = MinMaxIntrinsic::getPredicate(MinMaxID);
Value *CondC = Builder.CreateICmp(Pred, C0, C1);
Value *NewC = Builder.CreateSelect(CondC, C0, C1);
return Builder.CreateIntrinsic(MinMaxID, II->getType(),
{LHS->getArgOperand(0), NewC});
}
/// If this min/max has a matching min/max operand with a constant, try to push
/// the constant operand into this instruction. This can enable more folds.
static Instruction *
reassociateMinMaxWithConstantInOperand(IntrinsicInst *II,
InstCombiner::BuilderTy &Builder) {
// Match and capture a min/max operand candidate.
Value *X, *Y;
Constant *C;
Instruction *Inner;
if (!match(II, m_c_MaxOrMin(m_OneUse(m_CombineAnd(
m_Instruction(Inner),
m_MaxOrMin(m_Value(X), m_ImmConstant(C)))),
m_Value(Y))))
return nullptr;
// The inner op must match. Check for constants to avoid infinite loops.
Intrinsic::ID MinMaxID = II->getIntrinsicID();
auto *InnerMM = dyn_cast<IntrinsicInst>(Inner);
if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID ||
match(X, m_ImmConstant()) || match(Y, m_ImmConstant()))
return nullptr;
// max (max X, C), Y --> max (max X, Y), C
Function *MinMax =
Intrinsic::getDeclaration(II->getModule(), MinMaxID, II->getType());
Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID, X, Y);
NewInner->takeName(Inner);
return CallInst::Create(MinMax, {NewInner, C});
}
/// Reduce a sequence of min/max intrinsics with a common operand.
static Instruction *factorizeMinMaxTree(IntrinsicInst *II) {
// Match 3 of the same min/max ops. Example: umin(umin(), umin()).
auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1));
Intrinsic::ID MinMaxID = II->getIntrinsicID();
if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID ||
RHS->getIntrinsicID() != MinMaxID ||
(!LHS->hasOneUse() && !RHS->hasOneUse()))
return nullptr;
Value *A = LHS->getArgOperand(0);
Value *B = LHS->getArgOperand(1);
Value *C = RHS->getArgOperand(0);
Value *D = RHS->getArgOperand(1);
// Look for a common operand.
Value *MinMaxOp = nullptr;
Value *ThirdOp = nullptr;
if (LHS->hasOneUse()) {
// If the LHS is only used in this chain and the RHS is used outside of it,
// reuse the RHS min/max because that will eliminate the LHS.
if (D == A || C == A) {
// min(min(a, b), min(c, a)) --> min(min(c, a), b)
// min(min(a, b), min(a, d)) --> min(min(a, d), b)
MinMaxOp = RHS;
ThirdOp = B;
} else if (D == B || C == B) {
// min(min(a, b), min(c, b)) --> min(min(c, b), a)
// min(min(a, b), min(b, d)) --> min(min(b, d), a)
MinMaxOp = RHS;
ThirdOp = A;
}
} else {
assert(RHS->hasOneUse() && "Expected one-use operand");
// Reuse the LHS. This will eliminate the RHS.
if (D == A || D == B) {
// min(min(a, b), min(c, a)) --> min(min(a, b), c)
// min(min(a, b), min(c, b)) --> min(min(a, b), c)
MinMaxOp = LHS;
ThirdOp = C;
} else if (C == A || C == B) {
// min(min(a, b), min(b, d)) --> min(min(a, b), d)
// min(min(a, b), min(c, b)) --> min(min(a, b), d)
MinMaxOp = LHS;
ThirdOp = D;
}
}
if (!MinMaxOp || !ThirdOp)
return nullptr;
Module *Mod = II->getModule();
Function *MinMax = Intrinsic::getDeclaration(Mod, MinMaxID, II->getType());
return CallInst::Create(MinMax, { MinMaxOp, ThirdOp });
}
/// If all arguments of the intrinsic are unary shuffles with the same mask,
/// try to shuffle after the intrinsic.
static Instruction *
foldShuffledIntrinsicOperands(IntrinsicInst *II,
InstCombiner::BuilderTy &Builder) {
// TODO: This should be extended to handle other intrinsics like fshl, ctpop,
// etc. Use llvm::isTriviallyVectorizable() and related to determine
// which intrinsics are safe to shuffle?
switch (II->getIntrinsicID()) {
case Intrinsic::smax:
case Intrinsic::smin:
case Intrinsic::umax:
case Intrinsic::umin:
case Intrinsic::fma:
case Intrinsic::fshl:
case Intrinsic::fshr:
break;
default:
return nullptr;
}
Value *X;
ArrayRef<int> Mask;
if (!match(II->getArgOperand(0),
m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))
return nullptr;
// At least 1 operand must have 1 use because we are creating 2 instructions.
if (none_of(II->args(), [](Value *V) { return V->hasOneUse(); }))
return nullptr;
// See if all arguments are shuffled with the same mask.
SmallVector<Value *, 4> NewArgs(II->arg_size());
NewArgs[0] = X;
Type *SrcTy = X->getType();
for (unsigned i = 1, e = II->arg_size(); i != e; ++i) {
if (!match(II->getArgOperand(i),
m_Shuffle(m_Value(X), m_Undef(), m_SpecificMask(Mask))) ||
X->getType() != SrcTy)
return nullptr;
NewArgs[i] = X;
}
// intrinsic (shuf X, M), (shuf Y, M), ... --> shuf (intrinsic X, Y, ...), M
Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr;
Value *NewIntrinsic =
Builder.CreateIntrinsic(II->getIntrinsicID(), SrcTy, NewArgs, FPI);
return new ShuffleVectorInst(NewIntrinsic, Mask);
}
/// Fold the following cases and accepts bswap and bitreverse intrinsics:
/// bswap(logic_op(bswap(x), y)) --> logic_op(x, bswap(y))
/// bswap(logic_op(bswap(x), bswap(y))) --> logic_op(x, y) (ignores multiuse)
template <Intrinsic::ID IntrID>
static Instruction *foldBitOrderCrossLogicOp(Value *V,
InstCombiner::BuilderTy &Builder) {
static_assert(IntrID == Intrinsic::bswap || IntrID == Intrinsic::bitreverse,
"This helper only supports BSWAP and BITREVERSE intrinsics");
Value *X, *Y;
// Find bitwise logic op. Check that it is a BinaryOperator explicitly so we
// don't match ConstantExpr that aren't meaningful for this transform.
if (match(V, m_OneUse(m_BitwiseLogic(m_Value(X), m_Value(Y)))) &&
isa<BinaryOperator>(V)) {
Value *OldReorderX, *OldReorderY;
BinaryOperator::BinaryOps Op = cast<BinaryOperator>(V)->getOpcode();
// If both X and Y are bswap/bitreverse, the transform reduces the number
// of instructions even if there's multiuse.
// If only one operand is bswap/bitreverse, we need to ensure the operand
// have only one use.
if (match(X, m_Intrinsic<IntrID>(m_Value(OldReorderX))) &&
match(Y, m_Intrinsic<IntrID>(m_Value(OldReorderY)))) {
return BinaryOperator::Create(Op, OldReorderX, OldReorderY);
}
if (match(X, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderX))))) {
Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, Y);
return BinaryOperator::Create(Op, OldReorderX, NewReorder);
}
if (match(Y, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderY))))) {
Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, X);
return BinaryOperator::Create(Op, NewReorder, OldReorderY);
}
}
return nullptr;
}
/// CallInst simplification. This mostly only handles folding of intrinsic
/// instructions. For normal calls, it allows visitCallBase to do the heavy
/// lifting.
Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) {
// Don't try to simplify calls without uses. It will not do anything useful,
// but will result in the following folds being skipped.
if (!CI.use_empty()) {
SmallVector<Value *, 4> Args;
Args.reserve(CI.arg_size());
for (Value *Op : CI.args())
Args.push_back(Op);
if (Value *V = simplifyCall(&CI, CI.getCalledOperand(), Args,
SQ.getWithInstruction(&CI)))
return replaceInstUsesWith(CI, V);
}
if (Value *FreedOp = getFreedOperand(&CI, &TLI))
return visitFree(CI, FreedOp);
// If the caller function (i.e. us, the function that contains this CallInst)
// is nounwind, mark the call as nounwind, even if the callee isn't.
if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
CI.setDoesNotThrow();
return &CI;
}
IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
if (!II) return visitCallBase(CI);
// For atomic unordered mem intrinsics if len is not a positive or
// not a multiple of element size then behavior is undefined.
if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II))
if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength()))
if (NumBytes->isNegative() ||
(NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) {
CreateNonTerminatorUnreachable(AMI);
assert(AMI->getType()->isVoidTy() &&
"non void atomic unordered mem intrinsic");
return eraseInstFromFunction(*AMI);
}
// Intrinsics cannot occur in an invoke or a callbr, so handle them here
// instead of in visitCallBase.
if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
bool Changed = false;
// memmove/cpy/set of zero bytes is a noop.
if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
if (NumBytes->isNullValue())
return eraseInstFromFunction(CI);
}
// No other transformations apply to volatile transfers.
if (auto *M = dyn_cast<MemIntrinsic>(MI))
if (M->isVolatile())
return nullptr;
// If we have a memmove and the source operation is a constant global,
// then the source and dest pointers can't alias, so we can change this
// into a call to memcpy.
if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
if (GVSrc->isConstant()) {
Module *M = CI.getModule();
Intrinsic::ID MemCpyID =
isa<AtomicMemMoveInst>(MMI)
? Intrinsic::memcpy_element_unordered_atomic
: Intrinsic::memcpy;
Type *Tys[3] = { CI.getArgOperand(0)->getType(),
CI.getArgOperand(1)->getType(),
CI.getArgOperand(2)->getType() };
CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
Changed = true;
}
}
if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
// memmove(x,x,size) -> noop.
if (MTI->getSource() == MTI->getDest())
return eraseInstFromFunction(CI);
}
// If we can determine a pointer alignment that is bigger than currently
// set, update the alignment.
if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
if (Instruction *I = SimplifyAnyMemTransfer(MTI))
return I;
} else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
if (Instruction *I = SimplifyAnyMemSet(MSI))
return I;
}
if (Changed) return II;
}
// For fixed width vector result intrinsics, use the generic demanded vector
// support.
if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) {
auto VWidth = IIFVTy->getNumElements();
APInt UndefElts(VWidth, 0);
APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
if (V != II)
return replaceInstUsesWith(*II, V);
return II;
}
}
if (II->isCommutative()) {
if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI))
return NewCall;
}
// Unused constrained FP intrinsic calls may have declared side effect, which
// prevents it from being removed. In some cases however the side effect is
// actually absent. To detect this case, call SimplifyConstrainedFPCall. If it
// returns a replacement, the call may be removed.
if (CI.use_empty() && isa<ConstrainedFPIntrinsic>(CI)) {
if (simplifyConstrainedFPCall(&CI, SQ.getWithInstruction(&CI)))
return eraseInstFromFunction(CI);
}
Intrinsic::ID IID = II->getIntrinsicID();
switch (IID) {
case Intrinsic::objectsize: {
SmallVector<Instruction *> InsertedInstructions;
if (Value *V = lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/false,
&InsertedInstructions)) {
for (Instruction *Inserted : InsertedInstructions)
Worklist.add(Inserted);
return replaceInstUsesWith(CI, V);
}
return nullptr;
}
case Intrinsic::abs: {
Value *IIOperand = II->getArgOperand(0);
bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue();
// abs(-x) -> abs(x)
// TODO: Copy nsw if it was present on the neg?
