1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
//===-- BlockCoverageInference.cpp - Minimal Execution Coverage -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Our algorithm works by first identifying a subset of nodes that must always
// be instrumented. We call these nodes ambiguous because knowing the coverage
// of all remaining nodes is not enough to infer their coverage status.
//
// In general a node v is ambiguous if there exists two entry-to-terminal paths
// P_1 and P_2 such that:
// 1. v not in P_1 but P_1 visits a predecessor of v, and
// 2. v not in P_2 but P_2 visits a successor of v.
//
// If a node v is not ambiguous, then if condition 1 fails, we can infer v’s
// coverage from the coverage of its predecessors, or if condition 2 fails, we
// can infer v’s coverage from the coverage of its successors.
//
// Sadly, there are example CFGs where it is not possible to infer all nodes
// from the ambiguous nodes alone. Our algorithm selects a minimum number of
// extra nodes to add to the ambiguous nodes to form a valid instrumentation S.
//
// Details on this algorithm can be found in https://arxiv.org/abs/2208.13907
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/BlockCoverageInference.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CRC.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
#define DEBUG_TYPE "pgo-block-coverage"
STATISTIC(NumFunctions, "Number of total functions that BCI has processed");
STATISTIC(NumIneligibleFunctions,
"Number of functions for which BCI cannot run on");
STATISTIC(NumBlocks, "Number of total basic blocks that BCI has processed");
STATISTIC(NumInstrumentedBlocks,
"Number of basic blocks instrumented for coverage");
BlockCoverageInference::BlockCoverageInference(const Function &F,
bool ForceInstrumentEntry)
: F(F), ForceInstrumentEntry(ForceInstrumentEntry) {
findDependencies();
assert(!ForceInstrumentEntry || shouldInstrumentBlock(F.getEntryBlock()));
++NumFunctions;
for (auto &BB : F) {
++NumBlocks;
if (shouldInstrumentBlock(BB))
++NumInstrumentedBlocks;
}
}
BlockCoverageInference::BlockSet
BlockCoverageInference::getDependencies(const BasicBlock &BB) const {
assert(BB.getParent() == &F);
BlockSet Dependencies;
auto It = PredecessorDependencies.find(&BB);
if (It != PredecessorDependencies.end())
Dependencies.set_union(It->second);
It = SuccessorDependencies.find(&BB);
if (It != SuccessorDependencies.end())
Dependencies.set_union(It->second);
return Dependencies;
}
uint64_t BlockCoverageInference::getInstrumentedBlocksHash() const {
JamCRC JC;
uint64_t Index = 0;
for (auto &BB : F) {
if (shouldInstrumentBlock(BB)) {
uint8_t Data[8];
support::endian::write64le(Data, Index);
JC.update(Data);
}
Index++;
}
return JC.getCRC();
}
bool BlockCoverageInference::shouldInstrumentBlock(const BasicBlock &BB) const {
assert(BB.getParent() == &F);
auto It = PredecessorDependencies.find(&BB);
if (It != PredecessorDependencies.end() && It->second.size())
return false;
It = SuccessorDependencies.find(&BB);
if (It != SuccessorDependencies.end() && It->second.size())
return false;
return true;
}
void BlockCoverageInference::findDependencies() {
assert(PredecessorDependencies.empty() && SuccessorDependencies.empty());
// Empirical analysis shows that this algorithm finishes within 5 seconds for
// functions with fewer than 1.5K blocks.
if (F.hasFnAttribute(Attribute::NoReturn) || F.size() > 1500) {
++NumIneligibleFunctions;
return;
}
SmallVector<const BasicBlock *, 4> TerminalBlocks;
for (auto &BB : F)
if (succ_empty(&BB))
TerminalBlocks.push_back(&BB);
// Traverse the CFG backwards from the terminal blocks to make sure every
// block can reach some terminal block. Otherwise this algorithm will not work
// and we must fall back to instrumenting every block.
df_iterator_default_set<const BasicBlock *> Visited;
for (auto *BB : TerminalBlocks)
for (auto *N : inverse_depth_first_ext(BB, Visited))
(void)N;
if (F.size() != Visited.size()) {
++NumIneligibleFunctions;
return;
}
// The current implementation for computing `PredecessorDependencies` and
// `SuccessorDependencies` runs in quadratic time with respect to the number
// of basic blocks. While we do have a more complicated linear time algorithm
// in https://arxiv.org/abs/2208.13907 we do not know if it will give a
// significant speedup in practice given that most functions tend to be
// relatively small in size for intended use cases.
auto &EntryBlock = F.getEntryBlock();
for (auto &BB : F) {
// The set of blocks that are reachable while avoiding BB.
