1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
|
//===- InstCombineMulDivRem.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
// srem, urem, frem.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include <cassert>
#define DEBUG_TYPE "instcombine"
#include "llvm/Transforms/Utils/InstructionWorklist.h"
using namespace llvm;
using namespace PatternMatch;
/// The specific integer value is used in a context where it is known to be
/// non-zero. If this allows us to simplify the computation, do so and return
/// the new operand, otherwise return null.
static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
Instruction &CxtI) {
// If V has multiple uses, then we would have to do more analysis to determine
// if this is safe. For example, the use could be in dynamically unreached
// code.
if (!V->hasOneUse()) return nullptr;
bool MadeChange = false;
// ((1 << A) >>u B) --> (1 << (A-B))
// Because V cannot be zero, we know that B is less than A.
Value *A = nullptr, *B = nullptr, *One = nullptr;
if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
match(One, m_One())) {
A = IC.Builder.CreateSub(A, B);
return IC.Builder.CreateShl(One, A);
}
// (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
// inexact. Similarly for <<.
BinaryOperator *I = dyn_cast<BinaryOperator>(V);
if (I && I->isLogicalShift() &&
IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
// We know that this is an exact/nuw shift and that the input is a
// non-zero context as well.
if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
IC.replaceOperand(*I, 0, V2);
MadeChange = true;
}
if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
I->setIsExact();
MadeChange = true;
}
if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
I->setHasNoUnsignedWrap();
MadeChange = true;
}
}
// TODO: Lots more we could do here:
// If V is a phi node, we can call this on each of its operands.
// "select cond, X, 0" can simplify to "X".
return MadeChange ? V : nullptr;
}
// TODO: This is a specific form of a much more general pattern.
// We could detect a select with any binop identity constant, or we
// could use SimplifyBinOp to see if either arm of the select reduces.
// But that needs to be done carefully and/or while removing potential
// reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
static Value *foldMulSelectToNegate(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
Value *Cond, *OtherOp;
// mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
// mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
m_Value(OtherOp)))) {
bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
return Builder.CreateSelect(Cond, OtherOp, Neg);
}
// mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
// mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
m_Value(OtherOp)))) {
bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
return Builder.CreateSelect(Cond, Neg, OtherOp);
}
// fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
// fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
m_SpecificFP(-1.0))),
m_Value(OtherOp)))) {
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
Builder.setFastMathFlags(I.getFastMathFlags());
return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
}
// fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
// fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
m_SpecificFP(1.0))),
m_Value(OtherOp)))) {
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
Builder.setFastMathFlags(I.getFastMathFlags());
return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
}
return nullptr;
}
/// Reduce integer multiplication patterns that contain a (+/-1 << Z) factor.
/// Callers are expected to call this twice to handle commuted patterns.
static Value *foldMulShl1(BinaryOperator &Mul, bool CommuteOperands,
InstCombiner::BuilderTy &Builder) {
Value *X = Mul.getOperand(0), *Y = Mul.getOperand(1);
if (CommuteOperands)
std::swap(X, Y);
const bool HasNSW = Mul.hasNoSignedWrap();
const bool HasNUW = Mul.hasNoUnsignedWrap();
// X * (1 << Z) --> X << Z
Value *Z;
if (match(Y, m_Shl(m_One(), m_Value(Z)))) {
bool PropagateNSW = HasNSW && cast<ShlOperator>(Y)->hasNoSignedWrap();
return Builder.CreateShl(X, Z, Mul.getName(), HasNUW, PropagateNSW);
}
// Similar to above, but an increment of the shifted value becomes an add:
// X * ((1 << Z) + 1) --> (X * (1 << Z)) + X --> (X << Z) + X
// This increases uses of X, so it may require a freeze, but that is still
// expected to be an improvement because it removes the multiply.
BinaryOperator *Shift;
if (match(Y, m_OneUse(m_Add(m_BinOp(Shift), m_One()))) &&
match(Shift, m_OneUse(m_Shl(m_One(), m_Value(Z))))) {
bool PropagateNSW = HasNSW && Shift->hasNoSignedWrap();
Value *FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
Value *Shl = Builder.CreateShl(FrX, Z, "mulshl", HasNUW, PropagateNSW);
return Builder.CreateAdd(Shl, FrX, Mul.getName(), HasNUW, PropagateNSW);
}
// Similar to above, but a decrement of the shifted value is disguised as
// 'not' and becomes a sub:
// X * (~(-1 << Z)) --> X * ((1 << Z) - 1) --> (X << Z) - X
// This increases uses of X, so it may require a freeze, but that is still
// expected to be an improvement because it removes the multiply.
if (match(Y, m_OneUse(m_Not(m_OneUse(m_Shl(m_AllOnes(), m_Value(Z))))))) {
Value *FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
Value *Shl = Builder.CreateShl(FrX, Z, "mulshl");
return Builder.CreateSub(Shl, FrX, Mul.getName());
}
return nullptr;
}
static Value *takeLog2(IRBuilderBase &Builder, Value *Op, unsigned Depth,
bool AssumeNonZero, bool DoFold);
Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V =
simplifyMulInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (SimplifyAssociativeOrCommutative(I))
return &I;
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *Phi = foldBinopWithPhiOperands(I))
return Phi;
if (Value *V = foldUsingDistributiveLaws(I))
return replaceInstUsesWith(I, V);
Type *Ty = I.getType();
const unsigned BitWidth = Ty->getScalarSizeInBits();
const bool HasNSW = I.hasNoSignedWrap();
const bool HasNUW = I.hasNoUnsignedWrap();
// X * -1 --> 0 - X
if (match(Op1, m_AllOnes())) {
return HasNSW ? BinaryOperator::CreateNSWNeg(Op0)
: BinaryOperator::CreateNeg(Op0);
}
// Also allow combining multiply instructions on vectors.
{
Value *NewOp;
Constant *C1, *C2;
const APInt *IVal;
if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
m_Constant(C1))) &&
match(C1, m_APInt(IVal))) {
// ((X << C2)*C1) == (X * (C1 << C2))
Constant *Shl = ConstantExpr::getShl(C1, C2);
BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
if (HasNUW && Mul->hasNoUnsignedWrap())
BO->setHasNoUnsignedWrap();
if (HasNSW && Mul->hasNoSignedWrap() && Shl->isNotMinSignedValue())
BO->setHasNoSignedWrap();
return BO;
}
if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
// Replace X*(2^C) with X << C, where C is either a scalar or a vector.
if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
if (HasNUW)
Shl->setHasNoUnsignedWrap();
if (HasNSW) {
const APInt *V;
if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
Shl->setHasNoSignedWrap();
}
return Shl;
}
}
}
if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
// Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation.
// The "* (1<<C)" thus becomes a potential shifting opportunity.
if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this))
return BinaryOperator::CreateMul(
NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName());
// Try to convert multiply of extended operand to narrow negate and shift
// for better analysis.
// This is valid if the shift amount (trailing zeros in the multiplier
// constant) clears more high bits than the bitwidth difference between
// source and destination types:
// ({z/s}ext X) * (-1<<C) --> (zext (-X)) << C
const APInt *NegPow2C;
Value *X;
if (match(Op0, m_ZExtOrSExt(m_Value(X))) &&
match(Op1, m_APIntAllowUndef(NegPow2C))) {
unsigned SrcWidth = X->getType()->getScalarSizeInBits();
unsigned ShiftAmt = NegPow2C->countr_zero();
if (ShiftAmt >= BitWidth - SrcWidth) {
Value *N = Builder.CreateNeg(X, X->getName() + ".neg");
Value *Z = Builder.CreateZExt(N, Ty, N->getName() + ".z");
return BinaryOperator::CreateShl(Z, ConstantInt::get(Ty, ShiftAmt));
}
}
}
if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
return FoldedMul;
if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
return replaceInstUsesWith(I, FoldedMul);
// Simplify mul instructions with a constant RHS.
Constant *MulC;
if (match(Op1, m_ImmConstant(MulC))) {
// Canonicalize (X+C1)*MulC -> X*MulC+C1*MulC.
// Canonicalize (X|C1)*MulC -> X*MulC+C1*MulC.