Value *X;
if (match(IIOperand, m_Neg(m_Value(X))))
return replaceOperand(*II, 0, X);
if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X)))))
return replaceOperand(*II, 0, X);
if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X))))
return replaceOperand(*II, 0, X);
if (std::optional<bool> Sign = getKnownSign(IIOperand, II, DL, &AC, &DT)) {
// abs(x) -> x if x >= 0
if (!*Sign)
return replaceInstUsesWith(*II, IIOperand);
// abs(x) -> -x if x < 0
if (IntMinIsPoison)
return BinaryOperator::CreateNSWNeg(IIOperand);
return BinaryOperator::CreateNeg(IIOperand);
}
// abs (sext X) --> zext (abs X*)
// Clear the IsIntMin (nsw) bit on the abs to allow narrowing.
if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) {
Value *NarrowAbs =
Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType());
}
// Match a complicated way to check if a number is odd/even:
// abs (srem X, 2) --> and X, 1
const APInt *C;
if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2)
return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1));
break;
}
case Intrinsic::umin: {
Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
// umin(x, 1) == zext(x != 0)
if (match(I1, m_One())) {
assert(II->getType()->getScalarSizeInBits() != 1 &&
"Expected simplify of umin with max constant");
Value *Zero = Constant::getNullValue(I0->getType());
Value *Cmp = Builder.CreateICmpNE(I0, Zero);
return CastInst::Create(Instruction::ZExt, Cmp, II->getType());
}
[[fallthrough]];
}
case Intrinsic::umax: {
Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
Value *X, *Y;
if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) &&
(I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
}
Constant *C;
if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) &&
I0->hasOneUse()) {
Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType());
if (ConstantExpr::getZExt(NarrowC, II->getType()) == C) {
Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
}
}
// If both operands of unsigned min/max are sign-extended, it is still ok
// to narrow the operation.
[[fallthrough]];
}
case Intrinsic::smax:
case Intrinsic::smin: {
Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
Value *X, *Y;
if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) &&
(I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
}
Constant *C;
if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) &&
I0->hasOneUse()) {
Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType());
if (ConstantExpr::getSExt(NarrowC, II->getType()) == C) {
Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
}
}
if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
// smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y)
// smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y)
// TODO: Canonicalize neg after min/max if I1 is constant.
if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) &&
(I0->hasOneUse() || I1->hasOneUse())) {
Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y);
return BinaryOperator::CreateNSWNeg(InvMaxMin);
}
}
// (umax X, (xor X, Pow2))
// -> (or X, Pow2)
// (umin X, (xor X, Pow2))
// -> (and X, ~Pow2)
// (smax X, (xor X, Pos_Pow2))
// -> (or X, Pos_Pow2)
// (smin X, (xor X, Pos_Pow2))
// -> (and X, ~Pos_Pow2)
// (smax X, (xor X, Neg_Pow2))
// -> (and X, ~Neg_Pow2)
// (smin X, (xor X, Neg_Pow2))
// -> (or X, Neg_Pow2)
if ((match(I0, m_c_Xor(m_Specific(I1), m_Value(X))) ||
match(I1, m_c_Xor(m_Specific(I0), m_Value(X)))) &&
isKnownToBeAPowerOfTwo(X, /* OrZero */ true)) {
bool UseOr = IID == Intrinsic::smax || IID == Intrinsic::umax;
bool UseAndN = IID == Intrinsic::smin || IID == Intrinsic::umin;
if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
auto KnownSign = getKnownSign(X, II, DL, &AC, &DT);
if (KnownSign == std::nullopt) {
UseOr = false;
UseAndN = false;
} else if (*KnownSign /* true is Signed. */) {
UseOr ^= true;
UseAndN ^= true;
Type *Ty = I0->getType();
// Negative power of 2 must be IntMin. It's possible to be able to
// prove negative / power of 2 without actually having known bits, so
// just get the value by hand.
X = Constant::getIntegerValue(
Ty, APInt::getSignedMinValue(Ty->getScalarSizeInBits()));
}
}
if (UseOr)
return BinaryOperator::CreateOr(I0, X);
else if (UseAndN)
return BinaryOperator::CreateAnd(I0, Builder.CreateNot(X));
}
// If we can eliminate ~A and Y is free to invert:
// max ~A, Y --> ~(min A, ~Y)
//
// Examples:
// max ~A, ~Y --> ~(min A, Y)
// max ~A, C --> ~(min A, ~C)
// max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z))
auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
Value *A;
if (match(X, m_OneUse(m_Not(m_Value(A)))) &&
!isFreeToInvert(A, A->hasOneUse()) &&
isFreeToInvert(Y, Y->hasOneUse())) {
Value *NotY = Builder.CreateNot(Y);
Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY);
return BinaryOperator::CreateNot(InvMaxMin);
}
return nullptr;
};
if (Instruction *I = moveNotAfterMinMax(I0, I1))
return I;
if (Instruction *I = moveNotAfterMinMax(I1, I0))
return I;
if (Instruction *I = moveAddAfterMinMax(II, Builder))
return I;
// smax(X, -X) --> abs(X)
// smin(X, -X) --> -abs(X)
// umax(X, -X) --> -abs(X)
// umin(X, -X) --> abs(X)
if (isKnownNegation(I0, I1)) {
// We can choose either operand as the input to abs(), but if we can
// eliminate the only use of a value, that's better for subsequent
// transforms/analysis.
if (I0->hasOneUse() && !I1->hasOneUse())
std::swap(I0, I1);
// This is some variant of abs(). See if we can propagate 'nsw' to the abs
// operation and potentially its negation.
bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true);
Value *Abs = Builder.CreateBinaryIntrinsic(
Intrinsic::abs, I0,
ConstantInt::getBool(II->getContext(), IntMinIsPoison));
// We don't have a "nabs" intrinsic, so negate if needed based on the
// max/min operation.
if (IID == Intrinsic::smin || IID == Intrinsic::umax)
Abs = Builder.CreateNeg(Abs, "nabs", /* NUW */ false, IntMinIsPoison);
return replaceInstUsesWith(CI, Abs);
}
if (Instruction *Sel = foldClampRangeOfTwo(II, Builder))
return Sel;
if (Instruction *SAdd = matchSAddSubSat(*II))
return SAdd;
if (Value *NewMinMax = reassociateMinMaxWithConstants(II, Builder))
return replaceInstUsesWith(*II, NewMinMax);
if (Instruction *R = reassociateMinMaxWithConstantInOperand(II, Builder))
return R;
if (Instruction *NewMinMax = factorizeMinMaxTree(II))
return NewMinMax;
break;
}
case Intrinsic::bitreverse: {
Value *IIOperand = II->getArgOperand(0);
// bitrev (zext i1 X to ?) --> X ? SignBitC : 0
Value *X;
if (match(IIOperand, m_ZExt(m_Value(X))) &&
X->getType()->isIntOrIntVectorTy(1)) {
Type *Ty = II->getType();
APInt SignBit = APInt::getSignMask(Ty->getScalarSizeInBits());
return SelectInst::Create(X, ConstantInt::get(Ty, SignBit),
ConstantInt::getNullValue(Ty));
}
if (Instruction *crossLogicOpFold =
foldBitOrderCrossLogicOp<Intrinsic::bitreverse>(IIOperand, Builder))
return crossLogicOpFold;
break;
}
case Intrinsic::bswap: {
Value *IIOperand = II->getArgOperand(0);
// Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as
// inverse-shift-of-bswap:
// bswap (shl X, Y) --> lshr (bswap X), Y
// bswap (lshr X, Y) --> shl (bswap X), Y
Value *X, *Y;
if (match(IIOperand, m_OneUse(m_LogicalShift(m_Value(X), m_Value(Y))))) {
// The transform allows undef vector elements, so try a constant match
// first. If knownbits can handle that case, that clause could be removed.
unsigned BitWidth = IIOperand->getType()->getScalarSizeInBits();
const APInt *C;
if ((match(Y, m_APIntAllowUndef(C)) && (*C & 7) == 0) ||
MaskedValueIsZero(Y, APInt::getLowBitsSet(BitWidth, 3))) {
Value *NewSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
BinaryOperator::BinaryOps InverseShift =
cast<BinaryOperator>(IIOperand)->getOpcode() == Instruction::Shl
? Instruction::LShr
: Instruction::Shl;
return BinaryOperator::Create(InverseShift, NewSwap, Y);
}
}
KnownBits Known = computeKnownBits(IIOperand, 0, II);
uint64_t LZ = alignDown(Known.countMinLeadingZeros(), 8);
uint64_t TZ = alignDown(Known.countMinTrailingZeros(), 8);
unsigned BW = Known.getBitWidth();
// bswap(x) -> shift(x) if x has exactly one "active byte"
if (BW - LZ - TZ == 8) {
assert(LZ != TZ && "active byte cannot be in the middle");
if (LZ > TZ) // -> shl(x) if the "active byte" is in the low part of x
return BinaryOperator::CreateNUWShl(
IIOperand, ConstantInt::get(IIOperand->getType(), LZ - TZ));
// -> lshr(x) if the "active byte" is in the high part of x
return BinaryOperator::CreateExactLShr(
IIOperand, ConstantInt::get(IIOperand->getType(), TZ - LZ));
}
// bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
unsigned C = X->getType()->getScalarSizeInBits() - BW;
Value *CV = ConstantInt::get(X->getType(), C);
Value *V = Builder.CreateLShr(X, CV);
return new TruncInst(V, IIOperand->getType());
}
if (Instruction *crossLogicOpFold =
foldBitOrderCrossLogicOp<Intrinsic::bswap>(IIOperand, Builder)) {
return crossLogicOpFold;
}
break;
}
case Intrinsic::masked_load:
if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
return replaceInstUsesWith(CI, SimplifiedMaskedOp);
break;
case Intrinsic::masked_store:
return simplifyMaskedStore(*II);
case Intrinsic::masked_gather:
return simplifyMaskedGather(*II);
case Intrinsic::masked_scatter:
return simplifyMaskedScatter(*II);
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group:
if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
return replaceInstUsesWith(*II, SkippedBarrier);
break;
case Intrinsic::powi:
if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
// 0 and 1 are handled in instsimplify
// powi(x, -1) -> 1/x
if (Power->isMinusOne())
return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0),
II->getArgOperand(0), II);
// powi(x, 2) -> x*x
if (Power->equalsInt(2))
return BinaryOperator::CreateFMulFMF(II->getArgOperand(0),
II->getArgOperand(0), II);
if (!Power->getValue()[0]) {
Value *X;
// If power is even:
// powi(-x, p) -> powi(x, p)
// powi(fabs(x), p) -> powi(x, p)
// powi(copysign(x, y), p) -> powi(x, p)
if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) ||
match(II->getArgOperand(0), m_FAbs(m_Value(X))) ||
match(II->getArgOperand(0),
m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value())))
return replaceOperand(*II, 0, X);
}
}
break;
case Intrinsic::cttz:
case Intrinsic::ctlz:
if (auto *I = foldCttzCtlz(*II, *this))
return I;
break;
case Intrinsic::ctpop:
if (auto *I = foldCtpop(*II, *this))
return I;
break;
case Intrinsic::fshl:
case Intrinsic::fshr: {
Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
Type *Ty = II->getType();
unsigned BitWidth = Ty->getScalarSizeInBits();
Constant *ShAmtC;
if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC))) {
// Canonicalize a shift amount constant operand to modulo the bit-width.