BlockSet ReachableFromEntry, ReachableFromTerminal;
getReachableAvoiding(EntryBlock, BB, /*IsForward=*/true,
ReachableFromEntry);
for (auto *TerminalBlock : TerminalBlocks)
getReachableAvoiding(*TerminalBlock, BB, /*IsForward=*/false,
ReachableFromTerminal);
auto Preds = predecessors(&BB);
bool HasSuperReachablePred = llvm::any_of(Preds, [&](auto *Pred) {
return ReachableFromEntry.count(Pred) &&
ReachableFromTerminal.count(Pred);
});
if (!HasSuperReachablePred)
for (auto *Pred : Preds)
if (ReachableFromEntry.count(Pred))
PredecessorDependencies[&BB].insert(Pred);
auto Succs = successors(&BB);
bool HasSuperReachableSucc = llvm::any_of(Succs, [&](auto *Succ) {
return ReachableFromEntry.count(Succ) &&
ReachableFromTerminal.count(Succ);
});
if (!HasSuperReachableSucc)
for (auto *Succ : Succs)
if (ReachableFromTerminal.count(Succ))
SuccessorDependencies[&BB].insert(Succ);
}
if (ForceInstrumentEntry) {
// Force the entry block to be instrumented by clearing the blocks it can
// infer coverage from.
PredecessorDependencies[&EntryBlock].clear();
SuccessorDependencies[&EntryBlock].clear();
}
// Construct a graph where blocks are connected if there is a mutual
// dependency between them. This graph has a special property that it contains
// only paths.
DenseMap<const BasicBlock *, BlockSet> AdjacencyList;
for (auto &BB : F) {
for (auto *Succ : successors(&BB)) {
if (SuccessorDependencies[&BB].count(Succ) &&
PredecessorDependencies[Succ].count(&BB)) {
AdjacencyList[&BB].insert(Succ);
AdjacencyList[Succ].insert(&BB);
}
}
}
// Given a path with at least one node, return the next node on the path.
auto getNextOnPath = [&](BlockSet &Path) -> const BasicBlock * {
assert(Path.size());
auto &Neighbors = AdjacencyList[Path.back()];
if (Path.size() == 1) {
// This is the first node on the path, return its neighbor.
assert(Neighbors.size() == 1);
return Neighbors.front();
} else if (Neighbors.size() == 2) {
// This is the middle of the path, find the neighbor that is not on the
// path already.
assert(Path.size() >= 2);
return Path.count(Neighbors[0]) ? Neighbors[1] : Neighbors[0];
}
// This is the end of the path.
assert(Neighbors.size() == 1);
return nullptr;
};
// Remove all cycles in the inferencing graph.
for (auto &BB : F) {
if (AdjacencyList[&BB].size() == 1) {
// We found the head of some path.
BlockSet Path;
Path.insert(&BB);
while (const BasicBlock *Next = getNextOnPath(Path))
Path.insert(Next);
LLVM_DEBUG(dbgs() << "Found path: " << getBlockNames(Path) << "\n");
// Remove these nodes from the graph so we don't discover this path again.
for (auto *BB : Path)
AdjacencyList[BB].clear();
// Finally, remove the cycles.