Value *X;
Constant *C1;
if ((match(Op0, m_OneUse(m_Add(m_Value(X), m_ImmConstant(C1))))) ||
(match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C1)))) &&
haveNoCommonBitsSet(X, C1, DL, &AC, &I, &DT))) {
// C1*MulC simplifies to a tidier constant.
Value *NewC = Builder.CreateMul(C1, MulC);
auto *BOp0 = cast<BinaryOperator>(Op0);
bool Op0NUW =
(BOp0->getOpcode() == Instruction::Or || BOp0->hasNoUnsignedWrap());
Value *NewMul = Builder.CreateMul(X, MulC);
auto *BO = BinaryOperator::CreateAdd(NewMul, NewC);
if (HasNUW && Op0NUW) {
// If NewMulBO is constant we also can set BO to nuw.
if (auto *NewMulBO = dyn_cast<BinaryOperator>(NewMul))
NewMulBO->setHasNoUnsignedWrap();
BO->setHasNoUnsignedWrap();
}
return BO;
}
}
// abs(X) * abs(X) -> X * X
// nabs(X) * nabs(X) -> X * X
if (Op0 == Op1) {
Value *X, *Y;
SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
if (SPF == SPF_ABS || SPF == SPF_NABS)
return BinaryOperator::CreateMul(X, X);
if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
return BinaryOperator::CreateMul(X, X);
}
// -X * C --> X * -C
Value *X, *Y;
Constant *Op1C;
if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
// -X * -Y --> X * Y
if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
auto *NewMul = BinaryOperator::CreateMul(X, Y);
if (HasNSW && cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
NewMul->setHasNoSignedWrap();
return NewMul;
}
// -X * Y --> -(X * Y)
// X * -Y --> -(X * Y)
if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
// (X / Y) * Y = X - (X % Y)
// (X / Y) * -Y = (X % Y) - X
{
Value *Y = Op1;
BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
if (!Div || (Div->getOpcode() != Instruction::UDiv &&
Div->getOpcode() != Instruction::SDiv)) {
Y = Op0;
Div = dyn_cast<BinaryOperator>(Op1);
}
Value *Neg = dyn_castNegVal(Y);
if (Div && Div->hasOneUse() &&
(Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
(Div->getOpcode() == Instruction::UDiv ||
Div->getOpcode() == Instruction::SDiv)) {
Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
// If the division is exact, X % Y is zero, so we end up with X or -X.
if (Div->isExact()) {
if (DivOp1 == Y)
return replaceInstUsesWith(I, X);
return BinaryOperator::CreateNeg(X);
}
auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
: Instruction::SRem;
// X must be frozen because we are increasing its number of uses.
Value *XFreeze = Builder.CreateFreeze(X, X->getName() + ".fr");
Value *Rem = Builder.CreateBinOp(RemOpc, XFreeze, DivOp1);
if (DivOp1 == Y)
return BinaryOperator::CreateSub(XFreeze, Rem);
return BinaryOperator::CreateSub(Rem, XFreeze);
}
}
// Fold the following two scenarios:
// 1) i1 mul -> i1 and.
// 2) X * Y --> X & Y, iff X, Y can be only {0,1}.
// Note: We could use known bits to generalize this and related patterns with
// shifts/truncs
if (Ty->isIntOrIntVectorTy(1) ||
(match(Op0, m_And(m_Value(), m_One())) &&
match(Op1, m_And(m_Value(), m_One()))))
return BinaryOperator::CreateAnd(Op0, Op1);
if (Value *R = foldMulShl1(I, /* CommuteOperands */ false, Builder))
return replaceInstUsesWith(I, R);
if (Value *R = foldMulShl1(I, /* CommuteOperands */ true, Builder))
return replaceInstUsesWith(I, R);
// (zext bool X) * (zext bool Y) --> zext (and X, Y)
// (sext bool X) * (sext bool Y) --> zext (and X, Y)
// Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
(match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
(Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) {
Value *And = Builder.CreateAnd(X, Y, "mulbool");
return CastInst::Create(Instruction::ZExt, And, Ty);
}
// (sext bool X) * (zext bool Y) --> sext (and X, Y)
// (zext bool X) * (sext bool Y) --> sext (and X, Y)
// Note: -1 * 1 == 1 * -1 == -1
if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
(match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
(Op0->hasOneUse() || Op1->hasOneUse())) {
Value *And = Builder.CreateAnd(X, Y, "mulbool");
return CastInst::Create(Instruction::SExt, And, Ty);
}
// (zext bool X) * Y --> X ? Y : 0
// Y * (zext bool X) --> X ? Y : 0
if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
return SelectInst::Create(X, Op1, ConstantInt::getNullValue(Ty));
if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
return SelectInst::Create(X, Op0, ConstantInt::getNullValue(Ty));
Constant *ImmC;
if (match(Op1, m_ImmConstant(ImmC))) {
// (sext bool X) * C --> X ? -C : 0
if (match(Op0, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
Constant *NegC = ConstantExpr::getNeg(ImmC);
return SelectInst::Create(X, NegC, ConstantInt::getNullValue(Ty));
}
// (ashr i32 X, 31) * C --> (X < 0) ? -C : 0
const APInt *C;
if (match(Op0, m_OneUse(m_AShr(m_Value(X), m_APInt(C)))) &&
*C == C->getBitWidth() - 1) {
Constant *NegC = ConstantExpr::getNeg(ImmC);
Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
return SelectInst::Create(IsNeg, NegC, ConstantInt::getNullValue(Ty));
}
}
// (lshr X, 31) * Y --> (X < 0) ? Y : 0
// TODO: We are not checking one-use because the elimination of the multiply
// is better for analysis?
const APInt *C;
if (match(&I, m_c_BinOp(m_LShr(m_Value(X), m_APInt(C)), m_Value(Y))) &&
*C == C->getBitWidth() - 1) {
Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty));
}
// (and X, 1) * Y --> (trunc X) ? Y : 0
if (match(&I, m_c_BinOp(m_OneUse(m_And(m_Value(X), m_One())), m_Value(Y)))) {
Value *Tr = Builder.CreateTrunc(X, CmpInst::makeCmpResultType(Ty));
return SelectInst::Create(Tr, Y, ConstantInt::getNullValue(Ty));
}
// ((ashr X, 31) | 1) * X --> abs(X)
// X * ((ashr X, 31) | 1) --> abs(X)
if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X),
m_SpecificIntAllowUndef(BitWidth - 1)),
m_One()),
m_Deferred(X)))) {
Value *Abs = Builder.CreateBinaryIntrinsic(
Intrinsic::abs, X, ConstantInt::getBool(I.getContext(), HasNSW));
Abs->takeName(&I);
return replaceInstUsesWith(I, Abs);
}
if (Instruction *Ext = narrowMathIfNoOverflow(I))
return Ext;
if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I))
return Res;
// min(X, Y) * max(X, Y) => X * Y.
if (match(&I, m_CombineOr(m_c_Mul(m_SMax(m_Value(X), m_Value(Y)),
m_c_SMin(m_Deferred(X), m_Deferred(Y))),
m_c_Mul(m_UMax(m_Value(X), m_Value(Y)),
m_c_UMin(m_Deferred(X), m_Deferred(Y))))))
return BinaryOperator::CreateWithCopiedFlags(Instruction::Mul, X, Y, &I);
// (mul Op0 Op1):
// if Log2(Op0) folds away ->
// (shl Op1, Log2(Op0))
// if Log2(Op1) folds away ->
// (shl Op0, Log2(Op1))
if (takeLog2(Builder, Op0, /*Depth*/ 0, /*AssumeNonZero*/ false,
/*DoFold*/ false)) {
Value *Res = takeLog2(Builder, Op0, /*Depth*/ 0, /*AssumeNonZero*/ false,
/*DoFold*/ true);
BinaryOperator *Shl = BinaryOperator::CreateShl(Op1, Res);
// We can only propegate nuw flag.