Constant *WidthC = ConstantInt::get(Ty, BitWidth);
Constant *ModuloC =
ConstantFoldBinaryOpOperands(Instruction::URem, ShAmtC, WidthC, DL);
if (!ModuloC)
return nullptr;
if (ModuloC != ShAmtC)
return replaceOperand(*II, 2, ModuloC);
assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) ==
ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) &&
"Shift amount expected to be modulo bitwidth");
// Canonicalize funnel shift right by constant to funnel shift left. This
// is not entirely arbitrary. For historical reasons, the backend may
// recognize rotate left patterns but miss rotate right patterns.
if (IID == Intrinsic::fshr) {
// fshr X, Y, C --> fshl X, Y, (BitWidth - C)
Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
Module *Mod = II->getModule();
Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
}
assert(IID == Intrinsic::fshl &&
"All funnel shifts by simple constants should go left");
// fshl(X, 0, C) --> shl X, C
// fshl(X, undef, C) --> shl X, C
if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
return BinaryOperator::CreateShl(Op0, ShAmtC);
// fshl(0, X, C) --> lshr X, (BW-C)
// fshl(undef, X, C) --> lshr X, (BW-C)
if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
return BinaryOperator::CreateLShr(Op1,
ConstantExpr::getSub(WidthC, ShAmtC));
// fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
Module *Mod = II->getModule();
Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
return CallInst::Create(Bswap, { Op0 });
}
if (Instruction *BitOp =
matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ true,
/*MatchBitReversals*/ true))
return BitOp;
}
// Left or right might be masked.
if (SimplifyDemandedInstructionBits(*II))
return &CI;
// The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
// so only the low bits of the shift amount are demanded if the bitwidth is
// a power-of-2.
if (!isPowerOf2_32(BitWidth))
break;
APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
KnownBits Op2Known(BitWidth);
if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
return &CI;
break;
}
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow: {
if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
return I;
// Given 2 constant operands whose sum does not overflow:
// uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
// saddo (X +nsw C0), C1 -> saddo X, C0 + C1
Value *X;
const APInt *C0, *C1;
Value *Arg0 = II->getArgOperand(0);
Value *Arg1 = II->getArgOperand(1);
bool IsSigned = IID == Intrinsic::sadd_with_overflow;
bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0)))
: match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0)));
if (HasNWAdd && match(Arg1, m_APInt(C1))) {
bool Overflow;
APInt NewC =
IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
if (!Overflow)
return replaceInstUsesWith(
*II, Builder.CreateBinaryIntrinsic(
IID, X, ConstantInt::get(Arg1->getType(), NewC)));
}
break;
}
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::usub_with_overflow:
if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
return I;
break;
case Intrinsic::ssub_with_overflow: {
if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
return I;
Constant *C;
Value *Arg0 = II->getArgOperand(0);
Value *Arg1 = II->getArgOperand(1);
// Given a constant C that is not the minimum signed value
// for an integer of a given bit width:
//
// ssubo X, C -> saddo X, -C
if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
Value *NegVal = ConstantExpr::getNeg(C);
// Build a saddo call that is equivalent to the discovered
// ssubo call.
return replaceInstUsesWith(
*II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
Arg0, NegVal));
}
break;
}
case Intrinsic::uadd_sat:
case Intrinsic::sadd_sat:
case Intrinsic::usub_sat:
case Intrinsic::ssub_sat: {
SaturatingInst *SI = cast<SaturatingInst>(II);
Type *Ty = SI->getType();
Value *Arg0 = SI->getLHS();
Value *Arg1 = SI->getRHS();
// Make use of known overflow information.
OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
Arg0, Arg1, SI);
switch (OR) {
case OverflowResult::MayOverflow:
break;
case OverflowResult::NeverOverflows:
if (SI->isSigned())
return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
else
return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
case OverflowResult::AlwaysOverflowsLow: {
unsigned BitWidth = Ty->getScalarSizeInBits();
APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
}
case OverflowResult::AlwaysOverflowsHigh: {
unsigned BitWidth = Ty->getScalarSizeInBits();
APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
}
}
// ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
Constant *C;
if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
C->isNotMinSignedValue()) {
Value *NegVal = ConstantExpr::getNeg(C);
return replaceInstUsesWith(
*II, Builder.CreateBinaryIntrinsic(
Intrinsic::sadd_sat, Arg0, NegVal));
}
// sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
// sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
// if Val and Val2 have the same sign
if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
Value *X;
const APInt *Val, *Val2;
APInt NewVal;
bool IsUnsigned =
IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
if (Other->getIntrinsicID() == IID &&
match(Arg1, m_APInt(Val)) &&
match(Other->getArgOperand(0), m_Value(X)) &&
match(Other->getArgOperand(1), m_APInt(Val2))) {
if (IsUnsigned)
NewVal = Val->uadd_sat(*Val2);
else if (Val->isNonNegative() == Val2->isNonNegative()) {
bool Overflow;
NewVal = Val->sadd_ov(*Val2, Overflow);
if (Overflow) {
// Both adds together may add more than SignedMaxValue
// without saturating the final result.
break;
}
} else {
// Cannot fold saturated addition with different signs.
break;
}
return replaceInstUsesWith(
*II, Builder.CreateBinaryIntrinsic(
IID, X, ConstantInt::get(II->getType(), NewVal)));
}
}
break;
}
case Intrinsic::minnum:
case Intrinsic::maxnum:
case Intrinsic::minimum:
case Intrinsic::maximum: {
Value *Arg0 = II->getArgOperand(0);
Value *Arg1 = II->getArgOperand(1);
Value *X, *Y;
if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
(Arg0->hasOneUse() || Arg1->hasOneUse())) {
// If both operands are negated, invert the call and negate the result:
// min(-X, -Y) --> -(max(X, Y))
// max(-X, -Y) --> -(min(X, Y))
Intrinsic::ID NewIID;
switch (IID) {
case Intrinsic::maxnum:
NewIID = Intrinsic::minnum;
break;
case Intrinsic::minnum:
NewIID = Intrinsic::maxnum;
break;
case Intrinsic::maximum:
NewIID = Intrinsic::minimum;
break;
case Intrinsic::minimum:
NewIID = Intrinsic::maximum;
break;
default:
llvm_unreachable("unexpected intrinsic ID");
}
Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
FNeg->copyIRFlags(II);
return FNeg;
}
// m(m(X, C2), C1) -> m(X, C)
const APFloat *C1, *C2;
if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
((match(M->getArgOperand(0), m_Value(X)) &&
match(M->getArgOperand(1), m_APFloat(C2))) ||
(match(M->getArgOperand(1), m_Value(X)) &&
match(M->getArgOperand(0), m_APFloat(C2))))) {
APFloat Res(0.0);
switch (IID) {
case Intrinsic::maxnum:
Res = maxnum(*C1, *C2);
break;
case Intrinsic::minnum:
Res = minnum(*C1, *C2);
break;
case Intrinsic::maximum:
Res = maximum(*C1, *C2);
break;
case Intrinsic::minimum:
Res = minimum(*C1, *C2);
break;
default:
llvm_unreachable("unexpected intrinsic ID");
}
Instruction *NewCall = Builder.CreateBinaryIntrinsic(
IID, X, ConstantFP::get(Arg0->getType(), Res), II);
// TODO: Conservatively intersecting FMF. If Res == C2, the transform
// was a simplification (so Arg0 and its original flags could
// propagate?)
NewCall->andIRFlags(M);
return replaceInstUsesWith(*II, NewCall);
}
}
// m((fpext X), (fpext Y)) -> fpext (m(X, Y))
if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) &&
match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) &&
X->getType() == Y->getType()) {
Value *NewCall =
Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName());
return new FPExtInst(NewCall, II->getType());
}
// max X, -X --> fabs X
// min X, -X --> -(fabs X)
// TODO: Remove one-use limitation? That is obviously better for max.
// It would be an extra instruction for min (fnabs), but that is
// still likely better for analysis and codegen.
if ((match(Arg0, m_OneUse(m_FNeg(m_Value(X)))) && Arg1 == X) ||
(match(Arg1, m_OneUse(m_FNeg(m_Value(X)))) && Arg0 == X)) {
Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
R = Builder.CreateFNegFMF(R, II);
return replaceInstUsesWith(*II, R);
}
break;
}
case Intrinsic::matrix_multiply: {
// Optimize negation in matrix multiplication.
// -A * -B -> A * B
Value *A, *B;
if (match(II->getArgOperand(0), m_FNeg(m_Value(A))) &&
match(II->getArgOperand(1), m_FNeg(m_Value(B)))) {
replaceOperand(*II, 0, A);
replaceOperand(*II, 1, B);
return II;
}
Value *Op0 = II->getOperand(0);
Value *Op1 = II->getOperand(1);
Value *OpNotNeg, *NegatedOp;
unsigned NegatedOpArg, OtherOpArg;
if (match(Op0, m_FNeg(m_Value(OpNotNeg)))) {
NegatedOp = Op0;
NegatedOpArg = 0;
OtherOpArg = 1;
} else if (match(Op1, m_FNeg(m_Value(OpNotNeg)))) {
NegatedOp = Op1;
NegatedOpArg = 1;
OtherOpArg = 0;
} else
// Multiplication doesn't have a negated operand.
break;
// Only optimize if the negated operand has only one use.
if (!NegatedOp->hasOneUse())
break;
Value *OtherOp = II->getOperand(OtherOpArg);
VectorType *RetTy = cast<VectorType>(II->getType());
VectorType *NegatedOpTy = cast<VectorType>(NegatedOp->getType());
VectorType *OtherOpTy = cast<VectorType>(OtherOp->getType());
ElementCount NegatedCount = NegatedOpTy->getElementCount();
ElementCount OtherCount = OtherOpTy->getElementCount();
ElementCount RetCount = RetTy->getElementCount();
// (-A) * B -> A * (-B), if it is cheaper to negate B and vice versa.
if (ElementCount::isKnownGT(NegatedCount, OtherCount) &&
ElementCount::isKnownLT(OtherCount, RetCount)) {
Value *InverseOtherOp = Builder.CreateFNeg(OtherOp);
replaceOperand(*II, NegatedOpArg, OpNotNeg);
replaceOperand(*II, OtherOpArg, InverseOtherOp);
return II;
}
// (-A) * B -> -(A * B), if it is cheaper to negate the result
if (ElementCount::isKnownGT(NegatedCount, RetCount)) {
SmallVector<Value *, 5> NewArgs(II->args());
NewArgs[NegatedOpArg] = OpNotNeg;
Instruction *NewMul =
Builder.CreateIntrinsic(II->getType(), IID, NewArgs, II);
return replaceInstUsesWith(*II, Builder.CreateFNegFMF(NewMul, II));
}
break;
}
case Intrinsic::fmuladd: {
// Canonicalize fast fmuladd to the separate fmul + fadd.
if (II->isFast()) {
BuilderTy::FastMathFlagGuard Guard(Builder);
Builder.setFastMathFlags(II->getFastMathFlags());
Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
II->getArgOperand(1));
Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
Add->takeName(II);
return replaceInstUsesWith(*II, Add);
}
// Try to simplify the underlying FMul.
if (Value *V = simplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
II->getFastMathFlags(),
SQ.getWithInstruction(II))) {
auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
FAdd->copyFastMathFlags(II);
return FAdd;
}
[[fallthrough]];
}
case Intrinsic::fma: {
// fma fneg(x), fneg(y), z -> fma x, y, z
Value *Src0 = II->getArgOperand(0);
Value *Src1 = II->getArgOperand(1);
Value *X, *Y;
if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
replaceOperand(*II, 0, X);
replaceOperand(*II, 1, Y);
return II;
}
// fma fabs(x), fabs(x), z -> fma x, x, z
if (match(Src0, m_FAbs(m_Value(X))) &&
match(Src1, m_FAbs(m_Specific(X)))) {
replaceOperand(*II, 0, X);
replaceOperand(*II, 1, X);
return II;
}
// Try to simplify the underlying FMul. We can only apply simplifications
// that do not require rounding.
if (Value *V = simplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1),
II->getFastMathFlags(),
SQ.getWithInstruction(II))) {
auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
FAdd->copyFastMathFlags(II);
return FAdd;
}
// fma x, y, 0 -> fmul x, y
// This is always valid for -0.0, but requires nsz for +0.0 as
// -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
if (match(II->getArgOperand(2), m_NegZeroFP()) ||
(match(II->getArgOperand(2), m_PosZeroFP()) &&
II->getFastMathFlags().noSignedZeros()))
return BinaryOperator::CreateFMulFMF(Src0, Src1, II);
break;
}
case Intrinsic::copysign: {
Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1);
if (SignBitMustBeZero(Sign, DL, &TLI)) {
// If we know that the sign argument is positive, reduce to FABS:
// copysign Mag, +Sign --> fabs Mag
Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
return replaceInstUsesWith(*II, Fabs);
}
// TODO: There should be a ValueTracking sibling like SignBitMustBeOne.
