1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
|
//===- CodeLayout.cpp - Implementation of code layout algorithms ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The file implements "cache-aware" layout algorithms of basic blocks and
// functions in a binary.
//
// The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
// optimizing jump locality and thus processor I-cache utilization. This is
// achieved via increasing the number of fall-through jumps and co-locating
// frequently executed nodes together. The name follows the underlying
// optimization problem, Extended-TSP, which is a generalization of classical
// (maximum) Traveling Salesmen Problem.
//
// The algorithm is a greedy heuristic that works with chains (ordered lists)
// of basic blocks. Initially all chains are isolated basic blocks. On every
// iteration, we pick a pair of chains whose merging yields the biggest increase
// in the ExtTSP score, which models how i-cache "friendly" a specific chain is.
// A pair of chains giving the maximum gain is merged into a new chain. The
// procedure stops when there is only one chain left, or when merging does not
// increase ExtTSP. In the latter case, the remaining chains are sorted by
// density in the decreasing order.
//
// An important aspect is the way two chains are merged. Unlike earlier
// algorithms (e.g., based on the approach of Pettis-Hansen), two
// chains, X and Y, are first split into three, X1, X2, and Y. Then we
// consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
// X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
// This improves the quality of the final result (the search space is larger)
// while keeping the implementation sufficiently fast.
//
// Reference:
// * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
// IEEE Transactions on Computers, 2020
// https://arxiv.org/abs/1809.04676
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/CodeLayout.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <cmath>
using namespace llvm;
#define DEBUG_TYPE "code-layout"
namespace llvm {
cl::opt<bool> EnableExtTspBlockPlacement(
"enable-ext-tsp-block-placement", cl::Hidden, cl::init(false),
cl::desc("Enable machine block placement based on the ext-tsp model, "
"optimizing I-cache utilization."));
cl::opt<bool> ApplyExtTspWithoutProfile(
"ext-tsp-apply-without-profile",
cl::desc("Whether to apply ext-tsp placement for instances w/o profile"),
cl::init(true), cl::Hidden);
} // namespace llvm
// Algorithm-specific params. The values are tuned for the best performance
// of large-scale front-end bound binaries.
static cl::opt<double> ForwardWeightCond(
"ext-tsp-forward-weight-cond", cl::ReallyHidden, cl::init(0.1),
cl::desc("The weight of conditional forward jumps for ExtTSP value"));
static cl::opt<double> ForwardWeightUncond(
"ext-tsp-forward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
cl::desc("The weight of unconditional forward jumps for ExtTSP value"));
static cl::opt<double> BackwardWeightCond(
"ext-tsp-backward-weight-cond", cl::ReallyHidden, cl::init(0.1),
cl::desc("The weight of conditional backward jumps for ExtTSP value"));
static cl::opt<double> BackwardWeightUncond(
"ext-tsp-backward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
cl::desc("The weight of unconditional backward jumps for ExtTSP value"));
static cl::opt<double> FallthroughWeightCond(
"ext-tsp-fallthrough-weight-cond", cl::ReallyHidden, cl::init(1.0),
cl::desc("The weight of conditional fallthrough jumps for ExtTSP value"));
static cl::opt<double> FallthroughWeightUncond(
"ext-tsp-fallthrough-weight-uncond", cl::ReallyHidden, cl::init(1.05),
cl::desc("The weight of unconditional fallthrough jumps for ExtTSP value"));
static cl::opt<unsigned> ForwardDistance(
"ext-tsp-forward-distance", cl::ReallyHidden, cl::init(1024),
cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP"));
static cl::opt<unsigned> BackwardDistance(
"ext-tsp-backward-distance", cl::ReallyHidden, cl::init(640),
cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP"));
// The maximum size of a chain created by the algorithm. The size is bounded
// so that the algorithm can efficiently process extremely large instance.
static cl::opt<unsigned>
MaxChainSize("ext-tsp-max-chain-size", cl::ReallyHidden, cl::init(4096),
cl::desc("The maximum size of a chain to create."));
// The maximum size of a chain for splitting. Larger values of the threshold
// may yield better quality at the cost of worsen run-time.
static cl::opt<unsigned> ChainSplitThreshold(
"ext-tsp-chain-split-threshold", cl::ReallyHidden, cl::init(128),
cl::desc("The maximum size of a chain to apply splitting"));
// The option enables splitting (large) chains along in-coming and out-going
// jumps. This typically results in a better quality.
static cl::opt<bool> EnableChainSplitAlongJumps(
"ext-tsp-enable-chain-split-along-jumps", cl::ReallyHidden, cl::init(true),
cl::desc("The maximum size of a chain to apply splitting"));
namespace {
// Epsilon for comparison of doubles.
constexpr double EPS = 1e-8;
// Compute the Ext-TSP score for a given jump.
double jumpExtTSPScore(uint64_t JumpDist, uint64_t JumpMaxDist, uint64_t Count,
double Weight) {
if (JumpDist > JumpMaxDist)
return 0;
double Prob = 1.0 - static_cast<double>(JumpDist) / JumpMaxDist;
return Weight * Prob * Count;
}
// Compute the Ext-TSP score for a jump between a given pair of blocks,
// using their sizes, (estimated) addresses and the jump execution count.