Shl->setHasNoUnsignedWrap(HasNUW);
return Shl;
}
if (takeLog2(Builder, Op1, /*Depth*/ 0, /*AssumeNonZero*/ false,
/*DoFold*/ false)) {
Value *Res = takeLog2(Builder, Op1, /*Depth*/ 0, /*AssumeNonZero*/ false,
/*DoFold*/ true);
BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, Res);
// We can only propegate nuw flag.
Shl->setHasNoUnsignedWrap(HasNUW);
return Shl;
}
bool Changed = false;
if (!HasNSW && willNotOverflowSignedMul(Op0, Op1, I)) {
Changed = true;
I.setHasNoSignedWrap(true);
}
if (!HasNUW && willNotOverflowUnsignedMul(Op0, Op1, I)) {
Changed = true;
I.setHasNoUnsignedWrap(true);
}
return Changed ? &I : nullptr;
}
Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
BinaryOperator::BinaryOps Opcode = I.getOpcode();
assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
"Expected fmul or fdiv");
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Value *X, *Y;
// -X * -Y --> X * Y
// -X / -Y --> X / Y
if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
// fabs(X) * fabs(X) -> X * X
// fabs(X) / fabs(X) -> X / X
if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
// fabs(X) * fabs(Y) --> fabs(X * Y)
// fabs(X) / fabs(Y) --> fabs(X / Y)
if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
(Op0->hasOneUse() || Op1->hasOneUse())) {
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
Builder.setFastMathFlags(I.getFastMathFlags());
Value *XY = Builder.CreateBinOp(Opcode, X, Y);
Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
Fabs->takeName(&I);
return replaceInstUsesWith(I, Fabs);
}
return nullptr;
}
Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
if (Value *V = simplifyFMulInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (SimplifyAssociativeOrCommutative(I))
return &I;
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *Phi = foldBinopWithPhiOperands(I))
return Phi;
if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
return FoldedMul;
if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
return replaceInstUsesWith(I, FoldedMul);
if (Instruction *R = foldFPSignBitOps(I))
return R;
// X * -1.0 --> -X
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (match(Op1, m_SpecificFP(-1.0)))
return UnaryOperator::CreateFNegFMF(Op0, &I);
// With no-nans: X * 0.0 --> copysign(0.0, X)
if (I.hasNoNaNs() && match(Op1, m_PosZeroFP())) {
CallInst *CopySign = Builder.CreateIntrinsic(Intrinsic::copysign,
{I.getType()}, {Op1, Op0}, &I);
return replaceInstUsesWith(I, CopySign);
}
// -X * C --> X * -C
Value *X, *Y;
Constant *C;
if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
return BinaryOperator::CreateFMulFMF(X, NegC, &I);
// (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
return replaceInstUsesWith(I, V);
if (I.hasAllowReassoc()) {
// Reassociate constant RHS with another constant to form constant
// expression.
if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
Constant *C1;
if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
// (C1 / X) * C --> (C * C1) / X
Constant *CC1 =
ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL);
if (CC1 && CC1->isNormalFP())
return BinaryOperator::CreateFDivFMF(CC1, X, &I);
}
if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
// (X / C1) * C --> X * (C / C1)
Constant *CDivC1 =
ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C1, DL);
if (CDivC1 && CDivC1->isNormalFP())
return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
// If the constant was a denormal, try reassociating differently.
// (X / C1) * C --> X / (C1 / C)
Constant *C1DivC =
ConstantFoldBinaryOpOperands(Instruction::FDiv, C1, C, DL);
if (C1DivC && Op0->hasOneUse() && C1DivC->isNormalFP())
return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
}
// We do not need to match 'fadd C, X' and 'fsub X, C' because they are
// canonicalized to 'fadd X, C'. Distributing the multiply may allow
// further folds and (X * C) + C2 is 'fma'.
if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
// (X + C1) * C --> (X * C) + (C * C1)
if (Constant *CC1 = ConstantFoldBinaryOpOperands(
Instruction::FMul, C, C1, DL)) {
Value *XC = Builder.CreateFMulFMF(X, C, &I);
return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
}
}
if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
// (C1 - X) * C --> (C * C1) - (X * C)
if (Constant *CC1 = ConstantFoldBinaryOpOperands(
Instruction::FMul, C, C1, DL)) {
Value *XC = Builder.CreateFMulFMF(X, C, &I);
return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
}
}
}
Value *Z;
if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
m_Value(Z)))) {
// Sink division: (X / Y) * Z --> (X * Z) / Y
Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
}
// sqrt(X) * sqrt(Y) -> sqrt(X * Y)
// nnan disallows the possibility of returning a number if both operands are
// negative (in that case, we should return NaN).
if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) &&
match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) {
Value *XY = Builder.CreateFMulFMF(X, Y, &I);
Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
return replaceInstUsesWith(I, Sqrt);
}
// The following transforms are done irrespective of the number of uses
// for the expression "1.0/sqrt(X)".
// 1) 1.0/sqrt(X) * X -> X/sqrt(X)
// 2) X * 1.0/sqrt(X) -> X/sqrt(X)
// We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
// has the necessary (reassoc) fast-math-flags.
if (I.hasNoSignedZeros() &&
match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
match(Y, m_Sqrt(m_Value(X))) && Op1 == X)
return BinaryOperator::CreateFDivFMF(X, Y, &I);
if (I.hasNoSignedZeros() &&
match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
match(Y, m_Sqrt(m_Value(X))) && Op0 == X)
return BinaryOperator::CreateFDivFMF(X, Y, &I);
// Like the similar transform in instsimplify, this requires 'nsz' because
// sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
Op0->hasNUses(2)) {
// Peek through fdiv to find squaring of square root:
// (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) {
Value *XX = Builder.CreateFMulFMF(X, X, &I);
return BinaryOperator::CreateFDivFMF(XX, Y, &I);
}
// (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) {
Value *XX = Builder.CreateFMulFMF(X, X, &I);
return BinaryOperator::CreateFDivFMF(Y, XX, &I);
}
}
// pow(X, Y) * X --> pow(X, Y+1)
// X * pow(X, Y) --> pow(X, Y+1)
if (match(&I, m_c_FMul(m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Value(X),
m_Value(Y))),
m_Deferred(X)))) {
Value *Y1 =
Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), 1.0), &I);
Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, Y1, &I);
return replaceInstUsesWith(I, Pow);
}
if (I.isOnlyUserOfAnyOperand()) {
// pow(X, Y) * pow(X, Z) -> pow(X, Y + Z)
if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
return replaceInstUsesWith(I, NewPow);
}
// pow(X, Y) * pow(Z, Y) -> pow(X * Z, Y)
if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
match(Op1, m_Intrinsic<Intrinsic::pow>(m_Value(Z), m_Specific(Y)))) {
auto *XZ = Builder.CreateFMulFMF(X, Z, &I);
auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, XZ, Y, &I);
return replaceInstUsesWith(I, NewPow);
}
// powi(x, y) * powi(x, z) -> powi(x, y + z)
if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
Y->getType() == Z->getType()) {
auto *YZ = Builder.CreateAdd(Y, Z);
auto *NewPow = Builder.CreateIntrinsic(
Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
return replaceInstUsesWith(I, NewPow);
}
// exp(X) * exp(Y) -> exp(X + Y)
if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
Value *XY = Builder.CreateFAddFMF(X, Y, &I);
Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
return replaceInstUsesWith(I, Exp);
}
// exp2(X) * exp2(Y) -> exp2(X + Y)
if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
Value *XY = Builder.CreateFAddFMF(X, Y, &I);
Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
return replaceInstUsesWith(I, Exp2);
}
}
// (X*Y) * X => (X*X) * Y where Y != X
// The purpose is two-fold:
// 1) to form a power expression (of X).
// 2) potentially shorten the critical path: After transformation, the
// latency of the instruction Y is amortized by the expression of X*X,
// and therefore Y is in a "less critical" position compared to what it
// was before the transformation.
if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
Op1 != Y) {
Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
return BinaryOperator::CreateFMulFMF(XX, Y, &I);
}
if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
Op0 != Y) {
Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
return BinaryOperator::CreateFMulFMF(XX, Y, &I);
}
}
// log2(X * 0.5) * Y = log2(X) * Y - Y
if (I.isFast()) {
IntrinsicInst *Log2 = nullptr;
if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
Log2 = cast<IntrinsicInst>(Op0);
Y = Op1;
}
if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
Log2 = cast<IntrinsicInst>(Op1);
Y = Op0;
}
if (Log2) {
Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
}
}
// Simplify FMUL recurrences starting with 0.0 to 0.0 if nnan and nsz are set.