const APFloat *C;
if (match(Sign, m_APFloat(C)) && C->isNegative()) {
// If we know that the sign argument is negative, reduce to FNABS:
// copysign Mag, -Sign --> fneg (fabs Mag)
Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II));
}
// Propagate sign argument through nested calls:
// copysign Mag, (copysign ?, X) --> copysign Mag, X
Value *X;
if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X))))
return replaceOperand(*II, 1, X);
// Peek through changes of magnitude's sign-bit. This call rewrites those:
// copysign (fabs X), Sign --> copysign X, Sign
// copysign (fneg X), Sign --> copysign X, Sign
if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X))))
return replaceOperand(*II, 0, X);
break;
}
case Intrinsic::fabs: {
Value *Cond, *TVal, *FVal;
if (match(II->getArgOperand(0),
m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) {
// fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF
if (isa<Constant>(TVal) && isa<Constant>(FVal)) {
CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal});
CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal});
return SelectInst::Create(Cond, AbsT, AbsF);
}
// fabs (select Cond, -FVal, FVal) --> fabs FVal
if (match(TVal, m_FNeg(m_Specific(FVal))))
return replaceOperand(*II, 0, FVal);
// fabs (select Cond, TVal, -TVal) --> fabs TVal
if (match(FVal, m_FNeg(m_Specific(TVal))))
return replaceOperand(*II, 0, TVal);
}
Value *Magnitude, *Sign;
if (match(II->getArgOperand(0),
m_CopySign(m_Value(Magnitude), m_Value(Sign)))) {
// fabs (copysign x, y) -> (fabs x)
CallInst *AbsSign =
Builder.CreateCall(II->getCalledFunction(), {Magnitude});
AbsSign->copyFastMathFlags(II);
return replaceInstUsesWith(*II, AbsSign);
}
[[fallthrough]];
}
case Intrinsic::ceil:
case Intrinsic::floor:
case Intrinsic::round:
case Intrinsic::roundeven:
case Intrinsic::nearbyint:
case Intrinsic::rint:
case Intrinsic::trunc: {
Value *ExtSrc;
if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
// Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
return new FPExtInst(NarrowII, II->getType());
}
break;
}
case Intrinsic::cos:
case Intrinsic::amdgcn_cos: {
Value *X;
Value *Src = II->getArgOperand(0);
if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) {
// cos(-x) -> cos(x)
// cos(fabs(x)) -> cos(x)
return replaceOperand(*II, 0, X);
}
break;
}
case Intrinsic::sin: {
Value *X;
if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
// sin(-x) --> -sin(x)
Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin);
FNeg->copyFastMathFlags(II);
return FNeg;
}
break;
}
case Intrinsic::ldexp: {
// ldexp(ldexp(x, a), b) -> ldexp(x, a + b)
//
// The danger is if the first ldexp would overflow to infinity or underflow
// to zero, but the combined exponent avoids it. We ignore this with
// reassoc.
//
// It's also safe to fold if we know both exponents are >= 0 or <= 0 since
// it would just double down on the overflow/underflow which would occur
// anyway.
//
// TODO: Could do better if we had range tracking for the input value
// exponent. Also could broaden sign check to cover == 0 case.
Value *Src = II->getArgOperand(0);
Value *Exp = II->getArgOperand(1);
Value *InnerSrc;
Value *InnerExp;
if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ldexp>(
m_Value(InnerSrc), m_Value(InnerExp)))) &&
Exp->getType() == InnerExp->getType()) {
FastMathFlags FMF = II->getFastMathFlags();
FastMathFlags InnerFlags = cast<FPMathOperator>(Src)->getFastMathFlags();
if ((FMF.allowReassoc() && InnerFlags.allowReassoc()) ||
signBitMustBeTheSame(Exp, InnerExp, II, DL, &AC, &DT)) {
// TODO: Add nsw/nuw probably safe if integer type exceeds exponent
// width.
Value *NewExp = Builder.CreateAdd(InnerExp, Exp);
II->setArgOperand(1, NewExp);
II->setFastMathFlags(InnerFlags); // Or the inner flags.
return replaceOperand(*II, 0, InnerSrc);
}
}
break;
}
case Intrinsic::ptrauth_auth:
case Intrinsic::ptrauth_resign: {
// (sign|resign) + (auth|resign) can be folded by omitting the middle
// sign+auth component if the key and discriminator match.
bool NeedSign = II->getIntrinsicID() == Intrinsic::ptrauth_resign;
Value *Key = II->getArgOperand(1);
Value *Disc = II->getArgOperand(2);
// AuthKey will be the key we need to end up authenticating against in
// whatever we replace this sequence with.
Value *AuthKey = nullptr, *AuthDisc = nullptr, *BasePtr;
if (auto CI = dyn_cast<CallBase>(II->getArgOperand(0))) {
BasePtr = CI->getArgOperand(0);
if (CI->getIntrinsicID() == Intrinsic::ptrauth_sign) {
if (CI->getArgOperand(1) != Key || CI->getArgOperand(2) != Disc)
break;
} else if (CI->getIntrinsicID() == Intrinsic::ptrauth_resign) {
if (CI->getArgOperand(3) != Key || CI->getArgOperand(4) != Disc)
break;
AuthKey = CI->getArgOperand(1);
AuthDisc = CI->getArgOperand(2);
} else
break;
} else
break;
unsigned NewIntrin;
if (AuthKey && NeedSign) {
// resign(0,1) + resign(1,2) = resign(0, 2)
NewIntrin = Intrinsic::ptrauth_resign;
} else if (AuthKey) {
// resign(0,1) + auth(1) = auth(0)
NewIntrin = Intrinsic::ptrauth_auth;
} else if (NeedSign) {
// sign(0) + resign(0, 1) = sign(1)
NewIntrin = Intrinsic::ptrauth_sign;
} else {
// sign(0) + auth(0) = nop
replaceInstUsesWith(*II, BasePtr);
eraseInstFromFunction(*II);
return nullptr;
}
SmallVector<Value *, 4> CallArgs;
CallArgs.push_back(BasePtr);
if (AuthKey) {
CallArgs.push_back(AuthKey);
CallArgs.push_back(AuthDisc);
}
if (NeedSign) {
CallArgs.push_back(II->getArgOperand(3));
CallArgs.push_back(II->getArgOperand(4));
}
Function *NewFn = Intrinsic::getDeclaration(II->getModule(), NewIntrin);
return CallInst::Create(NewFn, CallArgs);
}
case Intrinsic::arm_neon_vtbl1:
case Intrinsic::aarch64_neon_tbl1:
if (Value *V = simplifyNeonTbl1(*II, Builder))
return replaceInstUsesWith(*II, V);
break;
case Intrinsic::arm_neon_vmulls:
case Intrinsic::arm_neon_vmullu:
case Intrinsic::aarch64_neon_smull:
case Intrinsic::aarch64_neon_umull: {
Value *Arg0 = II->getArgOperand(0);
Value *Arg1 = II->getArgOperand(1);
// Handle mul by zero first:
if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
}
// Check for constant LHS & RHS - in this case we just simplify.
bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
IID == Intrinsic::aarch64_neon_umull);
VectorType *NewVT = cast<VectorType>(II->getType());
if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
}
// Couldn't simplify - canonicalize constant to the RHS.
std::swap(Arg0, Arg1);
}
// Handle mul by one:
if (Constant *CV1 = dyn_cast<Constant>(Arg1))
if (ConstantInt *Splat =
dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
if (Splat->isOne())
return CastInst::CreateIntegerCast(Arg0, II->getType(),
/*isSigned=*/!Zext);
break;
}
case Intrinsic::arm_neon_aesd:
case Intrinsic::arm_neon_aese:
case Intrinsic::aarch64_crypto_aesd:
case Intrinsic::aarch64_crypto_aese: {
Value *DataArg = II->getArgOperand(0);
Value *KeyArg = II->getArgOperand(1);
// Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
Value *Data, *Key;
if (match(KeyArg, m_ZeroInt()) &&
match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
replaceOperand(*II, 0, Data);
replaceOperand(*II, 1, Key);
return II;
}
break;
}
case Intrinsic::hexagon_V6_vandvrt:
case Intrinsic::hexagon_V6_vandvrt_128B: {
// Simplify Q -> V -> Q conversion.
if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
Intrinsic::ID ID0 = Op0->getIntrinsicID();
if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
break;
Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue();
uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue();
// Check if every byte has common bits in Bytes and Mask.
uint64_t C = Bytes1 & Mask1;
if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
return replaceInstUsesWith(*II, Op0->getArgOperand(0));
}
break;
}
case Intrinsic::stackrestore: {
enum class ClassifyResult {
None,
Alloca,
StackRestore,
CallWithSideEffects,
};
auto Classify = [](const Instruction *I) {
if (isa<AllocaInst>(I))
return ClassifyResult::Alloca;
if (auto *CI = dyn_cast<CallInst>(I)) {
if (auto *II = dyn_cast<IntrinsicInst>(CI)) {
if (II->getIntrinsicID() == Intrinsic::stackrestore)
return ClassifyResult::StackRestore;
if (II->mayHaveSideEffects())
return ClassifyResult::CallWithSideEffects;
} else {
// Consider all non-intrinsic calls to be side effects
return ClassifyResult::CallWithSideEffects;
}
}
return ClassifyResult::None;
};
// If the stacksave and the stackrestore are in the same BB, and there is
// no intervening call, alloca, or stackrestore of a different stacksave,
// remove the restore. This can happen when variable allocas are DCE'd.
if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
if (SS->getIntrinsicID() == Intrinsic::stacksave &&
SS->getParent() == II->getParent()) {
BasicBlock::iterator BI(SS);
bool CannotRemove = false;
for (++BI; &*BI != II; ++BI) {
switch (Classify(&*BI)) {
case ClassifyResult::None:
// So far so good, look at next instructions.
break;
case ClassifyResult::StackRestore:
// If we found an intervening stackrestore for a different
// stacksave, we can't remove the stackrestore. Otherwise, continue.
if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS)
CannotRemove = true;
break;
case ClassifyResult::Alloca:
case ClassifyResult::CallWithSideEffects:
// If we found an alloca, a non-intrinsic call, or an intrinsic
// call with side effects, we can't remove the stackrestore.
CannotRemove = true;
break;
}
if (CannotRemove)
break;
}
if (!CannotRemove)
return eraseInstFromFunction(CI);
}
}
// Scan down this block to see if there is another stack restore in the
// same block without an intervening call/alloca.
BasicBlock::iterator BI(II);
Instruction *TI = II->getParent()->getTerminator();
bool CannotRemove = false;
for (++BI; &*BI != TI; ++BI) {
switch (Classify(&*BI)) {
case ClassifyResult::None:
// So far so good, look at next instructions.
break;
case ClassifyResult::StackRestore:
// If there is a stackrestore below this one, remove this one.
return eraseInstFromFunction(CI);
case ClassifyResult::Alloca:
case ClassifyResult::CallWithSideEffects:
// If we found an alloca, a non-intrinsic call, or an intrinsic call
// with side effects (such as llvm.stacksave and llvm.read_register),
// we can't remove the stack restore.
CannotRemove = true;
break;
}
if (CannotRemove)
break;
}
// If the stack restore is in a return, resume, or unwind block and if there
// are no allocas or calls between the restore and the return, nuke the
// restore.
if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
return eraseInstFromFunction(CI);
break;
}
case Intrinsic::lifetime_end:
// Asan needs to poison memory to detect invalid access which is possible
// even for empty lifetime range.
if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
break;
if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
return I.getIntrinsicID() == Intrinsic::lifetime_start;
}))
return nullptr;
break;
case Intrinsic::assume: {
Value *IIOperand = II->getArgOperand(0);
SmallVector<OperandBundleDef, 4> OpBundles;
II->getOperandBundlesAsDefs(OpBundles);
/// This will remove the boolean Condition from the assume given as
/// argument and remove the assume if it becomes useless.
