File: CodeLayout.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (1044 lines) | stat: -rw-r--r-- 37,764 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
//===- CodeLayout.cpp - Implementation of code layout algorithms ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The file implements "cache-aware" layout algorithms of basic blocks and
// functions in a binary.
//
// The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
// optimizing jump locality and thus processor I-cache utilization. This is
// achieved via increasing the number of fall-through jumps and co-locating
// frequently executed nodes together. The name follows the underlying
// optimization problem, Extended-TSP, which is a generalization of classical
// (maximum) Traveling Salesmen Problem.
//
// The algorithm is a greedy heuristic that works with chains (ordered lists)
// of basic blocks. Initially all chains are isolated basic blocks. On every
// iteration, we pick a pair of chains whose merging yields the biggest increase
// in the ExtTSP score, which models how i-cache "friendly" a specific chain is.
// A pair of chains giving the maximum gain is merged into a new chain. The
// procedure stops when there is only one chain left, or when merging does not
// increase ExtTSP. In the latter case, the remaining chains are sorted by
// density in the decreasing order.
//
// An important aspect is the way two chains are merged. Unlike earlier
// algorithms (e.g., based on the approach of Pettis-Hansen), two
// chains, X and Y, are first split into three, X1, X2, and Y. Then we
// consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
// X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
// This improves the quality of the final result (the search space is larger)
// while keeping the implementation sufficiently fast.
//
// Reference:
//   * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
//     IEEE Transactions on Computers, 2020
//     https://arxiv.org/abs/1809.04676
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/CodeLayout.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"

#include <cmath>

using namespace llvm;
#define DEBUG_TYPE "code-layout"

namespace llvm {
cl::opt<bool> EnableExtTspBlockPlacement(
    "enable-ext-tsp-block-placement", cl::Hidden, cl::init(false),
    cl::desc("Enable machine block placement based on the ext-tsp model, "
             "optimizing I-cache utilization."));

cl::opt<bool> ApplyExtTspWithoutProfile(
    "ext-tsp-apply-without-profile",
    cl::desc("Whether to apply ext-tsp placement for instances w/o profile"),
    cl::init(true), cl::Hidden);
} // namespace llvm

// Algorithm-specific params. The values are tuned for the best performance
// of large-scale front-end bound binaries.
static cl::opt<double> ForwardWeightCond(
    "ext-tsp-forward-weight-cond", cl::ReallyHidden, cl::init(0.1),
    cl::desc("The weight of conditional forward jumps for ExtTSP value"));

static cl::opt<double> ForwardWeightUncond(
    "ext-tsp-forward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
    cl::desc("The weight of unconditional forward jumps for ExtTSP value"));

static cl::opt<double> BackwardWeightCond(
    "ext-tsp-backward-weight-cond", cl::ReallyHidden, cl::init(0.1),
    cl::desc("The weight of conditional backward jumps for ExtTSP value"));

static cl::opt<double> BackwardWeightUncond(
    "ext-tsp-backward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
    cl::desc("The weight of unconditional backward jumps for ExtTSP value"));

static cl::opt<double> FallthroughWeightCond(
    "ext-tsp-fallthrough-weight-cond", cl::ReallyHidden, cl::init(1.0),
    cl::desc("The weight of conditional fallthrough jumps for ExtTSP value"));

static cl::opt<double> FallthroughWeightUncond(
    "ext-tsp-fallthrough-weight-uncond", cl::ReallyHidden, cl::init(1.05),
    cl::desc("The weight of unconditional fallthrough jumps for ExtTSP value"));

static cl::opt<unsigned> ForwardDistance(
    "ext-tsp-forward-distance", cl::ReallyHidden, cl::init(1024),
    cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP"));

static cl::opt<unsigned> BackwardDistance(
    "ext-tsp-backward-distance", cl::ReallyHidden, cl::init(640),
    cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP"));

// The maximum size of a chain created by the algorithm. The size is bounded
// so that the algorithm can efficiently process extremely large instance.
static cl::opt<unsigned>
    MaxChainSize("ext-tsp-max-chain-size", cl::ReallyHidden, cl::init(4096),
                 cl::desc("The maximum size of a chain to create."));

// The maximum size of a chain for splitting. Larger values of the threshold
// may yield better quality at the cost of worsen run-time.
static cl::opt<unsigned> ChainSplitThreshold(
    "ext-tsp-chain-split-threshold", cl::ReallyHidden, cl::init(128),
    cl::desc("The maximum size of a chain to apply splitting"));

// The option enables splitting (large) chains along in-coming and out-going
// jumps. This typically results in a better quality.
static cl::opt<bool> EnableChainSplitAlongJumps(
    "ext-tsp-enable-chain-split-along-jumps", cl::ReallyHidden, cl::init(true),
    cl::desc("The maximum size of a chain to apply splitting"));

namespace {

// Epsilon for comparison of doubles.
constexpr double EPS = 1e-8;