if (PredecessorDependencies[Path.front()].size()) {
for (auto *BB : Path)
if (BB != Path.back())
SuccessorDependencies[BB].clear();
} else {
for (auto *BB : Path)
if (BB != Path.front())
PredecessorDependencies[BB].clear();
}
}
}
LLVM_DEBUG(dump(dbgs()));
}
void BlockCoverageInference::getReachableAvoiding(const BasicBlock &Start,
const BasicBlock &Avoid,
bool IsForward,
BlockSet &Reachable) const {
df_iterator_default_set<const BasicBlock *> Visited;
Visited.insert(&Avoid);
if (IsForward) {
auto Range = depth_first_ext(&Start, Visited);
Reachable.insert(Range.begin(), Range.end());
} else {
auto Range = inverse_depth_first_ext(&Start, Visited);
Reachable.insert(Range.begin(), Range.end());
}
}
namespace llvm {
class DotFuncBCIInfo {
private:
const BlockCoverageInference *BCI;
const DenseMap<const BasicBlock *, bool> *Coverage;
public:
DotFuncBCIInfo(const BlockCoverageInference *BCI,
const DenseMap<const BasicBlock *, bool> *Coverage)
: BCI(BCI), Coverage(Coverage) {}
const Function &getFunction() { return BCI->F; }
bool isInstrumented(const BasicBlock *BB) const {
return BCI->shouldInstrumentBlock(*BB);
}
bool isCovered(const BasicBlock *BB) const {
return Coverage && Coverage->lookup(BB);
}
bool isDependent(const BasicBlock *Src, const BasicBlock *Dest) const {
return BCI->getDependencies(*Src).count(Dest);
}
};
template <>
struct GraphTraits<DotFuncBCIInfo *> : public GraphTraits<const BasicBlock *> {
static NodeRef getEntryNode(DotFuncBCIInfo *Info) {
return &(Info->getFunction().getEntryBlock());
}
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
using nodes_iterator = pointer_iterator<Function::const_iterator>;
static nodes_iterator nodes_begin(DotFuncBCIInfo *Info) {
return nodes_iterator(Info->getFunction().begin());
}
static nodes_iterator nodes_end(DotFuncBCIInfo *Info) {
return nodes_iterator(Info->getFunction().end());
}
static size_t size(DotFuncBCIInfo *Info) {
return Info->getFunction().size();
}
};
template <>
struct DOTGraphTraits<DotFuncBCIInfo *> : public DefaultDOTGraphTraits {
DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
static std::string getGraphName(DotFuncBCIInfo *Info) {
return "BCI CFG for " + Info->getFunction().getName().str();
}
std::string getNodeLabel(const BasicBlock *Node, DotFuncBCIInfo *Info) {
return Node->getName().str();
}
std::string getEdgeAttributes(const BasicBlock *Src, const_succ_iterator I,
DotFuncBCIInfo *Info) {
const BasicBlock *Dest = *I;
if (Info->isDependent(Src, Dest))
return "color=red";
if (Info->isDependent(Dest, Src))
return "color=blue";
return "";
}
std::string getNodeAttributes(const BasicBlock *Node, DotFuncBCIInfo *Info) {
std::string Result;
if (Info->isInstrumented(Node))
Result += "style=filled,fillcolor=gray";
if (Info->isCovered(Node))
Result += std::string(Result.empty() ? "" : ",") + "color=red";
return Result;
}
};
} // namespace llvm
void BlockCoverageInference::viewBlockCoverageGraph(
const DenseMap<const BasicBlock *, bool> *Coverage) const {
DotFuncBCIInfo Info(this, Coverage);
WriteGraph(&Info, "BCI", false,
"Block Coverage Inference for " + F.getName());
}
void BlockCoverageInference::dump(raw_ostream &OS) const {
OS << "Minimal block coverage for function \'" << F.getName()
<< "\' (Instrumented=*)\n";
for (auto &BB : F) {
OS << (shouldInstrumentBlock(BB) ? "* " : " ") << BB.getName() << "\n";
auto It = PredecessorDependencies.find(&BB);
if (It != PredecessorDependencies.end() && It->second.size())
OS << " PredDeps = " << getBlockNames(It->second) << "\n";
It = SuccessorDependencies.find(&BB);
if (It != SuccessorDependencies.end() && It->second.size())
OS << " SuccDeps = " << getBlockNames(It->second) << "\n";
}
OS << " Instrumented Blocks Hash = 0x"
<< Twine::utohexstr(getInstrumentedBlocksHash()) << "\n";
}
std::string
BlockCoverageInference::getBlockNames(ArrayRef<const BasicBlock *> BBs) {
std::string Result;
raw_string_ostream OS(Result);
OS << "[";
if (!BBs.empty()) {
OS << BBs.front()->getName();
BBs = BBs.drop_front();
}
for (auto *BB : BBs)
OS << ", " << BB->getName();
OS << "]";
return OS.str();
}
|