/// always returns nullptr for use as a return values.
auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * {
assert(isa<AssumeInst>(Assume));
if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II)))
return eraseInstFromFunction(CI);
replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext()));
return nullptr;
};
// Remove an assume if it is followed by an identical assume.
// TODO: Do we need this? Unless there are conflicting assumptions, the
// computeKnownBits(IIOperand) below here eliminates redundant assumes.
Instruction *Next = II->getNextNonDebugInstruction();
if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
return RemoveConditionFromAssume(Next);
// Canonicalize assume(a && b) -> assume(a); assume(b);
// Note: New assumption intrinsics created here are registered by
// the InstCombineIRInserter object.
FunctionType *AssumeIntrinsicTy = II->getFunctionType();
Value *AssumeIntrinsic = II->getCalledOperand();
Value *A, *B;
if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) {
Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles,
II->getName());
Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
return eraseInstFromFunction(*II);
}
// assume(!(a || b)) -> assume(!a); assume(!b);
if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) {
Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
Builder.CreateNot(A), OpBundles, II->getName());
Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
Builder.CreateNot(B), II->getName());
return eraseInstFromFunction(*II);
}
// assume( (load addr) != null ) -> add 'nonnull' metadata to load
// (if assume is valid at the load)
CmpInst::Predicate Pred;
Instruction *LHS;
if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
LHS->getType()->isPointerTy() &&
isValidAssumeForContext(II, LHS, &DT)) {
MDNode *MD = MDNode::get(II->getContext(), std::nullopt);
LHS->setMetadata(LLVMContext::MD_nonnull, MD);
LHS->setMetadata(LLVMContext::MD_noundef, MD);
return RemoveConditionFromAssume(II);
// TODO: apply nonnull return attributes to calls and invokes
// TODO: apply range metadata for range check patterns?
}
// Separate storage assumptions apply to the underlying allocations, not any
// particular pointer within them. When evaluating the hints for AA purposes
// we getUnderlyingObject them; by precomputing the answers here we can
// avoid having to do so repeatedly there.
for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
OperandBundleUse OBU = II->getOperandBundleAt(Idx);
if (OBU.getTagName() == "separate_storage") {
assert(OBU.Inputs.size() == 2);
auto MaybeSimplifyHint = [&](const Use &U) {
Value *Hint = U.get();
// Not having a limit is safe because InstCombine removes unreachable
// code.
Value *UnderlyingObject = getUnderlyingObject(Hint, /*MaxLookup*/ 0);
if (Hint != UnderlyingObject)
replaceUse(const_cast<Use &>(U), UnderlyingObject);
};
MaybeSimplifyHint(OBU.Inputs[0]);
MaybeSimplifyHint(OBU.Inputs[1]);
}
}
// Convert nonnull assume like:
// %A = icmp ne i32* %PTR, null
// call void @llvm.assume(i1 %A)
// into
// call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
if (EnableKnowledgeRetention &&
match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) &&
Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) {
if (auto *Replacement = buildAssumeFromKnowledge(
{RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) {
Replacement->insertBefore(Next);
AC.registerAssumption(Replacement);
return RemoveConditionFromAssume(II);
}
}
// Convert alignment assume like:
// %B = ptrtoint i32* %A to i64
// %C = and i64 %B, Constant
// %D = icmp eq i64 %C, 0
// call void @llvm.assume(i1 %D)
// into
// call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)]
uint64_t AlignMask;
if (EnableKnowledgeRetention &&
match(IIOperand,
m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)),
m_Zero())) &&
Pred == CmpInst::ICMP_EQ) {
if (isPowerOf2_64(AlignMask + 1)) {
uint64_t Offset = 0;
match(A, m_Add(m_Value(A), m_ConstantInt(Offset)));
if (match(A, m_PtrToInt(m_Value(A)))) {
/// Note: this doesn't preserve the offset information but merges
/// offset and alignment.
/// TODO: we can generate a GEP instead of merging the alignment with
/// the offset.
RetainedKnowledge RK{Attribute::Alignment,
(unsigned)MinAlign(Offset, AlignMask + 1), A};
if (auto *Replacement =
buildAssumeFromKnowledge(RK, Next, &AC, &DT)) {
Replacement->insertAfter(II);
AC.registerAssumption(Replacement);
}
return RemoveConditionFromAssume(II);
}
}
}
/// Canonicalize Knowledge in operand bundles.
if (EnableKnowledgeRetention && II->hasOperandBundles()) {
for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
auto &BOI = II->bundle_op_info_begin()[Idx];
RetainedKnowledge RK =
llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI);
if (BOI.End - BOI.Begin > 2)
continue; // Prevent reducing knowledge in an align with offset since
// extracting a RetainedKnowledge from them looses offset
// information
RetainedKnowledge CanonRK =
llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK,
&getAssumptionCache(),
&getDominatorTree());
if (CanonRK == RK)
continue;
if (!CanonRK) {
if (BOI.End - BOI.Begin > 0) {
Worklist.pushValue(II->op_begin()[BOI.Begin]);
Value::dropDroppableUse(II->op_begin()[BOI.Begin]);
}
continue;
}
assert(RK.AttrKind == CanonRK.AttrKind);
if (BOI.End - BOI.Begin > 0)
II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
if (BOI.End - BOI.Begin > 1)
II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
Type::getInt64Ty(II->getContext()), CanonRK.ArgValue));
if (RK.WasOn)
Worklist.pushValue(RK.WasOn);
return II;
}
}
// If there is a dominating assume with the same condition as this one,
// then this one is redundant, and should be removed.
KnownBits Known(1);
computeKnownBits(IIOperand, Known, 0, II);
if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II)))
return eraseInstFromFunction(*II);
// assume(false) is unreachable.
if (match(IIOperand, m_CombineOr(m_Zero(), m_Undef()))) {
CreateNonTerminatorUnreachable(II);
return eraseInstFromFunction(*II);
}
// Update the cache of affected values for this assumption (we might be
// here because we just simplified the condition).
AC.updateAffectedValues(cast<AssumeInst>(II));
break;
}
case Intrinsic::experimental_guard: {
// Is this guard followed by another guard? We scan forward over a small
// fixed window of instructions to handle common cases with conditions
// computed between guards.
Instruction *NextInst = II->getNextNonDebugInstruction();
for (unsigned i = 0; i < GuardWideningWindow; i++) {
// Note: Using context-free form to avoid compile time blow up
if (!isSafeToSpeculativelyExecute(NextInst))
break;
NextInst = NextInst->getNextNonDebugInstruction();
}
Value *NextCond = nullptr;
if (match(NextInst,
m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
Value *CurrCond = II->getArgOperand(0);
// Remove a guard that it is immediately preceded by an identical guard.
// Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
if (CurrCond != NextCond) {
Instruction *MoveI = II->getNextNonDebugInstruction();
while (MoveI != NextInst) {
auto *Temp = MoveI;
MoveI = MoveI->getNextNonDebugInstruction();
Temp->moveBefore(II);
}
replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond));
}
eraseInstFromFunction(*NextInst);
return II;
}
break;
}
case Intrinsic::vector_insert: {
Value *Vec = II->getArgOperand(0);
Value *SubVec = II->getArgOperand(1);
Value *Idx = II->getArgOperand(2);
auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType());
// Only canonicalize if the destination vector, Vec, and SubVec are all
// fixed vectors.
if (DstTy && VecTy && SubVecTy) {
unsigned DstNumElts = DstTy->getNumElements();
unsigned VecNumElts = VecTy->getNumElements();
unsigned SubVecNumElts = SubVecTy->getNumElements();
unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
// An insert that entirely overwrites Vec with SubVec is a nop.
if (VecNumElts == SubVecNumElts)
return replaceInstUsesWith(CI, SubVec);
// Widen SubVec into a vector of the same width as Vec, since
// shufflevector requires the two input vectors to be the same width.
// Elements beyond the bounds of SubVec within the widened vector are
// undefined.
SmallVector<int, 8> WidenMask;
unsigned i;
for (i = 0; i != SubVecNumElts; ++i)
WidenMask.push_back(i);
for (; i != VecNumElts; ++i)
WidenMask.push_back(PoisonMaskElem);
Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask);
SmallVector<int, 8> Mask;
for (unsigned i = 0; i != IdxN; ++i)
Mask.push_back(i);
for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
Mask.push_back(i);
for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
Mask.push_back(i);
Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
return replaceInstUsesWith(CI, Shuffle);
}
break;
}
case Intrinsic::vector_extract: {
Value *Vec = II->getArgOperand(0);
Value *Idx = II->getArgOperand(1);
Type *ReturnType = II->getType();
// (extract_vector (insert_vector InsertTuple, InsertValue, InsertIdx),
// ExtractIdx)
unsigned ExtractIdx = cast<ConstantInt>(Idx)->getZExtValue();
Value *InsertTuple, *InsertIdx, *InsertValue;
if (match(Vec, m_Intrinsic<Intrinsic::vector_insert>(m_Value(InsertTuple),
m_Value(InsertValue),
m_Value(InsertIdx))) &&
InsertValue->getType() == ReturnType) {
unsigned Index = cast<ConstantInt>(InsertIdx)->getZExtValue();
// Case where we get the same index right after setting it.
// extract.vector(insert.vector(InsertTuple, InsertValue, Idx), Idx) -->
// InsertValue
if (ExtractIdx == Index)
return replaceInstUsesWith(CI, InsertValue);
// If we are getting a different index than what was set in the
// insert.vector intrinsic. We can just set the input tuple to the one up
// in the chain. extract.vector(insert.vector(InsertTuple, InsertValue,
// InsertIndex), ExtractIndex)
// --> extract.vector(InsertTuple, ExtractIndex)
else
return replaceOperand(CI, 0, InsertTuple);
}
auto *DstTy = dyn_cast<FixedVectorType>(ReturnType);
auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
// Only canonicalize if the the destination vector and Vec are fixed
// vectors.
if (DstTy && VecTy) {
unsigned DstNumElts = DstTy->getNumElements();
unsigned VecNumElts = VecTy->getNumElements();
unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
// Extracting the entirety of Vec is a nop.