// Compute the Ext-TSP score for a given jump.
double jumpExtTSPScore(uint64_t JumpDist, uint64_t JumpMaxDist, uint64_t Count,
                       double Weight) {
  if (JumpDist > JumpMaxDist)
    return 0;
  double Prob = 1.0 - static_cast<double>(JumpDist) / JumpMaxDist;
  return Weight * Prob * Count;
}

// Compute the Ext-TSP score for a jump between a given pair of blocks,
// using their sizes, (estimated) addresses and the jump execution count.
double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
                   uint64_t Count, bool IsConditional) {
  // Fallthrough
  if (SrcAddr + SrcSize == DstAddr) {
    return jumpExtTSPScore(0, 1, Count,
                           IsConditional ? FallthroughWeightCond
                                         : FallthroughWeightUncond);
  }
  // Forward
  if (SrcAddr + SrcSize < DstAddr) {
    const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
    return jumpExtTSPScore(Dist, ForwardDistance, Count,
                           IsConditional ? ForwardWeightCond
                                         : ForwardWeightUncond);
  }
  // Backward
  const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
  return jumpExtTSPScore(Dist, BackwardDistance, Count,
                         IsConditional ? BackwardWeightCond
                                       : BackwardWeightUncond);
}

/// A type of merging two chains, X and Y. The former chain is split into
/// X1 and X2 and then concatenated with Y in the order specified by the type.
enum class MergeTypeT : int { X_Y, Y_X, X1_Y_X2, Y_X2_X1, X2_X1_Y };

/// The gain of merging two chains, that is, the Ext-TSP score of the merge
/// together with the corresponding merge 'type' and 'offset'.
struct MergeGainT {
  explicit MergeGainT() = default;
  explicit MergeGainT(double Score, size_t MergeOffset, MergeTypeT MergeType)
      : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}

  double score() const { return Score; }

  size_t mergeOffset() const { return MergeOffset; }

  MergeTypeT mergeType() const { return MergeType; }

  void setMergeType(MergeTypeT Ty) { MergeType = Ty; }

  // Returns 'true' iff Other is preferred over this.
  bool operator<(const MergeGainT &Other) const {
    return (Other.Score > EPS && Other.Score > Score + EPS);
  }

  // Update the current gain if Other is preferred over this.
  void updateIfLessThan(const MergeGainT &Other) {
    if (*this < Other)
      *this = Other;
  }

private:
  double Score{-1.0};
  size_t MergeOffset{0};
  MergeTypeT MergeType{MergeTypeT::X_Y};
};

struct JumpT;
struct ChainT;
struct ChainEdge;

/// A node in the graph, typically corresponding to a basic block in the CFG or
/// a function in the call graph.
struct NodeT {
  NodeT(const NodeT &) = delete;
  NodeT(NodeT &&) = default;
  NodeT &operator=(const NodeT &) = delete;
  NodeT &operator=(NodeT &&) = default;

  explicit NodeT(size_t Index, uint64_t Size, uint64_t EC)
      : Index(Index), Size(Size), ExecutionCount(EC) {}

  bool isEntry() const { return Index == 0; }

  // The total execution count of outgoing jumps.
  uint64_t outCount() const;

  // The total execution count of incoming jumps.
  uint64_t inCount() const;

  // The original index of the node in graph.
  size_t Index{0};
  // The index of the node in the current chain.
  size_t CurIndex{0};
  // The size of the node in the binary.
  uint64_t Size{0};
  // The execution count of the node in the profile data.
  uint64_t ExecutionCount{0};
  // The current chain of the node.
  ChainT *CurChain{nullptr};
  // The offset of the node in the current chain.
  mutable uint64_t EstimatedAddr{0};
  // Forced successor of the node in the graph.
  NodeT *ForcedSucc{nullptr};
  // Forced predecessor of the node in the graph.
  NodeT *ForcedPred{nullptr};
  // Outgoing jumps from the node.
  std::vector<JumpT *> OutJumps;
  // Incoming jumps to the node.
  std::vector<JumpT *> InJumps;
};

/// An arc in the graph, typically corresponding to a jump between two nodes.
struct JumpT {
  JumpT(const JumpT &) = delete;
  JumpT(JumpT &&) = default;
  JumpT &operator=(const JumpT &) = delete;
  JumpT &operator=(JumpT &&) = default;

  explicit JumpT(NodeT *Source, NodeT *Target, uint64_t ExecutionCount)
      : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {}

  // Source node of the jump.
  NodeT *Source;
  // Target node of the jump.
  NodeT *Target;
  // Execution count of the arc in the profile data.
  uint64_t ExecutionCount{0};
  // Whether the jump corresponds to a conditional branch.
  bool IsConditional{false};
  // The offset of the jump from the source node.
  uint64_t Offset{0};
};