// Given a phi node with entry value as 0 and it used in fmul operation,
// we can replace fmul with 0 safely and eleminate loop operation.
PHINode *PN = nullptr;
Value *Start = nullptr, *Step = nullptr;
if (matchSimpleRecurrence(&I, PN, Start, Step) && I.hasNoNaNs() &&
I.hasNoSignedZeros() && match(Start, m_Zero()))
return replaceInstUsesWith(I, Start);
// minimun(X, Y) * maximum(X, Y) => X * Y.
if (match(&I,
m_c_FMul(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)),
m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X),
m_Deferred(Y))))) {
BinaryOperator *Result = BinaryOperator::CreateFMulFMF(X, Y, &I);
// We cannot preserve ninf if nnan flag is not set.
// If X is NaN and Y is Inf then in original program we had NaN * NaN,
// while in optimized version NaN * Inf and this is a poison with ninf flag.
if (!Result->hasNoNaNs())
Result->setHasNoInfs(false);
return Result;
}
return nullptr;
}
/// Fold a divide or remainder with a select instruction divisor when one of the
/// select operands is zero. In that case, we can use the other select operand
/// because div/rem by zero is undefined.
bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
if (!SI)
return false;
int NonNullOperand;
if (match(SI->getTrueValue(), m_Zero()))
// div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
NonNullOperand = 2;
else if (match(SI->getFalseValue(), m_Zero()))
// div/rem X, (Cond ? Y : 0) -> div/rem X, Y
NonNullOperand = 1;
else
return false;
// Change the div/rem to use 'Y' instead of the select.
replaceOperand(I, 1, SI->getOperand(NonNullOperand));
// Okay, we know we replace the operand of the div/rem with 'Y' with no
// problem. However, the select, or the condition of the select may have
// multiple uses. Based on our knowledge that the operand must be non-zero,
// propagate the known value for the select into other uses of it, and
// propagate a known value of the condition into its other users.
// If the select and condition only have a single use, don't bother with this,
// early exit.
Value *SelectCond = SI->getCondition();
if (SI->use_empty() && SelectCond->hasOneUse())
return true;
// Scan the current block backward, looking for other uses of SI.
BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
Type *CondTy = SelectCond->getType();
while (BBI != BBFront) {
--BBI;
// If we found an instruction that we can't assume will return, so
// information from below it cannot be propagated above it.
if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
break;
// Replace uses of the select or its condition with the known values.
for (Use &Op : BBI->operands()) {
if (Op == SI) {
replaceUse(Op, SI->getOperand(NonNullOperand));
Worklist.push(&*BBI);
} else if (Op == SelectCond) {
replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
: ConstantInt::getFalse(CondTy));
Worklist.push(&*BBI);
}
}
// If we past the instruction, quit looking for it.
if (&*BBI == SI)
SI = nullptr;
if (&*BBI == SelectCond)
SelectCond = nullptr;
// If we ran out of things to eliminate, break out of the loop.
if (!SelectCond && !SI)
break;
}
return true;
}
/// True if the multiply can not be expressed in an int this size.
static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
bool IsSigned) {
bool Overflow;
Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
return Overflow;
}
/// True if C1 is a multiple of C2. Quotient contains C1/C2.
static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
bool IsSigned) {
assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
// Bail if we will divide by zero.
if (C2.isZero())
return false;
// Bail if we would divide INT_MIN by -1.
if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes())
return false;
APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
if (IsSigned)
APInt::sdivrem(C1, C2, Quotient, Remainder);
else
APInt::udivrem(C1, C2, Quotient, Remainder);
return Remainder.isMinValue();
}
static Instruction *foldIDivShl(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
assert((I.getOpcode() == Instruction::SDiv ||
I.getOpcode() == Instruction::UDiv) &&
"Expected integer divide");
bool IsSigned = I.getOpcode() == Instruction::SDiv;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Type *Ty = I.getType();
Instruction *Ret = nullptr;
Value *X, *Y, *Z;
// With appropriate no-wrap constraints, remove a common factor in the
// dividend and divisor that is disguised as a left-shifted value.
if (match(Op1, m_Shl(m_Value(X), m_Value(Z))) &&
match(Op0, m_c_Mul(m_Specific(X), m_Value(Y)))) {
// Both operands must have the matching no-wrap for this kind of division.
auto *Mul = cast<OverflowingBinaryOperator>(Op0);
auto *Shl = cast<OverflowingBinaryOperator>(Op1);
bool HasNUW = Mul->hasNoUnsignedWrap() && Shl->hasNoUnsignedWrap();
bool HasNSW = Mul->hasNoSignedWrap() && Shl->hasNoSignedWrap();
// (X * Y) u/ (X << Z) --> Y u>> Z
if (!IsSigned && HasNUW)
Ret = BinaryOperator::CreateLShr(Y, Z);
// (X * Y) s/ (X << Z) --> Y s/ (1 << Z)
if (IsSigned && HasNSW && (Op0->hasOneUse() || Op1->hasOneUse())) {
Value *Shl = Builder.CreateShl(ConstantInt::get(Ty, 1), Z);
Ret = BinaryOperator::CreateSDiv(Y, Shl);
}
}
// With appropriate no-wrap constraints, remove a common factor in the
// dividend and divisor that is disguised as a left-shift amount.
if (match(Op0, m_Shl(m_Value(X), m_Value(Z))) &&
match(Op1, m_Shl(m_Value(Y), m_Specific(Z)))) {
auto *Shl0 = cast<OverflowingBinaryOperator>(Op0);
auto *Shl1 = cast<OverflowingBinaryOperator>(Op1);
// For unsigned div, we need 'nuw' on both shifts or
// 'nsw' on both shifts + 'nuw' on the dividend.
// (X << Z) / (Y << Z) --> X / Y
if (!IsSigned &&
((Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap()) ||
(Shl0->hasNoUnsignedWrap() && Shl0->hasNoSignedWrap() &&
Shl1->hasNoSignedWrap())))
Ret = BinaryOperator::CreateUDiv(X, Y);
// For signed div, we need 'nsw' on both shifts + 'nuw' on the divisor.
// (X << Z) / (Y << Z) --> X / Y
if (IsSigned && Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap() &&
Shl1->hasNoUnsignedWrap())
Ret = BinaryOperator::CreateSDiv(X, Y);
}
if (!Ret)
return nullptr;
Ret->setIsExact(I.isExact());
return Ret;
}
/// This function implements the transforms common to both integer division
/// instructions (udiv and sdiv). It is called by the visitors to those integer
/// division instructions.
/// Common integer divide transforms
Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
if (Instruction *Phi = foldBinopWithPhiOperands(I))
return Phi;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
bool IsSigned = I.getOpcode() == Instruction::SDiv;
Type *Ty = I.getType();
// The RHS is known non-zero.
if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
return replaceOperand(I, 1, V);
// Handle cases involving: [su]div X, (select Cond, Y, Z)
// This does not apply for fdiv.
if (simplifyDivRemOfSelectWithZeroOp(I))
return &I;
// If the divisor is a select-of-constants, try to constant fold all div ops:
// C / (select Cond, TrueC, FalseC) --> select Cond, (C / TrueC), (C / FalseC)
// TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
if (match(Op0, m_ImmConstant()) &&
match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
/*FoldWithMultiUse*/ true))
return R;
}
const APInt *C2;
if (match(Op1, m_APInt(C2))) {
Value *X;
const APInt *C1;
// (X / C1) / C2 -> X / (C1*C2)
if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
(!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
return BinaryOperator::Create(I.getOpcode(), X,
ConstantInt::get(Ty, Product));
}
APInt Quotient(C2->getBitWidth(), /*val=*/0ULL, IsSigned);
if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
(!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
// (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
ConstantInt::get(Ty, Quotient));
NewDiv->setIsExact(I.isExact());
return NewDiv;
}
// (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
ConstantInt::get(Ty, Quotient));
auto *OBO = cast<OverflowingBinaryOperator>(Op0);
Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
return Mul;
}
}
if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
C1->ult(C1->getBitWidth() - 1)) ||
(!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) &&
C1->ult(C1->getBitWidth()))) {
APInt C1Shifted = APInt::getOneBitSet(
C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue()));
// (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
auto *BO = BinaryOperator::Create(I.getOpcode(), X,
ConstantInt::get(Ty, Quotient));
BO->setIsExact(I.isExact());
return BO;
}
// (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
ConstantInt::get(Ty, Quotient));
auto *OBO = cast<OverflowingBinaryOperator>(Op0);
Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
return Mul;
}
}
// Distribute div over add to eliminate a matching div/mul pair:
// ((X * C2) + C1) / C2 --> X + C1/C2
// We need a multiple of the divisor for a signed add constant, but
// unsigned is fine with any constant pair.