if (VecNumElts == DstNumElts) {
replaceInstUsesWith(CI, Vec);
return eraseInstFromFunction(CI);
}
SmallVector<int, 8> Mask;
for (unsigned i = 0; i != DstNumElts; ++i)
Mask.push_back(IdxN + i);
Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask);
return replaceInstUsesWith(CI, Shuffle);
}
break;
}
case Intrinsic::experimental_vector_reverse: {
Value *BO0, *BO1, *X, *Y;
Value *Vec = II->getArgOperand(0);
if (match(Vec, m_OneUse(m_BinOp(m_Value(BO0), m_Value(BO1))))) {
auto *OldBinOp = cast<BinaryOperator>(Vec);
if (match(BO0, m_VecReverse(m_Value(X)))) {
// rev(binop rev(X), rev(Y)) --> binop X, Y
if (match(BO1, m_VecReverse(m_Value(Y))))
return replaceInstUsesWith(CI,
BinaryOperator::CreateWithCopiedFlags(
OldBinOp->getOpcode(), X, Y, OldBinOp,
OldBinOp->getName(), II));
// rev(binop rev(X), BO1Splat) --> binop X, BO1Splat
if (isSplatValue(BO1))
return replaceInstUsesWith(CI,
BinaryOperator::CreateWithCopiedFlags(
OldBinOp->getOpcode(), X, BO1,
OldBinOp, OldBinOp->getName(), II));
}
// rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y
if (match(BO1, m_VecReverse(m_Value(Y))) && isSplatValue(BO0))
return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags(
OldBinOp->getOpcode(), BO0, Y,
OldBinOp, OldBinOp->getName(), II));
}
// rev(unop rev(X)) --> unop X
if (match(Vec, m_OneUse(m_UnOp(m_VecReverse(m_Value(X)))))) {
auto *OldUnOp = cast<UnaryOperator>(Vec);
auto *NewUnOp = UnaryOperator::CreateWithCopiedFlags(
OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(), II);
return replaceInstUsesWith(CI, NewUnOp);
}
break;
}
case Intrinsic::vector_reduce_or:
case Intrinsic::vector_reduce_and: {
// Canonicalize logical or/and reductions:
// Or reduction for i1 is represented as:
// %val = bitcast <ReduxWidth x i1> to iReduxWidth
// %res = cmp ne iReduxWidth %val, 0
// And reduction for i1 is represented as:
// %val = bitcast <ReduxWidth x i1> to iReduxWidth
// %res = cmp eq iReduxWidth %val, 11111
Value *Arg = II->getArgOperand(0);
Value *Vect;
if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
if (FTy->getElementType() == Builder.getInt1Ty()) {
Value *Res = Builder.CreateBitCast(
Vect, Builder.getIntNTy(FTy->getNumElements()));
if (IID == Intrinsic::vector_reduce_and) {
Res = Builder.CreateICmpEQ(
Res, ConstantInt::getAllOnesValue(Res->getType()));
} else {
assert(IID == Intrinsic::vector_reduce_or &&
"Expected or reduction.");
Res = Builder.CreateIsNotNull(Res);
}
if (Arg != Vect)
Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
II->getType());
return replaceInstUsesWith(CI, Res);
}
}
[[fallthrough]];
}
case Intrinsic::vector_reduce_add: {
if (IID == Intrinsic::vector_reduce_add) {
// Convert vector_reduce_add(ZExt(<n x i1>)) to
// ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
// Convert vector_reduce_add(SExt(<n x i1>)) to
// -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
// Convert vector_reduce_add(<n x i1>) to
// Trunc(ctpop(bitcast <n x i1> to in)).
Value *Arg = II->getArgOperand(0);
Value *Vect;
if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
if (FTy->getElementType() == Builder.getInt1Ty()) {
Value *V = Builder.CreateBitCast(
Vect, Builder.getIntNTy(FTy->getNumElements()));
Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
if (Res->getType() != II->getType())
Res = Builder.CreateZExtOrTrunc(Res, II->getType());
if (Arg != Vect &&
cast<Instruction>(Arg)->getOpcode() == Instruction::SExt)
Res = Builder.CreateNeg(Res);
return replaceInstUsesWith(CI, Res);
}
}
}
[[fallthrough]];
}
case Intrinsic::vector_reduce_xor: {
if (IID == Intrinsic::vector_reduce_xor) {
// Exclusive disjunction reduction over the vector with
// (potentially-extended) i1 element type is actually a
// (potentially-extended) arithmetic `add` reduction over the original
// non-extended value:
// vector_reduce_xor(?ext(<n x i1>))
// -->
// ?ext(vector_reduce_add(<n x i1>))
Value *Arg = II->getArgOperand(0);
Value *Vect;
if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
if (FTy->getElementType() == Builder.getInt1Ty()) {
Value *Res = Builder.CreateAddReduce(Vect);
if (Arg != Vect)
Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
II->getType());
return replaceInstUsesWith(CI, Res);
}
}
}
[[fallthrough]];
}
case Intrinsic::vector_reduce_mul: {
if (IID == Intrinsic::vector_reduce_mul) {
// Multiplicative reduction over the vector with (potentially-extended)
// i1 element type is actually a (potentially zero-extended)
// logical `and` reduction over the original non-extended value:
// vector_reduce_mul(?ext(<n x i1>))
// -->
// zext(vector_reduce_and(<n x i1>))
Value *Arg = II->getArgOperand(0);
Value *Vect;
if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
if (FTy->getElementType() == Builder.getInt1Ty()) {
Value *Res = Builder.CreateAndReduce(Vect);
if (Res->getType() != II->getType())
Res = Builder.CreateZExt(Res, II->getType());
return replaceInstUsesWith(CI, Res);
}
}
}
[[fallthrough]];
}
case Intrinsic::vector_reduce_umin:
case Intrinsic::vector_reduce_umax: {
if (IID == Intrinsic::vector_reduce_umin ||
IID == Intrinsic::vector_reduce_umax) {
// UMin/UMax reduction over the vector with (potentially-extended)
// i1 element type is actually a (potentially-extended)
// logical `and`/`or` reduction over the original non-extended value:
// vector_reduce_u{min,max}(?ext(<n x i1>))
// -->
// ?ext(vector_reduce_{and,or}(<n x i1>))
Value *Arg = II->getArgOperand(0);
Value *Vect;
if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
if (FTy->getElementType() == Builder.getInt1Ty()) {
Value *Res = IID == Intrinsic::vector_reduce_umin
? Builder.CreateAndReduce(Vect)
: Builder.CreateOrReduce(Vect);
if (Arg != Vect)
Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
II->getType());
return replaceInstUsesWith(CI, Res);
}
}
}
[[fallthrough]];
}
case Intrinsic::vector_reduce_smin:
case Intrinsic::vector_reduce_smax: {
if (IID == Intrinsic::vector_reduce_smin ||
IID == Intrinsic::vector_reduce_smax) {
// SMin/SMax reduction over the vector with (potentially-extended)
// i1 element type is actually a (potentially-extended)
// logical `and`/`or` reduction over the original non-extended value:
// vector_reduce_s{min,max}(<n x i1>)
// -->
// vector_reduce_{or,and}(<n x i1>)
// and
// vector_reduce_s{min,max}(sext(<n x i1>))
// -->
// sext(vector_reduce_{or,and}(<n x i1>))
// and
// vector_reduce_s{min,max}(zext(<n x i1>))
// -->
// zext(vector_reduce_{and,or}(<n x i1>))
Value *Arg = II->getArgOperand(0);
Value *Vect;
if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
if (FTy->getElementType() == Builder.getInt1Ty()) {
Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd;
if (Arg != Vect)
ExtOpc = cast<CastInst>(Arg)->getOpcode();
Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
(ExtOpc == Instruction::CastOps::ZExt))
? Builder.CreateAndReduce(Vect)
: Builder.CreateOrReduce(Vect);
if (Arg != Vect)
Res = Builder.CreateCast(ExtOpc, Res, II->getType());
return replaceInstUsesWith(CI, Res);
}
}
}
[[fallthrough]];
}
case Intrinsic::vector_reduce_fmax:
case Intrinsic::vector_reduce_fmin:
case Intrinsic::vector_reduce_fadd:
case Intrinsic::vector_reduce_fmul: {
bool CanBeReassociated = (IID != Intrinsic::vector_reduce_fadd &&
IID != Intrinsic::vector_reduce_fmul) ||
II->hasAllowReassoc();
const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
IID == Intrinsic::vector_reduce_fmul)
? 1
: 0;
Value *Arg = II->getArgOperand(ArgIdx);
Value *V;
ArrayRef<int> Mask;
if (!isa<FixedVectorType>(Arg->getType()) || !CanBeReassociated ||
!match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) ||
!cast<ShuffleVectorInst>(Arg)->isSingleSource())
break;
int Sz = Mask.size();
SmallBitVector UsedIndices(Sz);
for (int Idx : Mask) {
if (Idx == PoisonMaskElem || UsedIndices.test(Idx))
break;
UsedIndices.set(Idx);
}
// Can remove shuffle iff just shuffled elements, no repeats, undefs, or
// other changes.
if (UsedIndices.all()) {
replaceUse(II->getOperandUse(ArgIdx), V);
return nullptr;
}
break;
}
case Intrinsic::is_fpclass: {
if (Instruction *I = foldIntrinsicIsFPClass(*II))
return I;
break;
}
default: {
// Handle target specific intrinsics
std::optional<Instruction *> V = targetInstCombineIntrinsic(*II);
if (V)
return *V;
break;
}
}
// Try to fold intrinsic into select operands. This is legal if:
// * The intrinsic is speculatable.
// * The select condition is not a vector, or the intrinsic does not
// perform cross-lane operations.
switch (IID) {
case Intrinsic::ctlz:
case Intrinsic::cttz:
case Intrinsic::ctpop:
case Intrinsic::umin:
case Intrinsic::umax:
case Intrinsic::smin:
case Intrinsic::smax:
case Intrinsic::usub_sat:
case Intrinsic::uadd_sat:
case Intrinsic::ssub_sat:
case Intrinsic::sadd_sat:
for (Value *Op : II->args())
if (auto *Sel = dyn_cast<SelectInst>(Op))
if (Instruction *R = FoldOpIntoSelect(*II, Sel))
return R;
[[fallthrough]];
default:
break;
}
if (Instruction *Shuf = foldShuffledIntrinsicOperands(II, Builder))
return Shuf;
// Some intrinsics (like experimental_gc_statepoint) can be used in invoke
// context, so it is handled in visitCallBase and we should trigger it.
return visitCallBase(*II);
}
// Fence instruction simplification
Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) {
auto *NFI = dyn_cast<FenceInst>(FI.getNextNonDebugInstruction());
// This check is solely here to handle arbitrary target-dependent syncscopes.
// TODO: Can remove if does not matter in practice.
if (NFI && FI.isIdenticalTo(NFI))
return eraseInstFromFunction(FI);
// Returns true if FI1 is identical or stronger fence than FI2.
auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) {
auto FI1SyncScope = FI1->getSyncScopeID();
// Consider same scope, where scope is global or single-thread.
if (FI1SyncScope != FI2->getSyncScopeID() ||
(FI1SyncScope != SyncScope::System &&
FI1SyncScope != SyncScope::SingleThread))
return false;
return isAtLeastOrStrongerThan(FI1->getOrdering(), FI2->getOrdering());
};
if (NFI && isIdenticalOrStrongerFence(NFI, &FI))
return eraseInstFromFunction(FI);
if (auto *PFI = dyn_cast_or_null<FenceInst>(FI.getPrevNonDebugInstruction()))
if (isIdenticalOrStrongerFence(PFI, &FI))
return eraseInstFromFunction(FI);
return nullptr;
}
// InvokeInst simplification
Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) {
return visitCallBase(II);
}
// CallBrInst simplification
Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) {
return visitCallBase(CBI);
}
Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) {
if (!CI->getCalledFunction()) return nullptr;
// Skip optimizing notail and musttail calls so
// LibCallSimplifier::optimizeCall doesn't have to preserve those invariants.
// LibCallSimplifier::optimizeCall should try to preseve tail calls though.
if (CI->isMustTailCall() || CI->isNoTailCall())
return nullptr;
auto InstCombineRAUW = [this](Instruction *From, Value *With) {
replaceInstUsesWith(*From, With);
};
auto InstCombineErase = [this](Instruction *I) {
eraseInstFromFunction(*I);
};
LibCallSimplifier Simplifier(DL, &TLI, &AC, ORE, BFI, PSI, InstCombineRAUW,
InstCombineErase);
if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
++NumSimplified;
return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
}
return nullptr;
}
static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
// Strip off at most one level of pointer casts, looking for an alloca. This
// is good enough in practice and simpler than handling any number of casts.