/// A chain (ordered sequence) of nodes in the graph.
struct ChainT {
  ChainT(const ChainT &) = delete;
  ChainT(ChainT &&) = default;
  ChainT &operator=(const ChainT &) = delete;
  ChainT &operator=(ChainT &&) = default;

  explicit ChainT(uint64_t Id, NodeT *Node)
      : Id(Id), ExecutionCount(Node->ExecutionCount), Size(Node->Size),
        Nodes(1, Node) {}

  size_t numBlocks() const { return Nodes.size(); }

  double density() const { return static_cast<double>(ExecutionCount) / Size; }

  bool isEntry() const { return Nodes[0]->Index == 0; }

  bool isCold() const {
    for (NodeT *Node : Nodes) {
      if (Node->ExecutionCount > 0)
        return false;
    }
    return true;
  }

  ChainEdge *getEdge(ChainT *Other) const {
    for (auto It : Edges) {
      if (It.first == Other)
        return It.second;
    }
    return nullptr;
  }

  void removeEdge(ChainT *Other) {
    auto It = Edges.begin();
    while (It != Edges.end()) {
      if (It->first == Other) {
        Edges.erase(It);
        return;
      }
      It++;
    }
  }

  void addEdge(ChainT *Other, ChainEdge *Edge) {
    Edges.push_back(std::make_pair(Other, Edge));
  }

  void merge(ChainT *Other, const std::vector<NodeT *> &MergedBlocks) {
    Nodes = MergedBlocks;
    // Update the chain's data
    ExecutionCount += Other->ExecutionCount;
    Size += Other->Size;
    Id = Nodes[0]->Index;
    // Update the node's data
    for (size_t Idx = 0; Idx < Nodes.size(); Idx++) {
      Nodes[Idx]->CurChain = this;
      Nodes[Idx]->CurIndex = Idx;
    }
  }

  void mergeEdges(ChainT *Other);

  void clear() {
    Nodes.clear();
    Nodes.shrink_to_fit();
    Edges.clear();
    Edges.shrink_to_fit();
  }

  // Unique chain identifier.
  uint64_t Id;
  // Cached ext-tsp score for the chain.
  double Score{0};
  // The total execution count of the chain.
  uint64_t ExecutionCount{0};
  // The total size of the chain.
  uint64_t Size{0};
  // Nodes of the chain.
  std::vector<NodeT *> Nodes;
  // Adjacent chains and corresponding edges (lists of jumps).
  std::vector<std::pair<ChainT *, ChainEdge *>> Edges;
};

/// An edge in the graph representing jumps between two chains.
/// When nodes are merged into chains, the edges are combined too so that
/// there is always at most one edge between a pair of chains
struct ChainEdge {
  ChainEdge(const ChainEdge &) = delete;
  ChainEdge(ChainEdge &&) = default;
  ChainEdge &operator=(const ChainEdge &) = delete;
  ChainEdge &operator=(ChainEdge &&) = delete;

  explicit ChainEdge(JumpT *Jump)
      : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain),
        Jumps(1, Jump) {}

  ChainT *srcChain() const { return SrcChain; }

  ChainT *dstChain() const { return DstChain; }

  bool isSelfEdge() const { return SrcChain == DstChain; }

  const std::vector<JumpT *> &jumps() const { return Jumps; }

  void appendJump(JumpT *Jump) { Jumps.push_back(Jump); }

  void moveJumps(ChainEdge *Other) {
    Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
    Other->Jumps.clear();
    Other->Jumps.shrink_to_fit();
  }

  void changeEndpoint(ChainT *From, ChainT *To) {
    if (From == SrcChain)
      SrcChain = To;
    if (From == DstChain)
      DstChain = To;
  }

  bool hasCachedMergeGain(ChainT *Src, ChainT *Dst) const {
    return Src == SrcChain ? CacheValidForward : CacheValidBackward;
  }

  MergeGainT getCachedMergeGain(ChainT *Src, ChainT *Dst) const {
    return Src == SrcChain ? CachedGainForward : CachedGainBackward;
  }

  void setCachedMergeGain(ChainT *Src, ChainT *Dst, MergeGainT MergeGain) {
    if (Src == SrcChain) {
      CachedGainForward = MergeGain;
      CacheValidForward = true;
    } else {
      CachedGainBackward = MergeGain;
      CacheValidBackward = true;
    }
  }

  void invalidateCache() {
    CacheValidForward = false;
    CacheValidBackward = false;
  }

  void setMergeGain(MergeGainT Gain) { CachedGain = Gain; }

  MergeGainT getMergeGain() const { return CachedGain; }

  double gain() const { return CachedGain.score(); }

private:
  // Source chain.
  ChainT *SrcChain{nullptr};
  // Destination chain.
  ChainT *DstChain{nullptr};
  // Original jumps in the binary with corresponding execution counts.
  std::vector<JumpT *> Jumps;
  // Cached gain value for merging the pair of chains.
  MergeGainT CachedGain;