if (IsSigned &&
match(Op0, m_NSWAdd(m_NSWMul(m_Value(X), m_SpecificInt(*C2)),
m_APInt(C1))) &&
isMultiple(*C1, *C2, Quotient, IsSigned)) {
return BinaryOperator::CreateNSWAdd(X, ConstantInt::get(Ty, Quotient));
}
if (!IsSigned &&
match(Op0, m_NUWAdd(m_NUWMul(m_Value(X), m_SpecificInt(*C2)),
m_APInt(C1)))) {
return BinaryOperator::CreateNUWAdd(X,
ConstantInt::get(Ty, C1->udiv(*C2)));
}
if (!C2->isZero()) // avoid X udiv 0
if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
return FoldedDiv;
}
if (match(Op0, m_One())) {
assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
if (IsSigned) {
// 1 / 0 --> undef ; 1 / 1 --> 1 ; 1 / -1 --> -1 ; 1 / anything else --> 0
// (Op1 + 1) u< 3 ? Op1 : 0
// Op1 must be frozen because we are increasing its number of uses.
Value *F1 = Builder.CreateFreeze(Op1, Op1->getName() + ".fr");
Value *Inc = Builder.CreateAdd(F1, Op0);
Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
return SelectInst::Create(Cmp, F1, ConstantInt::get(Ty, 0));
} else {
// If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
// result is one, otherwise it's zero.
return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
}
}
// See if we can fold away this div instruction.
if (SimplifyDemandedInstructionBits(I))
return &I;
// (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
Value *X, *Z;
if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
(!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
return BinaryOperator::Create(I.getOpcode(), X, Op1);
// (X << Y) / X -> 1 << Y
Value *Y;
if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
// X / (X * Y) -> 1 / Y if the multiplication does not overflow.
if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
replaceOperand(I, 0, ConstantInt::get(Ty, 1));
replaceOperand(I, 1, Y);
return &I;
}
}
// (X << Z) / (X * Y) -> (1 << Z) / Y
// TODO: Handle sdiv.
if (!IsSigned && Op1->hasOneUse() &&
match(Op0, m_NUWShl(m_Value(X), m_Value(Z))) &&
match(Op1, m_c_Mul(m_Specific(X), m_Value(Y))))
if (cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap()) {
Instruction *NewDiv = BinaryOperator::CreateUDiv(
Builder.CreateShl(ConstantInt::get(Ty, 1), Z, "", /*NUW*/ true), Y);
NewDiv->setIsExact(I.isExact());
return NewDiv;
}
if (Instruction *R = foldIDivShl(I, Builder))
return R;
// With the appropriate no-wrap constraint, remove a multiply by the divisor
// after peeking through another divide:
// ((Op1 * X) / Y) / Op1 --> X / Y
if (match(Op0, m_BinOp(I.getOpcode(), m_c_Mul(m_Specific(Op1), m_Value(X)),
m_Value(Y)))) {
auto *InnerDiv = cast<PossiblyExactOperator>(Op0);
auto *Mul = cast<OverflowingBinaryOperator>(InnerDiv->getOperand(0));
Instruction *NewDiv = nullptr;
if (!IsSigned && Mul->hasNoUnsignedWrap())
NewDiv = BinaryOperator::CreateUDiv(X, Y);
else if (IsSigned && Mul->hasNoSignedWrap())
NewDiv = BinaryOperator::CreateSDiv(X, Y);
// Exact propagates only if both of the original divides are exact.
if (NewDiv) {
NewDiv->setIsExact(I.isExact() && InnerDiv->isExact());
return NewDiv;
}
}
return nullptr;
}
static const unsigned MaxDepth = 6;
// Take the exact integer log2 of the value. If DoFold is true, create the
// actual instructions, otherwise return a non-null dummy value. Return nullptr
// on failure.
static Value *takeLog2(IRBuilderBase &Builder, Value *Op, unsigned Depth,
bool AssumeNonZero, bool DoFold) {
auto IfFold = [DoFold](function_ref<Value *()> Fn) {
if (!DoFold)
return reinterpret_cast<Value *>(-1);
return Fn();
};
// FIXME: assert that Op1 isn't/doesn't contain undef.
// log2(2^C) -> C
if (match(Op, m_Power2()))
return IfFold([&]() {
Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op));
if (!C)
llvm_unreachable("Failed to constant fold udiv -> logbase2");
return C;
});
// The remaining tests are all recursive, so bail out if we hit the limit.
if (Depth++ == MaxDepth)
return nullptr;
// log2(zext X) -> zext log2(X)
// FIXME: Require one use?
Value *X, *Y;
if (match(Op, m_ZExt(m_Value(X))))
if (Value *LogX = takeLog2(Builder, X, Depth, AssumeNonZero, DoFold))
return IfFold([&]() { return Builder.CreateZExt(LogX, Op->getType()); });
// log2(X << Y) -> log2(X) + Y
// FIXME: Require one use unless X is 1?
if (match(Op, m_Shl(m_Value(X), m_Value(Y)))) {
auto *BO = cast<OverflowingBinaryOperator>(Op);
// nuw will be set if the `shl` is trivially non-zero.
if (AssumeNonZero || BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap())
if (Value *LogX = takeLog2(Builder, X, Depth, AssumeNonZero, DoFold))
return IfFold([&]() { return Builder.CreateAdd(LogX, Y); });
}
// log2(Cond ? X : Y) -> Cond ? log2(X) : log2(Y)
// FIXME: missed optimization: if one of the hands of select is/contains
// undef, just directly pick the other one.
// FIXME: can both hands contain undef?
// FIXME: Require one use?
if (SelectInst *SI = dyn_cast<SelectInst>(Op))
if (Value *LogX = takeLog2(Builder, SI->getOperand(1), Depth,
AssumeNonZero, DoFold))
if (Value *LogY = takeLog2(Builder, SI->getOperand(2), Depth,
AssumeNonZero, DoFold))
return IfFold([&]() {
return Builder.CreateSelect(SI->getOperand(0), LogX, LogY);
});
// log2(umin(X, Y)) -> umin(log2(X), log2(Y))
// log2(umax(X, Y)) -> umax(log2(X), log2(Y))
auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op);
if (MinMax && MinMax->hasOneUse() && !MinMax->isSigned()) {
// Use AssumeNonZero as false here. Otherwise we can hit case where
// log2(umax(X, Y)) != umax(log2(X), log2(Y)) (because overflow).
if (Value *LogX = takeLog2(Builder, MinMax->getLHS(), Depth,
/*AssumeNonZero*/ false, DoFold))
if (Value *LogY = takeLog2(Builder, MinMax->getRHS(), Depth,
/*AssumeNonZero*/ false, DoFold))
return IfFold([&]() {
return Builder.CreateBinaryIntrinsic(MinMax->getIntrinsicID(), LogX,
LogY);
});
}
return nullptr;
}
/// If we have zero-extended operands of an unsigned div or rem, we may be able
/// to narrow the operation (sink the zext below the math).
static Instruction *narrowUDivURem(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
Instruction::BinaryOps Opcode = I.getOpcode();
Value *N = I.getOperand(0);
Value *D = I.getOperand(1);
Type *Ty = I.getType();
Value *X, *Y;
if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
// udiv (zext X), (zext Y) --> zext (udiv X, Y)
// urem (zext X), (zext Y) --> zext (urem X, Y)
Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
return new ZExtInst(NarrowOp, Ty);
}
Constant *C;
if (isa<Instruction>(N) && match(N, m_OneUse(m_ZExt(m_Value(X)))) &&
match(D, m_Constant(C))) {
// If the constant is the same in the smaller type, use the narrow version.
Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
if (ConstantExpr::getZExt(TruncC, Ty) != C)
return nullptr;
// udiv (zext X), C --> zext (udiv X, C')
// urem (zext X), C --> zext (urem X, C')
return new ZExtInst(Builder.CreateBinOp(Opcode, X, TruncC), Ty);
}
if (isa<Instruction>(D) && match(D, m_OneUse(m_ZExt(m_Value(X)))) &&
match(N, m_Constant(C))) {
// If the constant is the same in the smaller type, use the narrow version.
Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
if (ConstantExpr::getZExt(TruncC, Ty) != C)
return nullptr;
// udiv C, (zext X) --> zext (udiv C', X)
// urem C, (zext X) --> zext (urem C', X)
return new ZExtInst(Builder.CreateBinOp(Opcode, TruncC, X), Ty);
}
return nullptr;
}
Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
if (Value *V = simplifyUDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
// Handle the integer div common cases
if (Instruction *Common = commonIDivTransforms(I))
return Common;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Value *X;
const APInt *C1, *C2;
if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
// (X lshr C1) udiv C2 --> X udiv (C2 << C1)
bool Overflow;
APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
if (!Overflow) {
bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
BinaryOperator *BO = BinaryOperator::CreateUDiv(
X, ConstantInt::get(X->getType(), C2ShlC1));
if (IsExact)
BO->setIsExact();
return BO;
}
}
// Op0 / C where C is large (negative) --> zext (Op0 >= C)
// TODO: Could use isKnownNegative() to handle non-constant values.
Type *Ty = I.getType();
if (match(Op1, m_Negative())) {
Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
return CastInst::CreateZExtOrBitCast(Cmp, Ty);
}
// Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
return CastInst::CreateZExtOrBitCast(Cmp, Ty);
}
if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
return NarrowDiv;
// If the udiv operands are non-overflowing multiplies with a common operand,
// then eliminate the common factor:
// (A * B) / (A * X) --> B / X (and commuted variants)
// TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
// TODO: If -reassociation handled this generally, we could remove this.
Value *A, *B;
if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
return BinaryOperator::CreateUDiv(B, X);
if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
return BinaryOperator::CreateUDiv(A, X);
}
// Look through a right-shift to find the common factor:
// ((Op1 *nuw A) >> B) / Op1 --> A >> B
if (match(Op0, m_LShr(m_NUWMul(m_Specific(Op1), m_Value(A)), m_Value(B))) ||
match(Op0, m_LShr(m_NUWMul(m_Value(A), m_Specific(Op1)), m_Value(B)))) {
Instruction *Lshr = BinaryOperator::CreateLShr(A, B);
if (I.isExact() && cast<PossiblyExactOperator>(Op0)->isExact())
Lshr->setIsExact();
return Lshr;
}
// Op1 udiv Op2 -> Op1 lshr log2(Op2), if log2() folds away.
if (takeLog2(Builder, Op1, /*Depth*/ 0, /*AssumeNonZero*/ true,
/*DoFold*/ false)) {
Value *Res = takeLog2(Builder, Op1, /*Depth*/ 0,
/*AssumeNonZero*/ true, /*DoFold*/ true);
return replaceInstUsesWith(
I, Builder.CreateLShr(Op0, Res, I.getName(), I.isExact()));
}
return nullptr;
}
Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
if (Value *V = simplifySDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
// Handle the integer div common cases
if (Instruction *Common = commonIDivTransforms(I))
return Common;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Type *Ty = I.getType();
Value *X;
// sdiv Op0, -1 --> -Op0
// sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
if (match(Op1, m_AllOnes()) ||
(match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
return BinaryOperator::CreateNeg(Op0);
// X / INT_MIN --> X == INT_MIN
if (match(Op1, m_SignMask()))
return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
if (I.isExact()) {
// sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative
if (match(Op1, m_Power2()) && match(Op1, m_NonNegative())) {
Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
return BinaryOperator::CreateExactAShr(Op0, C);
}
// sdiv exact X, (1<<ShAmt) --> ashr exact X, ShAmt (if shl is non-negative)
Value *ShAmt;
if (match(Op1, m_NSWShl(m_One(), m_Value(ShAmt))))
return BinaryOperator::CreateExactAShr(Op0, ShAmt);
// sdiv exact X, -1<<C --> -(ashr exact X, C)
if (match(Op1, m_NegatedPower2())) {
Constant *NegPow2C = ConstantExpr::getNeg(cast<Constant>(Op1));
Constant *C = ConstantExpr::getExactLogBase2(NegPow2C);
Value *Ashr = Builder.CreateAShr(Op0, C, I.getName() + ".neg", true);
return BinaryOperator::CreateNeg(Ashr);
}
}
const APInt *Op1C;
if (match(Op1, m_APInt(Op1C))) {
// If the dividend is sign-extended and the constant divisor is small enough
// to fit in the source type, shrink the division to the narrower type:
// (sext X) sdiv C --> sext (X sdiv C)
Value *Op0Src;
if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
Op0Src->getType()->getScalarSizeInBits() >=
Op1C->getSignificantBits()) {
// In the general case, we need to make sure that the dividend is not the
// minimum signed value because dividing that by -1 is UB. But here, we
// know that the -1 divisor case is already handled above.
Constant *NarrowDivisor =
ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
return new SExtInst(NarrowOp, Ty);
}
// -X / C --> X / -C (if the negation doesn't overflow).
// TODO: This could be enhanced to handle arbitrary vector constants by
// checking if all elements are not the min-signed-val.
if (!Op1C->isMinSignedValue() &&
match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
BO->setIsExact(I.isExact());
return BO;
}
}
// -X / Y --> -(X / Y)
Value *Y;
if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
return BinaryOperator::CreateNSWNeg(
Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
// abs(X) / X --> X > -1 ? 1 : -1
// X / abs(X) --> X > -1 ? 1 : -1
if (match(&I, m_c_BinOp(
m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
m_Deferred(X)))) {
Value *Cond = Builder.CreateIsNotNeg(X);
return SelectInst::Create(Cond, ConstantInt::get(Ty, 1),
ConstantInt::getAllOnesValue(Ty));
}
KnownBits KnownDividend = computeKnownBits(Op0, 0, &I);
if (!I.isExact() &&
(match(Op1, m_Power2(Op1C)) || match(Op1, m_NegatedPower2(Op1C))) &&
KnownDividend.countMinTrailingZeros() >= Op1C->countr_zero()) {
I.setIsExact();
return &I;
}
if (KnownDividend.isNonNegative()) {
// If both operands are unsigned, turn this into a udiv.
if (isKnownNonNegative(Op1, DL, 0, &AC, &I, &DT)) {
auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
BO->setIsExact(I.isExact());
return BO;
}
if (match(Op1, m_NegatedPower2())) {
// X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
// -> -(X udiv (1 << C)) -> -(X u>> C)
Constant *CNegLog2 = ConstantExpr::getExactLogBase2(
ConstantExpr::getNeg(cast<Constant>(Op1)));
Value *Shr = Builder.CreateLShr(Op0, CNegLog2, I.getName(), I.isExact());
return BinaryOperator::CreateNeg(Shr);
}
if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
// X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
// Safe because the only negative value (1 << Y) can take on is
// INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
// the sign bit set.
auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
BO->setIsExact(I.isExact());
return BO;
}
}
return nullptr;
}
/// Remove negation and try to convert division into multiplication.