Value *Underlying = TrampMem->stripPointerCasts();
if (Underlying != TrampMem &&
(!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
return nullptr;
if (!isa<AllocaInst>(Underlying))
return nullptr;
IntrinsicInst *InitTrampoline = nullptr;
for (User *U : TrampMem->users()) {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
if (!II)
return nullptr;
if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
if (InitTrampoline)
// More than one init_trampoline writes to this value. Give up.
return nullptr;
InitTrampoline = II;
continue;
}
if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
// Allow any number of calls to adjust.trampoline.
continue;
return nullptr;
}
// No call to init.trampoline found.
if (!InitTrampoline)
return nullptr;
// Check that the alloca is being used in the expected way.
if (InitTrampoline->getOperand(0) != TrampMem)
return nullptr;
return InitTrampoline;
}
static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
Value *TrampMem) {
// Visit all the previous instructions in the basic block, and try to find a
// init.trampoline which has a direct path to the adjust.trampoline.
for (BasicBlock::iterator I = AdjustTramp->getIterator(),
E = AdjustTramp->getParent()->begin();
I != E;) {
Instruction *Inst = &*--I;
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
II->getOperand(0) == TrampMem)
return II;
if (Inst->mayWriteToMemory())
return nullptr;
}
return nullptr;
}
// Given a call to llvm.adjust.trampoline, find and return the corresponding
// call to llvm.init.trampoline if the call to the trampoline can be optimized
// to a direct call to a function. Otherwise return NULL.
static IntrinsicInst *findInitTrampoline(Value *Callee) {
Callee = Callee->stripPointerCasts();
IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
if (!AdjustTramp ||
AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
return nullptr;
Value *TrampMem = AdjustTramp->getOperand(0);
if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
return IT;
if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
return IT;
return nullptr;
}
bool InstCombinerImpl::annotateAnyAllocSite(CallBase &Call,
const TargetLibraryInfo *TLI) {
// Note: We only handle cases which can't be driven from generic attributes
// here. So, for example, nonnull and noalias (which are common properties
// of some allocation functions) are expected to be handled via annotation
// of the respective allocator declaration with generic attributes.
bool Changed = false;
if (!Call.getType()->isPointerTy())
return Changed;
std::optional<APInt> Size = getAllocSize(&Call, TLI);
if (Size && *Size != 0) {
// TODO: We really should just emit deref_or_null here and then
// let the generic inference code combine that with nonnull.
if (Call.hasRetAttr(Attribute::NonNull)) {
Changed = !Call.hasRetAttr(Attribute::Dereferenceable);
Call.addRetAttr(Attribute::getWithDereferenceableBytes(
Call.getContext(), Size->getLimitedValue()));
} else {
Changed = !Call.hasRetAttr(Attribute::DereferenceableOrNull);
Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes(
Call.getContext(), Size->getLimitedValue()));
}
}
// Add alignment attribute if alignment is a power of two constant.
Value *Alignment = getAllocAlignment(&Call, TLI);
if (!Alignment)
return Changed;
ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Alignment);
if (AlignOpC && AlignOpC->getValue().ult(llvm::Value::MaximumAlignment)) {
uint64_t AlignmentVal = AlignOpC->getZExtValue();
if (llvm::isPowerOf2_64(AlignmentVal)) {
Align ExistingAlign = Call.getRetAlign().valueOrOne();
Align NewAlign = Align(AlignmentVal);
if (NewAlign > ExistingAlign) {
Call.addRetAttr(
Attribute::getWithAlignment(Call.getContext(), NewAlign));
Changed = true;
}
}
}
return Changed;
}
/// Improvements for call, callbr and invoke instructions.
Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) {
bool Changed = annotateAnyAllocSite(Call, &TLI);
// Mark any parameters that are known to be non-null with the nonnull
// attribute. This is helpful for inlining calls to functions with null
// checks on their arguments.
SmallVector<unsigned, 4> ArgNos;
unsigned ArgNo = 0;
for (Value *V : Call.args()) {
if (V->getType()->isPointerTy() &&
!Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
isKnownNonZero(V, DL, 0, &AC, &Call, &DT))
ArgNos.push_back(ArgNo);
ArgNo++;
}
assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly.");
if (!ArgNos.empty()) {
AttributeList AS = Call.getAttributes();
LLVMContext &Ctx = Call.getContext();
AS = AS.addParamAttribute(Ctx, ArgNos,
Attribute::get(Ctx, Attribute::NonNull));
Call.setAttributes(AS);
Changed = true;
}
// If the callee is a pointer to a function, attempt to move any casts to the
// arguments of the call/callbr/invoke.
Value *Callee = Call.getCalledOperand();
Function *CalleeF = dyn_cast<Function>(Callee);
if ((!CalleeF || CalleeF->getFunctionType() != Call.getFunctionType()) &&
transformConstExprCastCall(Call))
return nullptr;
if (CalleeF) {
// Remove the convergent attr on calls when the callee is not convergent.
if (Call.isConvergent() && !CalleeF->isConvergent() &&
!CalleeF->isIntrinsic()) {
LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
<< "\n");
Call.setNotConvergent();
return &Call;
}
// If the call and callee calling conventions don't match, and neither one
// of the calling conventions is compatible with C calling convention
// this call must be unreachable, as the call is undefined.
if ((CalleeF->getCallingConv() != Call.getCallingConv() &&
!(CalleeF->getCallingConv() == llvm::CallingConv::C &&
TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) &&
!(Call.getCallingConv() == llvm::CallingConv::C &&
TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) &&
// Only do this for calls to a function with a body. A prototype may
// not actually end up matching the implementation's calling conv for a
// variety of reasons (e.g. it may be written in assembly).
!CalleeF->isDeclaration()) {
Instruction *OldCall = &Call;
CreateNonTerminatorUnreachable(OldCall);
// If OldCall does not return void then replaceInstUsesWith poison.
// This allows ValueHandlers and custom metadata to adjust itself.
if (!OldCall->getType()->isVoidTy())
replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType()));
if (isa<CallInst>(OldCall))
return eraseInstFromFunction(*OldCall);
// We cannot remove an invoke or a callbr, because it would change thexi
// CFG, just change the callee to a null pointer.
cast<CallBase>(OldCall)->setCalledFunction(
CalleeF->getFunctionType(),
Constant::getNullValue(CalleeF->getType()));
return nullptr;
}
}
// Calling a null function pointer is undefined if a null address isn't
// dereferenceable.
if ((isa<ConstantPointerNull>(Callee) &&
!NullPointerIsDefined(Call.getFunction())) ||
isa<UndefValue>(Callee)) {
// If Call does not return void then replaceInstUsesWith poison.
// This allows ValueHandlers and custom metadata to adjust itself.
if (!Call.getType()->isVoidTy())
replaceInstUsesWith(Call, PoisonValue::get(Call.getType()));
if (Call.isTerminator()) {
// Can't remove an invoke or callbr because we cannot change the CFG.
return nullptr;
}
// This instruction is not reachable, just remove it.
CreateNonTerminatorUnreachable(&Call);
return eraseInstFromFunction(Call);
}
if (IntrinsicInst *II = findInitTrampoline(Callee))
return transformCallThroughTrampoline(Call, *II);
if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
InlineAsm *IA = cast<InlineAsm>(Callee);
if (!IA->canThrow()) {
// Normal inline asm calls cannot throw - mark them
// 'nounwind'.
Call.setDoesNotThrow();
Changed = true;
}
}
// Try to optimize the call if possible, we require DataLayout for most of
// this. None of these calls are seen as possibly dead so go ahead and
// delete the instruction now.
if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
Instruction *I = tryOptimizeCall(CI);
// If we changed something return the result, etc. Otherwise let
// the fallthrough check.
if (I) return eraseInstFromFunction(*I);
}
if (!Call.use_empty() && !Call.isMustTailCall())
if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
Type *CallTy = Call.getType();
Type *RetArgTy = ReturnedArg->getType();
if (RetArgTy->canLosslesslyBitCastTo(CallTy))
return replaceInstUsesWith(
Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
}
// Drop unnecessary kcfi operand bundles from calls that were converted
// into direct calls.
auto Bundle = Call.getOperandBundle(LLVMContext::OB_kcfi);
if (Bundle && !Call.isIndirectCall()) {
DEBUG_WITH_TYPE(DEBUG_TYPE "-kcfi", {
if (CalleeF) {
ConstantInt *FunctionType = nullptr;
ConstantInt *ExpectedType = cast<ConstantInt>(Bundle->Inputs[0]);
if (MDNode *MD = CalleeF->getMetadata(LLVMContext::MD_kcfi_type))
FunctionType = mdconst::extract<ConstantInt>(MD->getOperand(0));
if (FunctionType &&
FunctionType->getZExtValue() != ExpectedType->getZExtValue())
dbgs() << Call.getModule()->getName()
<< ": warning: kcfi: " << Call.getCaller()->getName()
<< ": call to " << CalleeF->getName()
<< " using a mismatching function pointer type\n";
}
});
return CallBase::removeOperandBundle(&Call, LLVMContext::OB_kcfi);
}
if (isRemovableAlloc(&Call, &TLI))
return visitAllocSite(Call);
// Handle intrinsics which can be used in both call and invoke context.
switch (Call.getIntrinsicID()) {
case Intrinsic::experimental_gc_statepoint: {
GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call);
SmallPtrSet<Value *, 32> LiveGcValues;
for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
// Remove the relocation if unused.
if (GCR.use_empty()) {
eraseInstFromFunction(GCR);
continue;
}
Value *DerivedPtr = GCR.getDerivedPtr();
Value *BasePtr = GCR.getBasePtr();
// Undef is undef, even after relocation.
if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
replaceInstUsesWith(GCR, UndefValue::get(GCR.getType()));
eraseInstFromFunction(GCR);
continue;
}
if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
// The relocation of null will be null for most any collector.
// TODO: provide a hook for this in GCStrategy. There might be some
// weird collector this property does not hold for.
if (isa<ConstantPointerNull>(DerivedPtr)) {
// Use null-pointer of gc_relocate's type to replace it.
replaceInstUsesWith(GCR, ConstantPointerNull::get(PT));
eraseInstFromFunction(GCR);
continue;
}
// isKnownNonNull -> nonnull attribute
if (!GCR.hasRetAttr(Attribute::NonNull) &&
isKnownNonZero(DerivedPtr, DL, 0, &AC, &Call, &DT)) {
GCR.addRetAttr(Attribute::NonNull);
// We discovered new fact, re-check users.
Worklist.pushUsersToWorkList(GCR);
}
}
// If we have two copies of the same pointer in the statepoint argument
// list, canonicalize to one. This may let us common gc.relocates.
if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
auto *OpIntTy = GCR.getOperand(2)->getType();
GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
}
// TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
// Canonicalize on the type from the uses to the defs
// TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
LiveGcValues.insert(BasePtr);
LiveGcValues.insert(DerivedPtr);
}
std::optional<OperandBundleUse> Bundle =
GCSP.getOperandBundle(LLVMContext::OB_gc_live);
unsigned NumOfGCLives = LiveGcValues.size();
if (!Bundle || NumOfGCLives == Bundle->Inputs.size())
break;
// We can reduce the size of gc live bundle.
DenseMap<Value *, unsigned> Val2Idx;
std::vector<Value *> NewLiveGc;
for (Value *V : Bundle->Inputs) {
if (Val2Idx.count(V))
continue;
if (LiveGcValues.count(V)) {
Val2Idx[V] = NewLiveGc.size();
NewLiveGc.push_back(V);
} else
Val2Idx[V] = NumOfGCLives;
}
// Update all gc.relocates
for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
Value *BasePtr = GCR.getBasePtr();
assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
"Missed live gc for base pointer");
auto *OpIntTy1 = GCR.getOperand(1)->getType();
GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
Value *DerivedPtr = GCR.getDerivedPtr();
assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
"Missed live gc for derived pointer");
auto *OpIntTy2 = GCR.getOperand(2)->getType();
GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
}
// Create new statepoint instruction.
OperandBundleDef NewBundle("gc-live", NewLiveGc);
return CallBase::Create(&Call, NewBundle);
}
default: { break; }
}
return Changed ? &Call : nullptr;
}
/// If the callee is a constexpr cast of a function, attempt to move the cast to
/// the arguments of the call/invoke.