  // Cached gain values for merging the pair of chains. Since the gain of
  // merging (Src, Dst) and (Dst, Src) might be different, we store both values
  // here and a flag indicating which of the options results in a higher gain.
  // Cached gain values.
  MergeGainT CachedGainForward;
  MergeGainT CachedGainBackward;
  // Whether the cached value must be recomputed.
  bool CacheValidForward{false};
  bool CacheValidBackward{false};
};

uint64_t NodeT::outCount() const {
  uint64_t Count = 0;
  for (JumpT *Jump : OutJumps) {
    Count += Jump->ExecutionCount;
  }
  return Count;
}

uint64_t NodeT::inCount() const {
  uint64_t Count = 0;
  for (JumpT *Jump : InJumps) {
    Count += Jump->ExecutionCount;
  }
  return Count;
}

void ChainT::mergeEdges(ChainT *Other) {
  // Update edges adjacent to chain Other
  for (auto EdgeIt : Other->Edges) {
    ChainT *DstChain = EdgeIt.first;
    ChainEdge *DstEdge = EdgeIt.second;
    ChainT *TargetChain = DstChain == Other ? this : DstChain;
    ChainEdge *CurEdge = getEdge(TargetChain);
    if (CurEdge == nullptr) {
      DstEdge->changeEndpoint(Other, this);
      this->addEdge(TargetChain, DstEdge);
      if (DstChain != this && DstChain != Other) {
        DstChain->addEdge(this, DstEdge);
      }
    } else {
      CurEdge->moveJumps(DstEdge);
    }
    // Cleanup leftover edge
    if (DstChain != Other) {
      DstChain->removeEdge(Other);
    }
  }
}

using NodeIter = std::vector<NodeT *>::const_iterator;

/// A wrapper around three chains of nodes; it is used to avoid extra
/// instantiation of the vectors.
struct MergedChain {
  MergedChain(NodeIter Begin1, NodeIter End1, NodeIter Begin2 = NodeIter(),
              NodeIter End2 = NodeIter(), NodeIter Begin3 = NodeIter(),
              NodeIter End3 = NodeIter())
      : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
        End3(End3) {}

  template <typename F> void forEach(const F &Func) const {
    for (auto It = Begin1; It != End1; It++)
      Func(*It);
    for (auto It = Begin2; It != End2; It++)
      Func(*It);
    for (auto It = Begin3; It != End3; It++)
      Func(*It);
  }

  std::vector<NodeT *> getNodes() const {
    std::vector<NodeT *> Result;
    Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
                   std::distance(Begin3, End3));
    Result.insert(Result.end(), Begin1, End1);
    Result.insert(Result.end(), Begin2, End2);
    Result.insert(Result.end(), Begin3, End3);
    return Result;
  }

  const NodeT *getFirstNode() const { return *Begin1; }

private:
  NodeIter Begin1;
  NodeIter End1;
  NodeIter Begin2;
  NodeIter End2;
  NodeIter Begin3;
  NodeIter End3;
};

/// Merge two chains of nodes respecting a given 'type' and 'offset'.
///
/// If MergeType == 0, then the result is a concatenation of two chains.
/// Otherwise, the first chain is cut into two sub-chains at the offset,
/// and merged using all possible ways of concatenating three chains.
MergedChain mergeNodes(const std::vector<NodeT *> &X,
                       const std::vector<NodeT *> &Y, size_t MergeOffset,
                       MergeTypeT MergeType) {
  // Split the first chain, X, into X1 and X2
  NodeIter BeginX1 = X.begin();
  NodeIter EndX1 = X.begin() + MergeOffset;
  NodeIter BeginX2 = X.begin() + MergeOffset;
  NodeIter EndX2 = X.end();
  NodeIter BeginY = Y.begin();
  NodeIter EndY = Y.end();

  // Construct a new chain from the three existing ones
  switch (MergeType) {
  case MergeTypeT::X_Y:
    return MergedChain(BeginX1, EndX2, BeginY, EndY);
  case MergeTypeT::Y_X:
    return MergedChain(BeginY, EndY, BeginX1, EndX2);
  case MergeTypeT::X1_Y_X2:
    return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
  case MergeTypeT::Y_X2_X1:
    return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
  case MergeTypeT::X2_X1_Y:
    return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
  }
  llvm_unreachable("unexpected chain merge type");
}