Instruction *InstCombinerImpl::foldFDivConstantDivisor(BinaryOperator &I) {
Constant *C;
if (!match(I.getOperand(1), m_Constant(C)))
return nullptr;
// -X / C --> X / -C
Value *X;
const DataLayout &DL = I.getModule()->getDataLayout();
if (match(I.getOperand(0), m_FNeg(m_Value(X))))
if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
return BinaryOperator::CreateFDivFMF(X, NegC, &I);
// nnan X / +0.0 -> copysign(inf, X)
if (I.hasNoNaNs() && match(I.getOperand(1), m_Zero())) {
IRBuilder<> B(&I);
// TODO: nnan nsz X / -0.0 -> copysign(inf, X)
CallInst *CopySign = B.CreateIntrinsic(
Intrinsic::copysign, {C->getType()},
{ConstantFP::getInfinity(I.getType()), I.getOperand(0)}, &I);
CopySign->takeName(&I);
return replaceInstUsesWith(I, CopySign);
}
// If the constant divisor has an exact inverse, this is always safe. If not,
// then we can still create a reciprocal if fast-math-flags allow it and the
// constant is a regular number (not zero, infinite, or denormal).
if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
return nullptr;
// Disallow denormal constants because we don't know what would happen
// on all targets.
// TODO: Use Intrinsic::canonicalize or let function attributes tell us that
// denorms are flushed?
auto *RecipC = ConstantFoldBinaryOpOperands(
Instruction::FDiv, ConstantFP::get(I.getType(), 1.0), C, DL);
if (!RecipC || !RecipC->isNormalFP())
return nullptr;
// X / C --> X * (1 / C)
return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
}
/// Remove negation and try to reassociate constant math.
static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
Constant *C;
if (!match(I.getOperand(0), m_Constant(C)))
return nullptr;
// C / -X --> -C / X
Value *X;
const DataLayout &DL = I.getModule()->getDataLayout();
if (match(I.getOperand(1), m_FNeg(m_Value(X))))
if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
return BinaryOperator::CreateFDivFMF(NegC, X, &I);
if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
return nullptr;
// Try to reassociate C / X expressions where X includes another constant.
Constant *C2, *NewC = nullptr;
if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
// C / (X * C2) --> (C / C2) / X
NewC = ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C2, DL);
} else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
// C / (X / C2) --> (C * C2) / X
NewC = ConstantFoldBinaryOpOperands(Instruction::FMul, C, C2, DL);
}
// Disallow denormal constants because we don't know what would happen
// on all targets.
// TODO: Use Intrinsic::canonicalize or let function attributes tell us that
// denorms are flushed?
if (!NewC || !NewC->isNormalFP())
return nullptr;
return BinaryOperator::CreateFDivFMF(NewC, X, &I);
}
/// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
static Instruction *foldFDivPowDivisor(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
auto *II = dyn_cast<IntrinsicInst>(Op1);
if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
!I.hasAllowReciprocal())
return nullptr;
// Z / pow(X, Y) --> Z * pow(X, -Y)
// Z / exp{2}(Y) --> Z * exp{2}(-Y)
// In the general case, this creates an extra instruction, but fmul allows
// for better canonicalization and optimization than fdiv.
Intrinsic::ID IID = II->getIntrinsicID();
SmallVector<Value *> Args;
switch (IID) {
case Intrinsic::pow:
Args.push_back(II->getArgOperand(0));
Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
break;
case Intrinsic::powi: {
// Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
// That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
// dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
// non-standard results, so this corner case should be acceptable if the
// code rules out INF values.
if (!I.hasNoInfs())
return nullptr;
Args.push_back(II->getArgOperand(0));
Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()};
Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I);
return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
}
case Intrinsic::exp:
case Intrinsic::exp2:
Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
break;
default:
return nullptr;
}
Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
}
Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
Module *M = I.getModule();
if (Value *V = simplifyFDivInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *Phi = foldBinopWithPhiOperands(I))
return Phi;
if (Instruction *R = foldFDivConstantDivisor(I))
return R;
if (Instruction *R = foldFDivConstantDividend(I))
return R;
if (Instruction *R = foldFPSignBitOps(I))
return R;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (isa<Constant>(Op0))
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
if (isa<Constant>(Op1))
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
Value *X, *Y;
if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
(!isa<Constant>(Y) || !isa<Constant>(Op1))) {
// (X / Y) / Z => X / (Y * Z)
Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
return BinaryOperator::CreateFDivFMF(X, YZ, &I);
}
if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
(!isa<Constant>(Y) || !isa<Constant>(Op0))) {
// Z / (X / Y) => (Y * Z) / X
Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
return BinaryOperator::CreateFDivFMF(YZ, X, &I);
}
// Z / (1.0 / Y) => (Y * Z)
//
// This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
// m_OneUse check is avoided because even in the case of the multiple uses
// for 1.0/Y, the number of instructions remain the same and a division is
// replaced by a multiplication.
if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
}
if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
// sin(X) / cos(X) -> tan(X)
// cos(X) / sin(X) -> 1/tan(X) (cotangent)
Value *X;
bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
bool IsCot =
!IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
if ((IsTan || IsCot) && hasFloatFn(M, &TLI, I.getType(), LibFunc_tan,
LibFunc_tanf, LibFunc_tanl)) {
IRBuilder<> B(&I);
IRBuilder<>::FastMathFlagGuard FMFGuard(B);
B.setFastMathFlags(I.getFastMathFlags());
AttributeList Attrs =
cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
LibFunc_tanl, B, Attrs);
if (IsCot)
Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
return replaceInstUsesWith(I, Res);
}
}
// X / (X * Y) --> 1.0 / Y
// Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
// We can ignore the possibility that X is infinity because INF/INF is NaN.
Value *X, *Y;
if (I.hasNoNaNs() && I.hasAllowReassoc() &&
match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
replaceOperand(I, 1, Y);
return &I;
}
// X / fabs(X) -> copysign(1.0, X)
// fabs(X) / X -> copysign(1.0, X)
if (I.hasNoNaNs() && I.hasNoInfs() &&
(match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
Value *V = Builder.CreateBinaryIntrinsic(
Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
return replaceInstUsesWith(I, V);
}
if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
return Mul;
// pow(X, Y) / X --> pow(X, Y-1)
if (I.hasAllowReassoc() &&
match(Op0, m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Specific(Op1),
m_Value(Y))))) {
Value *Y1 =
Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), -1.0), &I);
Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, Op1, Y1, &I);
return replaceInstUsesWith(I, Pow);
}
return nullptr;
}
// Variety of transform for:
// (urem/srem (mul X, Y), (mul X, Z))
// (urem/srem (shl X, Y), (shl X, Z))
// (urem/srem (shl Y, X), (shl Z, X))
// NB: The shift cases are really just extensions of the mul case. We treat
// shift as Val * (1 << Amt).
static Instruction *simplifyIRemMulShl(BinaryOperator &I,
InstCombinerImpl &IC) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *X = nullptr;
APInt Y, Z;
bool ShiftByX = false;
// If V is not nullptr, it will be matched using m_Specific.
auto MatchShiftOrMulXC = [](Value *Op, Value *&V, APInt &C) -> bool {
const APInt *Tmp = nullptr;
if ((!V && match(Op, m_Mul(m_Value(V), m_APInt(Tmp)))) ||
(V && match(Op, m_Mul(m_Specific(V), m_APInt(Tmp)))))
C = *Tmp;
else if ((!V && match(Op, m_Shl(m_Value(V), m_APInt(Tmp)))) ||
(V && match(Op, m_Shl(m_Specific(V), m_APInt(Tmp)))))
C = APInt(Tmp->getBitWidth(), 1) << *Tmp;
if (Tmp != nullptr)
return true;
// Reset `V` so we don't start with specific value on next match attempt.
V = nullptr;
return false;
};
auto MatchShiftCX = [](Value *Op, APInt &C, Value *&V) -> bool {
const APInt *Tmp = nullptr;
if ((!V && match(Op, m_Shl(m_APInt(Tmp), m_Value(V)))) ||
(V && match(Op, m_Shl(m_APInt(Tmp), m_Specific(V))))) {
C = *Tmp;
return true;
}
// Reset `V` so we don't start with specific value on next match attempt.