/// CallBrInst is not supported.
bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
auto *Callee =
dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
if (!Callee)
return false;
assert(!isa<CallBrInst>(Call) &&
"CallBr's don't have a single point after a def to insert at");
// If this is a call to a thunk function, don't remove the cast. Thunks are
// used to transparently forward all incoming parameters and outgoing return
// values, so it's important to leave the cast in place.
if (Callee->hasFnAttribute("thunk"))
return false;
// If this is a musttail call, the callee's prototype must match the caller's
// prototype with the exception of pointee types. The code below doesn't
// implement that, so we can't do this transform.
// TODO: Do the transform if it only requires adding pointer casts.
if (Call.isMustTailCall())
return false;
Instruction *Caller = &Call;
const AttributeList &CallerPAL = Call.getAttributes();
// Okay, this is a cast from a function to a different type. Unless doing so
// would cause a type conversion of one of our arguments, change this call to
// be a direct call with arguments casted to the appropriate types.
FunctionType *FT = Callee->getFunctionType();
Type *OldRetTy = Caller->getType();
Type *NewRetTy = FT->getReturnType();
// Check to see if we are changing the return type...
if (OldRetTy != NewRetTy) {
if (NewRetTy->isStructTy())
return false; // TODO: Handle multiple return values.
if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
if (Callee->isDeclaration())
return false; // Cannot transform this return value.
if (!Caller->use_empty() &&
// void -> non-void is handled specially
!NewRetTy->isVoidTy())
return false; // Cannot transform this return value.
}
if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
return false; // Attribute not compatible with transformed value.
}
// If the callbase is an invoke instruction, and the return value is
// used by a PHI node in a successor, we cannot change the return type of
// the call because there is no place to put the cast instruction (without
// breaking the critical edge). Bail out in this case.
if (!Caller->use_empty()) {
BasicBlock *PhisNotSupportedBlock = nullptr;
if (auto *II = dyn_cast<InvokeInst>(Caller))
PhisNotSupportedBlock = II->getNormalDest();
if (PhisNotSupportedBlock)
for (User *U : Caller->users())
if (PHINode *PN = dyn_cast<PHINode>(U))
if (PN->getParent() == PhisNotSupportedBlock)
return false;
}
}
unsigned NumActualArgs = Call.arg_size();
unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
// Prevent us turning:
// declare void @takes_i32_inalloca(i32* inalloca)
// call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
//
// into:
// call void @takes_i32_inalloca(i32* null)
//
// Similarly, avoid folding away bitcasts of byval calls.
if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated))
return false;
auto AI = Call.arg_begin();
for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
Type *ParamTy = FT->getParamType(i);
Type *ActTy = (*AI)->getType();
if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
return false; // Cannot transform this parameter value.
// Check if there are any incompatible attributes we cannot drop safely.
if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i))
.overlaps(AttributeFuncs::typeIncompatible(
ParamTy, AttributeFuncs::ASK_UNSAFE_TO_DROP)))
return false; // Attribute not compatible with transformed value.
if (Call.isInAllocaArgument(i) ||
CallerPAL.hasParamAttr(i, Attribute::Preallocated))
return false; // Cannot transform to and from inalloca/preallocated.
if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
return false;
if (CallerPAL.hasParamAttr(i, Attribute::ByVal) !=
Callee->getAttributes().hasParamAttr(i, Attribute::ByVal))
return false; // Cannot transform to or from byval.
}
if (Callee->isDeclaration()) {
// Do not delete arguments unless we have a function body.
if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
return false;
// If the callee is just a declaration, don't change the varargsness of the
// call. We don't want to introduce a varargs call where one doesn't
// already exist.
if (FT->isVarArg() != Call.getFunctionType()->isVarArg())
return false;
// If both the callee and the cast type are varargs, we still have to make
// sure the number of fixed parameters are the same or we have the same
// ABI issues as if we introduce a varargs call.
if (FT->isVarArg() && Call.getFunctionType()->isVarArg() &&
FT->getNumParams() != Call.getFunctionType()->getNumParams())
return false;
}
if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
!CallerPAL.isEmpty()) {
// In this case we have more arguments than the new function type, but we
// won't be dropping them. Check that these extra arguments have attributes
// that are compatible with being a vararg call argument.
unsigned SRetIdx;
if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
return false;
}
// Okay, we decided that this is a safe thing to do: go ahead and start
// inserting cast instructions as necessary.
SmallVector<Value *, 8> Args;
SmallVector<AttributeSet, 8> ArgAttrs;
Args.reserve(NumActualArgs);
ArgAttrs.reserve(NumActualArgs);
// Get any return attributes.
AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
// If the return value is not being used, the type may not be compatible
// with the existing attributes. Wipe out any problematic attributes.
RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
LLVMContext &Ctx = Call.getContext();
AI = Call.arg_begin();
for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
Type *ParamTy = FT->getParamType(i);
Value *NewArg = *AI;
if ((*AI)->getType() != ParamTy)
NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
Args.push_back(NewArg);
// Add any parameter attributes except the ones incompatible with the new
// type. Note that we made sure all incompatible ones are safe to drop.
AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
ParamTy, AttributeFuncs::ASK_SAFE_TO_DROP);
ArgAttrs.push_back(
CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs));
}
// If the function takes more arguments than the call was taking, add them
// now.
for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
Args.push_back(Constant::getNullValue(FT->getParamType(i)));
ArgAttrs.push_back(AttributeSet());
}
// If we are removing arguments to the function, emit an obnoxious warning.
if (FT->getNumParams() < NumActualArgs) {
// TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
if (FT->isVarArg()) {
// Add all of the arguments in their promoted form to the arg list.
for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
Type *PTy = getPromotedType((*AI)->getType());
Value *NewArg = *AI;
if (PTy != (*AI)->getType()) {
// Must promote to pass through va_arg area!
Instruction::CastOps opcode =
CastInst::getCastOpcode(*AI, false, PTy, false);
NewArg = Builder.CreateCast(opcode, *AI, PTy);
}
Args.push_back(NewArg);
// Add any parameter attributes.
ArgAttrs.push_back(CallerPAL.getParamAttrs(i));
}
}
}
AttributeSet FnAttrs = CallerPAL.getFnAttrs();
if (NewRetTy->isVoidTy())
Caller->setName(""); // Void type should not have a name.
assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
"missing argument attributes");
AttributeList NewCallerPAL = AttributeList::get(
Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
SmallVector<OperandBundleDef, 1> OpBundles;
Call.getOperandBundlesAsDefs(OpBundles);
CallBase *NewCall;
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
II->getUnwindDest(), Args, OpBundles);
} else {
NewCall = Builder.CreateCall(Callee, Args, OpBundles);
cast<CallInst>(NewCall)->setTailCallKind(
cast<CallInst>(Caller)->getTailCallKind());
}
NewCall->takeName(Caller);
NewCall->setCallingConv(Call.getCallingConv());
NewCall->setAttributes(NewCallerPAL);
// Preserve prof metadata if any.
NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
// Insert a cast of the return type as necessary.
Instruction *NC = NewCall;
Value *NV = NC;
if (OldRetTy != NV->getType() && !Caller->use_empty()) {
if (!NV->getType()->isVoidTy()) {
NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
NC->setDebugLoc(Caller->getDebugLoc());
Instruction *InsertPt = NewCall->getInsertionPointAfterDef();
assert(InsertPt && "No place to insert cast");
InsertNewInstBefore(NC, *InsertPt);
Worklist.pushUsersToWorkList(*Caller);
} else {
NV = PoisonValue::get(Caller->getType());
}
}
if (!Caller->use_empty())
replaceInstUsesWith(*Caller, NV);
else if (Caller->hasValueHandle()) {
if (OldRetTy == NV->getType())
ValueHandleBase::ValueIsRAUWd(Caller, NV);
else
// We cannot call ValueIsRAUWd with a different type, and the
// actual tracked value will disappear.
ValueHandleBase::ValueIsDeleted(Caller);
}
eraseInstFromFunction(*Caller);
return true;
}
/// Turn a call to a function created by init_trampoline / adjust_trampoline
/// intrinsic pair into a direct call to the underlying function.
Instruction *
InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
IntrinsicInst &Tramp) {
Value *Callee = Call.getCalledOperand();
Type *CalleeTy = Callee->getType();
FunctionType *FTy = Call.getFunctionType();
AttributeList Attrs = Call.getAttributes();
// If the call already has the 'nest' attribute somewhere then give up -
// otherwise 'nest' would occur twice after splicing in the chain.
if (Attrs.hasAttrSomewhere(Attribute::Nest))
return nullptr;
Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
FunctionType *NestFTy = NestF->getFunctionType();
AttributeList NestAttrs = NestF->getAttributes();
if (!NestAttrs.isEmpty()) {
unsigned NestArgNo = 0;
Type *NestTy = nullptr;
AttributeSet NestAttr;
// Look for a parameter marked with the 'nest' attribute.
for (FunctionType::param_iterator I = NestFTy->param_begin(),
E = NestFTy->param_end();
I != E; ++NestArgNo, ++I) {
AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo);
if (AS.hasAttribute(Attribute::Nest)) {
// Record the parameter type and any other attributes.
NestTy = *I;
NestAttr = AS;
break;
}
}
if (NestTy) {
std::vector<Value*> NewArgs;
std::vector<AttributeSet> NewArgAttrs;
NewArgs.reserve(Call.arg_size() + 1);
NewArgAttrs.reserve(Call.arg_size());
// Insert the nest argument into the call argument list, which may
// mean appending it. Likewise for attributes.
{
unsigned ArgNo = 0;
auto I = Call.arg_begin(), E = Call.arg_end();
do {
if (ArgNo == NestArgNo) {
// Add the chain argument and attributes.
Value *NestVal = Tramp.getArgOperand(2);
if (NestVal->getType() != NestTy)
NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
NewArgs.push_back(NestVal);
NewArgAttrs.push_back(NestAttr);
}
if (I == E)
break;
// Add the original argument and attributes.
NewArgs.push_back(*I);
NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
++ArgNo;
++I;
} while (true);
}
// The trampoline may have been bitcast to a bogus type (FTy).
// Handle this by synthesizing a new function type, equal to FTy
// with the chain parameter inserted.
std::vector<Type*> NewTypes;
NewTypes.reserve(FTy->getNumParams()+1);
// Insert the chain's type into the list of parameter types, which may
// mean appending it.
{
unsigned ArgNo = 0;
FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end();
do {
if (ArgNo == NestArgNo)
// Add the chain's type.
NewTypes.push_back(NestTy);
if (I == E)
break;
// Add the original type.
NewTypes.push_back(*I);
++ArgNo;
++I;
} while (true);
}
// Replace the trampoline call with a direct call. Let the generic
// code sort out any function type mismatches.
FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
FTy->isVarArg());
Constant *NewCallee =
NestF->getType() == PointerType::getUnqual(NewFTy) ?
NestF : ConstantExpr::getBitCast(NestF,
PointerType::getUnqual(NewFTy));
AttributeList NewPAL =
AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(),
Attrs.getRetAttrs(), NewArgAttrs);
SmallVector<OperandBundleDef, 1> OpBundles;
Call.getOperandBundlesAsDefs(OpBundles);
Instruction *NewCaller;
if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
NewCaller = InvokeInst::Create(NewFTy, NewCallee,
II->getNormalDest(), II->getUnwindDest(),
NewArgs, OpBundles);
cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
} else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
NewCaller =
CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(),
CBI->getIndirectDests(), NewArgs, OpBundles);
cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
} else {
NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles);
cast<CallInst>(NewCaller)->setTailCallKind(
cast<CallInst>(Call).getTailCallKind());
cast<CallInst>(NewCaller)->setCallingConv(
cast<CallInst>(Call).getCallingConv());
cast<CallInst>(NewCaller)->setAttributes(NewPAL);
}
NewCaller->setDebugLoc(Call.getDebugLoc());
return NewCaller;
}
}
// Replace the trampoline call with a direct call. Since there is no 'nest'
// parameter, there is no need to adjust the argument list. Let the generic
// code sort out any function type mismatches.
Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy);
Call.setCalledFunction(FTy, NewCallee);
return &Call;
}
|