/// The implementation of the ExtTSP algorithm.
class ExtTSPImpl {
public:
  ExtTSPImpl(const std::vector<uint64_t> &NodeSizes,
             const std::vector<uint64_t> &NodeCounts,
             const std::vector<EdgeCountT> &EdgeCounts)
      : NumNodes(NodeSizes.size()) {
    initialize(NodeSizes, NodeCounts, EdgeCounts);
  }

  /// Run the algorithm and return an optimized ordering of nodes.
  void run(std::vector<uint64_t> &Result) {
    // Pass 1: Merge nodes with their mutually forced successors
    mergeForcedPairs();

    // Pass 2: Merge pairs of chains while improving the ExtTSP objective
    mergeChainPairs();

    // Pass 3: Merge cold nodes to reduce code size
    mergeColdChains();

    // Collect nodes from all chains
    concatChains(Result);
  }

private:
  /// Initialize the algorithm's data structures.
  void initialize(const std::vector<uint64_t> &NodeSizes,
                  const std::vector<uint64_t> &NodeCounts,
                  const std::vector<EdgeCountT> &EdgeCounts) {
    // Initialize nodes
    AllNodes.reserve(NumNodes);
    for (uint64_t Idx = 0; Idx < NumNodes; Idx++) {
      uint64_t Size = std::max<uint64_t>(NodeSizes[Idx], 1ULL);
      uint64_t ExecutionCount = NodeCounts[Idx];
      // The execution count of the entry node is set to at least one
      if (Idx == 0 && ExecutionCount == 0)
        ExecutionCount = 1;
      AllNodes.emplace_back(Idx, Size, ExecutionCount);
    }

    // Initialize jumps between nodes
    SuccNodes.resize(NumNodes);
    PredNodes.resize(NumNodes);
    std::vector<uint64_t> OutDegree(NumNodes, 0);
    AllJumps.reserve(EdgeCounts.size());
    for (auto It : EdgeCounts) {
      uint64_t Pred = It.first.first;
      uint64_t Succ = It.first.second;
      OutDegree[Pred]++;
      // Ignore self-edges
      if (Pred == Succ)
        continue;

      SuccNodes[Pred].push_back(Succ);
      PredNodes[Succ].push_back(Pred);
      uint64_t ExecutionCount = It.second;
      if (ExecutionCount > 0) {
        NodeT &PredNode = AllNodes[Pred];
        NodeT &SuccNode = AllNodes[Succ];
        AllJumps.emplace_back(&PredNode, &SuccNode, ExecutionCount);
        SuccNode.InJumps.push_back(&AllJumps.back());
        PredNode.OutJumps.push_back(&AllJumps.back());
      }
    }
    for (JumpT &Jump : AllJumps) {
      assert(OutDegree[Jump.Source->Index] > 0);
      Jump.IsConditional = OutDegree[Jump.Source->Index] > 1;
    }

    // Initialize chains
    AllChains.reserve(NumNodes);
    HotChains.reserve(NumNodes);
    for (NodeT &Node : AllNodes) {
      AllChains.emplace_back(Node.Index, &Node);
      Node.CurChain = &AllChains.back();
      if (Node.ExecutionCount > 0) {
        HotChains.push_back(&AllChains.back());
      }
    }

    // Initialize chain edges
    AllEdges.reserve(AllJumps.size());
    for (NodeT &PredNode : AllNodes) {
      for (JumpT *Jump : PredNode.OutJumps) {
        NodeT *SuccNode = Jump->Target;
        ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain);
        // this edge is already present in the graph
        if (CurEdge != nullptr) {
          assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr);
          CurEdge->appendJump(Jump);
          continue;
        }
        // this is a new edge
        AllEdges.emplace_back(Jump);
        PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back());
        SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back());
      }
    }
  }

  /// For a pair of nodes, A and B, node B is the forced successor of A,
  /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
  /// to B are from A. Such nodes should be adjacent in the optimal ordering;
  /// the method finds and merges such pairs of nodes.
  void mergeForcedPairs() {
    // Find fallthroughs based on edge weights
    for (NodeT &Node : AllNodes) {
      if (SuccNodes[Node.Index].size() == 1 &&
          PredNodes[SuccNodes[Node.Index][0]].size() == 1 &&
          SuccNodes[Node.Index][0] != 0) {
        size_t SuccIndex = SuccNodes[Node.Index][0];
        Node.ForcedSucc = &AllNodes[SuccIndex];
        AllNodes[SuccIndex].ForcedPred = &Node;
      }
    }

    // There might be 'cycles' in the forced dependencies, since profile
    // data isn't 100% accurate. Typically this is observed in loops, when the
    // loop edges are the hottest successors for the basic blocks of the loop.
    // Break the cycles by choosing the node with the smallest index as the
    // head. This helps to keep the original order of the loops, which likely
    // have already been rotated in the optimized manner.
    for (NodeT &Node : AllNodes) {
      if (Node.ForcedSucc == nullptr || Node.ForcedPred == nullptr)
        continue;