V = nullptr;
return false;
};
if (MatchShiftOrMulXC(Op0, X, Y) && MatchShiftOrMulXC(Op1, X, Z)) {
// pass
} else if (MatchShiftCX(Op0, Y, X) && MatchShiftCX(Op1, Z, X)) {
ShiftByX = true;
} else {
return nullptr;
}
bool IsSRem = I.getOpcode() == Instruction::SRem;
OverflowingBinaryOperator *BO0 = cast<OverflowingBinaryOperator>(Op0);
// TODO: We may be able to deduce more about nsw/nuw of BO0/BO1 based on Y >=
// Z or Z >= Y.
bool BO0HasNSW = BO0->hasNoSignedWrap();
bool BO0HasNUW = BO0->hasNoUnsignedWrap();
bool BO0NoWrap = IsSRem ? BO0HasNSW : BO0HasNUW;
APInt RemYZ = IsSRem ? Y.srem(Z) : Y.urem(Z);
// (rem (mul nuw/nsw X, Y), (mul X, Z))
// if (rem Y, Z) == 0
// -> 0
if (RemYZ.isZero() && BO0NoWrap)
return IC.replaceInstUsesWith(I, ConstantInt::getNullValue(I.getType()));
// Helper function to emit either (RemSimplificationC << X) or
// (RemSimplificationC * X) depending on whether we matched Op0/Op1 as
// (shl V, X) or (mul V, X) respectively.
auto CreateMulOrShift =
[&](const APInt &RemSimplificationC) -> BinaryOperator * {
Value *RemSimplification =
ConstantInt::get(I.getType(), RemSimplificationC);
return ShiftByX ? BinaryOperator::CreateShl(RemSimplification, X)
: BinaryOperator::CreateMul(X, RemSimplification);
};
OverflowingBinaryOperator *BO1 = cast<OverflowingBinaryOperator>(Op1);
bool BO1HasNSW = BO1->hasNoSignedWrap();
bool BO1HasNUW = BO1->hasNoUnsignedWrap();
bool BO1NoWrap = IsSRem ? BO1HasNSW : BO1HasNUW;
// (rem (mul X, Y), (mul nuw/nsw X, Z))
// if (rem Y, Z) == Y
// -> (mul nuw/nsw X, Y)
if (RemYZ == Y && BO1NoWrap) {
BinaryOperator *BO = CreateMulOrShift(Y);
// Copy any overflow flags from Op0.
BO->setHasNoSignedWrap(IsSRem || BO0HasNSW);
BO->setHasNoUnsignedWrap(!IsSRem || BO0HasNUW);
return BO;
}
// (rem (mul nuw/nsw X, Y), (mul {nsw} X, Z))
// if Y >= Z
// -> (mul {nuw} nsw X, (rem Y, Z))
if (Y.uge(Z) && (IsSRem ? (BO0HasNSW && BO1HasNSW) : BO0HasNUW)) {
BinaryOperator *BO = CreateMulOrShift(RemYZ);
BO->setHasNoSignedWrap();
BO->setHasNoUnsignedWrap(BO0HasNUW);
return BO;
}
return nullptr;
}
/// This function implements the transforms common to both integer remainder
/// instructions (urem and srem). It is called by the visitors to those integer
/// remainder instructions.
/// Common integer remainder transforms
Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
if (Instruction *Phi = foldBinopWithPhiOperands(I))
return Phi;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// The RHS is known non-zero.
if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
return replaceOperand(I, 1, V);
// Handle cases involving: rem X, (select Cond, Y, Z)
if (simplifyDivRemOfSelectWithZeroOp(I))
return &I;
// If the divisor is a select-of-constants, try to constant fold all rem ops:
// C % (select Cond, TrueC, FalseC) --> select Cond, (C % TrueC), (C % FalseC)
// TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
if (match(Op0, m_ImmConstant()) &&
match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
/*FoldWithMultiUse*/ true))
return R;
}
if (isa<Constant>(Op1)) {
if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
} else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
const APInt *Op1Int;
if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
(I.getOpcode() == Instruction::URem ||
!Op1Int->isMinSignedValue())) {
// foldOpIntoPhi will speculate instructions to the end of the PHI's
// predecessor blocks, so do this only if we know the srem or urem
// will not fault.
if (Instruction *NV = foldOpIntoPhi(I, PN))
return NV;
}
}
// See if we can fold away this rem instruction.
if (SimplifyDemandedInstructionBits(I))
return &I;
}
}
if (Instruction *R = simplifyIRemMulShl(I, *this))
return R;
return nullptr;
}
Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
if (Value *V = simplifyURemInst(I.getOperand(0), I.getOperand(1),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *common = commonIRemTransforms(I))
return common;
if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
return NarrowRem;
// X urem Y -> X and Y-1, where Y is a power of 2,
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Type *Ty = I.getType();
if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
// This may increase instruction count, we don't enforce that Y is a
// constant.
Constant *N1 = Constant::getAllOnesValue(Ty);
Value *Add = Builder.CreateAdd(Op1, N1);
return BinaryOperator::CreateAnd(Op0, Add);
}
// 1 urem X -> zext(X != 1)
if (match(Op0, m_One())) {
Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
return CastInst::CreateZExtOrBitCast(Cmp, Ty);
}
// Op0 urem C -> Op0 < C ? Op0 : Op0 - C, where C >= signbit.
// Op0 must be frozen because we are increasing its number of uses.
if (match(Op1, m_Negative())) {
Value *F0 = Builder.CreateFreeze(Op0, Op0->getName() + ".fr");
Value *Cmp = Builder.CreateICmpULT(F0, Op1);
Value *Sub = Builder.CreateSub(F0, Op1);
return SelectInst::Create(Cmp, F0, Sub);
}
// If the divisor is a sext of a boolean, then the divisor must be max
// unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
// max unsigned value. In that case, the remainder is 0:
// urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
Value *X;
if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
Value *FrozenOp0 = Builder.CreateFreeze(Op0, Op0->getName() + ".frozen");
Value *Cmp =
Builder.CreateICmpEQ(FrozenOp0, ConstantInt::getAllOnesValue(Ty));
return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), FrozenOp0);
}
// For "(X + 1) % Op1" and if (X u< Op1) => (X + 1) == Op1 ? 0 : X + 1 .
if (match(Op0, m_Add(m_Value(X), m_One()))) {
Value *Val =
simplifyICmpInst(ICmpInst::ICMP_ULT, X, Op1, SQ.getWithInstruction(&I));
if (Val && match(Val, m_One())) {
Value *FrozenOp0 = Builder.CreateFreeze(Op0, Op0->getName() + ".frozen");
Value *Cmp = Builder.CreateICmpEQ(FrozenOp0, Op1);
return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), FrozenOp0);
}
}
return nullptr;
}
Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
if (Value *V = simplifySRemInst(I.getOperand(0), I.getOperand(1),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
// Handle the integer rem common cases
if (Instruction *Common = commonIRemTransforms(I))
return Common;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
{
const APInt *Y;
// X % -Y -> X % Y
if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
}
// -X srem Y --> -(X srem Y)
Value *X, *Y;
if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
// If the sign bits of both operands are zero (i.e. we can prove they are
// unsigned inputs), turn this into a urem.
APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
MaskedValueIsZero(Op0, Mask, 0, &I)) {
// X srem Y -> X urem Y, iff X and Y don't have sign bit set
return BinaryOperator::CreateURem(Op0, Op1, I.getName());
}
// If it's a constant vector, flip any negative values positive.
if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
Constant *C = cast<Constant>(Op1);
unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
bool hasNegative = false;
bool hasMissing = false;
for (unsigned i = 0; i != VWidth; ++i) {
Constant *Elt = C->getAggregateElement(i);
if (!Elt) {
hasMissing = true;
break;
}
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
if (RHS->isNegative())
hasNegative = true;
}
if (hasNegative && !hasMissing) {
SmallVector<Constant *, 16> Elts(VWidth);
for (unsigned i = 0; i != VWidth; ++i) {
Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
if (RHS->isNegative())
Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
}
}
Constant *NewRHSV = ConstantVector::get(Elts);
if (NewRHSV != C) // Don't loop on -MININT
return replaceOperand(I, 1, NewRHSV);
}
}
return nullptr;
}
Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
if (Value *V = simplifyFRemInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *Phi = foldBinopWithPhiOperands(I))
return Phi;
return nullptr;
}
|