      NodeT *SuccNode = Node.ForcedSucc;
      while (SuccNode != nullptr && SuccNode != &Node) {
        SuccNode = SuccNode->ForcedSucc;
      }
      if (SuccNode == nullptr)
        continue;
      // Break the cycle
      AllNodes[Node.ForcedPred->Index].ForcedSucc = nullptr;
      Node.ForcedPred = nullptr;
    }

    // Merge nodes with their fallthrough successors
    for (NodeT &Node : AllNodes) {
      if (Node.ForcedPred == nullptr && Node.ForcedSucc != nullptr) {
        const NodeT *CurBlock = &Node;
        while (CurBlock->ForcedSucc != nullptr) {
          const NodeT *NextBlock = CurBlock->ForcedSucc;
          mergeChains(Node.CurChain, NextBlock->CurChain, 0, MergeTypeT::X_Y);
          CurBlock = NextBlock;
        }
      }
    }
  }

  /// Merge pairs of chains while improving the ExtTSP objective.
  void mergeChainPairs() {
    /// Deterministically compare pairs of chains
    auto compareChainPairs = [](const ChainT *A1, const ChainT *B1,
                                const ChainT *A2, const ChainT *B2) {
      if (A1 != A2)
        return A1->Id < A2->Id;
      return B1->Id < B2->Id;
    };

    while (HotChains.size() > 1) {
      ChainT *BestChainPred = nullptr;
      ChainT *BestChainSucc = nullptr;
      MergeGainT BestGain;
      // Iterate over all pairs of chains
      for (ChainT *ChainPred : HotChains) {
        // Get candidates for merging with the current chain
        for (auto EdgeIt : ChainPred->Edges) {
          ChainT *ChainSucc = EdgeIt.first;
          ChainEdge *Edge = EdgeIt.second;
          // Ignore loop edges
          if (ChainPred == ChainSucc)
            continue;

          // Stop early if the combined chain violates the maximum allowed size
          if (ChainPred->numBlocks() + ChainSucc->numBlocks() >= MaxChainSize)
            continue;

          // Compute the gain of merging the two chains
          MergeGainT CurGain = getBestMergeGain(ChainPred, ChainSucc, Edge);
          if (CurGain.score() <= EPS)
            continue;

          if (BestGain < CurGain ||
              (std::abs(CurGain.score() - BestGain.score()) < EPS &&
               compareChainPairs(ChainPred, ChainSucc, BestChainPred,
                                 BestChainSucc))) {
            BestGain = CurGain;
            BestChainPred = ChainPred;
            BestChainSucc = ChainSucc;
          }
        }
      }

      // Stop merging when there is no improvement
      if (BestGain.score() <= EPS)
        break;

      // Merge the best pair of chains
      mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
                  BestGain.mergeType());
    }
  }

  /// Merge remaining nodes into chains w/o taking jump counts into
  /// consideration. This allows to maintain the original node order in the
  /// absence of profile data
  void mergeColdChains() {
    for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) {
      // Iterating in reverse order to make sure original fallthrough jumps are
      // merged first; this might be beneficial for code size.
      size_t NumSuccs = SuccNodes[SrcBB].size();
      for (size_t Idx = 0; Idx < NumSuccs; Idx++) {
        size_t DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1];
        ChainT *SrcChain = AllNodes[SrcBB].CurChain;
        ChainT *DstChain = AllNodes[DstBB].CurChain;
        if (SrcChain != DstChain && !DstChain->isEntry() &&
            SrcChain->Nodes.back()->Index == SrcBB &&
            DstChain->Nodes.front()->Index == DstBB &&
            SrcChain->isCold() == DstChain->isCold()) {
          mergeChains(SrcChain, DstChain, 0, MergeTypeT::X_Y);
        }
      }
    }
  }

  /// Compute the Ext-TSP score for a given node order and a list of jumps.
  double extTSPScore(const MergedChain &MergedBlocks,
                     const std::vector<JumpT *> &Jumps) const {
    if (Jumps.empty())
      return 0.0;
    uint64_t CurAddr = 0;
    MergedBlocks.forEach([&](const NodeT *Node) {
      Node->EstimatedAddr = CurAddr;
      CurAddr += Node->Size;
    });

    double Score = 0;
    for (JumpT *Jump : Jumps) {
      const NodeT *SrcBlock = Jump->Source;
      const NodeT *DstBlock = Jump->Target;
      Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
                             DstBlock->EstimatedAddr, Jump->ExecutionCount,
                             Jump->IsConditional);
    }
    return Score;
  }

  /// Compute the gain of merging two chains.
  ///
  /// The function considers all possible ways of merging two chains and
  /// computes the one having the largest increase in ExtTSP objective. The
  /// result is a pair with the first element being the gain and the second
  /// element being the corresponding merging type.
  MergeGainT getBestMergeGain(ChainT *ChainPred, ChainT *ChainSucc,
                              ChainEdge *Edge) const {
    if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) {
      return Edge->getCachedMergeGain(ChainPred, ChainSucc);
    }

    // Precompute jumps between ChainPred and ChainSucc
    auto Jumps = Edge->jumps();
    ChainEdge *EdgePP = ChainPred->getEdge(ChainPred);
    if (EdgePP != nullptr) {
      Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end());
    }
    assert(!Jumps.empty() && "trying to merge chains w/o jumps");

    // The object holds the best currently chosen gain of merging the two chains
    MergeGainT Gain = MergeGainT();

    /// Given a merge offset and a list of merge types, try to merge two chains
    /// and update Gain with a better alternative
    auto tryChainMerging = [&](size_t Offset,
                               const std::vector<MergeTypeT> &MergeTypes) {
      // Skip merging corresponding to concatenation w/o splitting
      if (Offset == 0 || Offset == ChainPred->Nodes.size())
        return;
      // Skip merging if it breaks Forced successors
      NodeT *Node = ChainPred->Nodes[Offset - 1];
      if (Node->ForcedSucc != nullptr)
        return;
      // Apply the merge, compute the corresponding gain, and update the best
      // value, if the merge is beneficial
      for (const MergeTypeT &MergeType : MergeTypes) {
        Gain.updateIfLessThan(
            computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType));
      }
    };

    // Try to concatenate two chains w/o splitting
    Gain.updateIfLessThan(
        computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeT::X_Y));

    if (EnableChainSplitAlongJumps) {
      // Attach (a part of) ChainPred before the first node of ChainSucc
      for (JumpT *Jump : ChainSucc->Nodes.front()->InJumps) {
        const NodeT *SrcBlock = Jump->Source;
        if (SrcBlock->CurChain != ChainPred)
          continue;
        size_t Offset = SrcBlock->CurIndex + 1;
        tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::X2_X1_Y});
      }

      // Attach (a part of) ChainPred after the last node of ChainSucc
      for (JumpT *Jump : ChainSucc->Nodes.back()->OutJumps) {
        const NodeT *DstBlock = Jump->Source;
        if (DstBlock->CurChain != ChainPred)
          continue;
        size_t Offset = DstBlock->CurIndex;
        tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1});
      }
    }

    // Try to break ChainPred in various ways and concatenate with ChainSucc
    if (ChainPred->Nodes.size() <= ChainSplitThreshold) {
      for (size_t Offset = 1; Offset < ChainPred->Nodes.size(); Offset++) {
        // Try to split the chain in different ways. In practice, applying
        // X2_Y_X1 merging is almost never provides benefits; thus, we exclude
        // it from consideration to reduce the search space
        tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1,
                                 MergeTypeT::X2_X1_Y});
      }
    }
    Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
    return Gain;
  }

  /// Compute the score gain of merging two chains, respecting a given
  /// merge 'type' and 'offset'.
  ///
  /// The two chains are not modified in the method.
  MergeGainT computeMergeGain(const ChainT *ChainPred, const ChainT *ChainSucc,
                              const std::vector<JumpT *> &Jumps,
                              size_t MergeOffset, MergeTypeT MergeType) const {
    auto MergedBlocks =
        mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType);

    // Do not allow a merge that does not preserve the original entry point
    if ((ChainPred->isEntry() || ChainSucc->isEntry()) &&
        !MergedBlocks.getFirstNode()->isEntry())
      return MergeGainT();

    // The gain for the new chain
    auto NewGainScore = extTSPScore(MergedBlocks, Jumps) - ChainPred->Score;
    return MergeGainT(NewGainScore, MergeOffset, MergeType);
  }

  /// Merge chain From into chain Into, update the list of active chains,
  /// adjacency information, and the corresponding cached values.
  void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset,
                   MergeTypeT MergeType) {
    assert(Into != From && "a chain cannot be merged with itself");

    // Merge the nodes
    MergedChain MergedNodes =
        mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType);
    Into->merge(From, MergedNodes.getNodes());

    // Merge the edges
    Into->mergeEdges(From);
    From->clear();

    // Update cached ext-tsp score for the new chain
    ChainEdge *SelfEdge = Into->getEdge(Into);
    if (SelfEdge != nullptr) {
      MergedNodes = MergedChain(Into->Nodes.begin(), Into->Nodes.end());
      Into->Score = extTSPScore(MergedNodes, SelfEdge->jumps());
    }

    // Remove the chain from the list of active chains
    llvm::erase_value(HotChains, From);

    // Invalidate caches
    for (auto EdgeIt : Into->Edges)
      EdgeIt.second->invalidateCache();
  }

  /// Concatenate all chains into the final order.
  void concatChains(std::vector<uint64_t> &Order) {
    // Collect chains and calculate density stats for their sorting
    std::vector<const ChainT *> SortedChains;
    DenseMap<const ChainT *, double> ChainDensity;
    for (ChainT &Chain : AllChains) {
      if (!Chain.Nodes.empty()) {
        SortedChains.push_back(&Chain);
        // Using doubles to avoid overflow of ExecutionCounts
        double Size = 0;
        double ExecutionCount = 0;
        for (NodeT *Node : Chain.Nodes) {
          Size += static_cast<double>(Node->Size);
          ExecutionCount += static_cast<double>(Node->ExecutionCount);
        }
        assert(Size > 0 && "a chain of zero size");
        ChainDensity[&Chain] = ExecutionCount / Size;
      }
    }

    // Sorting chains by density in the decreasing order
    std::stable_sort(SortedChains.begin(), SortedChains.end(),
                     [&](const ChainT *L, const ChainT *R) {
                       // Make sure the original entry point is at the
                       // beginning of the order
                       if (L->isEntry() != R->isEntry())
                         return L->isEntry();

                       const double DL = ChainDensity[L];
                       const double DR = ChainDensity[R];
                       // Compare by density and break ties by chain identifiers
                       return (DL != DR) ? (DL > DR) : (L->Id < R->Id);
                     });

    // Collect the nodes in the order specified by their chains
    Order.reserve(NumNodes);
    for (const ChainT *Chain : SortedChains) {
      for (NodeT *Node : Chain->Nodes) {
        Order.push_back(Node->Index);
      }
    }
  }

private:
  /// The number of nodes in the graph.
  const size_t NumNodes;

  /// Successors of each node.
  std::vector<std::vector<uint64_t>> SuccNodes;

  /// Predecessors of each node.
  std::vector<std::vector<uint64_t>> PredNodes;

  /// All nodes (basic blocks) in the graph.
  std::vector<NodeT> AllNodes;

  /// All jumps between the nodes.
  std::vector<JumpT> AllJumps;

  /// All chains of nodes.
  std::vector<ChainT> AllChains;

  /// All edges between the chains.
  std::vector<ChainEdge> AllEdges;

  /// Active chains. The vector gets updated at runtime when chains are merged.
  std::vector<ChainT *> HotChains;
};

} // end of anonymous namespace

std::vector<uint64_t>
llvm::applyExtTspLayout(const std::vector<uint64_t> &NodeSizes,
                        const std::vector<uint64_t> &NodeCounts,
                        const std::vector<EdgeCountT> &EdgeCounts) {
  // Verify correctness of the input data
  assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input");
  assert(NodeSizes.size() > 2 && "Incorrect input");

  // Apply the reordering algorithm
  ExtTSPImpl Alg(NodeSizes, NodeCounts, EdgeCounts);
  std::vector<uint64_t> Result;
  Alg.run(Result);

  // Verify correctness of the output
  assert(Result.front() == 0 && "Original entry point is not preserved");
  assert(Result.size() == NodeSizes.size() && "Incorrect size of layout");
  return Result;
}

double llvm::calcExtTspScore(const std::vector<uint64_t> &Order,
                             const std::vector<uint64_t> &NodeSizes,
                             const std::vector<uint64_t> &NodeCounts,
                             const std::vector<EdgeCountT> &EdgeCounts) {
  // Estimate addresses of the blocks in memory
  std::vector<uint64_t> Addr(NodeSizes.size(), 0);
  for (size_t Idx = 1; Idx < Order.size(); Idx++) {
    Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]];
  }
  std::vector<uint64_t> OutDegree(NodeSizes.size(), 0);
  for (auto It : EdgeCounts) {
    uint64_t Pred = It.first.first;
    OutDegree[Pred]++;
  }

  // Increase the score for each jump
  double Score = 0;
  for (auto It : EdgeCounts) {
    uint64_t Pred = It.first.first;
    uint64_t Succ = It.first.second;
    uint64_t Count = It.second;
    bool IsConditional = OutDegree[Pred] > 1;
    Score += ::extTSPScore(Addr[Pred], NodeSizes[Pred], Addr[Succ], Count,
                           IsConditional);
  }
  return Score;
}

double llvm::calcExtTspScore(const std::vector<uint64_t> &NodeSizes,
                             const std::vector<uint64_t> &NodeCounts,
                             const std::vector<EdgeCountT> &EdgeCounts) {
  std::vector<uint64_t> Order(NodeSizes.size());
  for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) {
    Order[Idx] = Idx;
  }
  return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts);
}