double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
uint64_t Count, bool IsConditional) {
// Fallthrough
if (SrcAddr + SrcSize == DstAddr) {
return jumpExtTSPScore(0, 1, Count,
IsConditional ? FallthroughWeightCond
: FallthroughWeightUncond);
}
// Forward
if (SrcAddr + SrcSize < DstAddr) {
const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
return jumpExtTSPScore(Dist, ForwardDistance, Count,
IsConditional ? ForwardWeightCond
: ForwardWeightUncond);
}
// Backward
const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
return jumpExtTSPScore(Dist, BackwardDistance, Count,
IsConditional ? BackwardWeightCond
: BackwardWeightUncond);
}
/// A type of merging two chains, X and Y. The former chain is split into
/// X1 and X2 and then concatenated with Y in the order specified by the type.
enum class MergeTypeT : int { X_Y, Y_X, X1_Y_X2, Y_X2_X1, X2_X1_Y };
/// The gain of merging two chains, that is, the Ext-TSP score of the merge
/// together with the corresponding merge 'type' and 'offset'.
struct MergeGainT {
explicit MergeGainT() = default;
explicit MergeGainT(double Score, size_t MergeOffset, MergeTypeT MergeType)
: Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
double score() const { return Score; }
size_t mergeOffset() const { return MergeOffset; }
MergeTypeT mergeType() const { return MergeType; }
void setMergeType(MergeTypeT Ty) { MergeType = Ty; }
// Returns 'true' iff Other is preferred over this.
bool operator<(const MergeGainT &Other) const {
return (Other.Score > EPS && Other.Score > Score + EPS);
}
// Update the current gain if Other is preferred over this.
void updateIfLessThan(const MergeGainT &Other) {
if (*this < Other)
*this = Other;
}
private:
double Score{-1.0};
size_t MergeOffset{0};
MergeTypeT MergeType{MergeTypeT::X_Y};
};
struct JumpT;
struct ChainT;
struct ChainEdge;
/// A node in the graph, typically corresponding to a basic block in the CFG or
/// a function in the call graph.
struct NodeT {
NodeT(const NodeT &) = delete;
NodeT(NodeT &&) = default;
NodeT &operator=(const NodeT &) = delete;
NodeT &operator=(NodeT &&) = default;
explicit NodeT(size_t Index, uint64_t Size, uint64_t EC)
: Index(Index), Size(Size), ExecutionCount(EC) {}
bool isEntry() const { return Index == 0; }
// The total execution count of outgoing jumps.
uint64_t outCount() const;
// The total execution count of incoming jumps.
uint64_t inCount() const;
// The original index of the node in graph.
size_t Index{0};
// The index of the node in the current chain.
size_t CurIndex{0};
// The size of the node in the binary.
uint64_t Size{0};
// The execution count of the node in the profile data.
uint64_t ExecutionCount{0};
// The current chain of the node.
ChainT *CurChain{nullptr};
// The offset of the node in the current chain.
mutable uint64_t EstimatedAddr{0};
// Forced successor of the node in the graph.
NodeT *ForcedSucc{nullptr};
// Forced predecessor of the node in the graph.
NodeT *ForcedPred{nullptr};
// Outgoing jumps from the node.
std::vector<JumpT *> OutJumps;
// Incoming jumps to the node.
std::vector<JumpT *> InJumps;
};
/// An arc in the graph, typically corresponding to a jump between two nodes.
struct JumpT {
JumpT(const JumpT &) = delete;
JumpT(JumpT &&) = default;
JumpT &operator=(const JumpT &) = delete;
JumpT &operator=(JumpT &&) = default;
explicit JumpT(NodeT *Source, NodeT *Target, uint64_t ExecutionCount)
: Source(Source), Target(Target), ExecutionCount(ExecutionCount) {}
// Source node of the jump.
NodeT *Source;
// Target node of the jump.
NodeT *Target;
// Execution count of the arc in the profile data.
uint64_t ExecutionCount{0};
// Whether the jump corresponds to a conditional branch.
bool IsConditional{false};
// The offset of the jump from the source node.
uint64_t Offset{0};
};
/// A chain (ordered sequence) of nodes in the graph.
struct ChainT {
ChainT(const ChainT &) = delete;
ChainT(ChainT &&) = default;
ChainT &operator=(const ChainT &) = delete;
ChainT &operator=(ChainT &&) = default;
explicit ChainT(uint64_t Id, NodeT *Node)
: Id(Id), ExecutionCount(Node->ExecutionCount), Size(Node->Size),
Nodes(1, Node) {}
size_t numBlocks() const { return Nodes.size(); }
double density() const { return static_cast<double>(ExecutionCount) / Size; }
bool isEntry() const { return Nodes[0]->Index == 0; }
bool isCold() const {
for (NodeT *Node : Nodes) {
if (Node->ExecutionCount > 0)
return false;
}
return true;
}
ChainEdge *getEdge(ChainT *Other) const {
for (auto It : Edges) {
if (It.first == Other)
return It.second;
}
return nullptr;
}
void removeEdge(ChainT *Other) {
auto It = Edges.begin();
while (It != Edges.end()) {
if (It->first == Other) {
Edges.erase(It);
return;
}
It++;
}
}
void addEdge(ChainT *Other, ChainEdge *Edge) {
Edges.push_back(std::make_pair(Other, Edge));
}
void merge(ChainT *Other, const std::vector<NodeT *> &MergedBlocks) {
Nodes = MergedBlocks;
// Update the chain's data
ExecutionCount += Other->ExecutionCount;
Size += Other->Size;
Id = Nodes[0]->Index;
// Update the node's data
for (size_t Idx = 0; Idx < Nodes.size(); Idx++) {
Nodes[Idx]->CurChain = this;
Nodes[Idx]->CurIndex = Idx;
}
}
void mergeEdges(ChainT *Other);
void clear() {
Nodes.clear();
Nodes.shrink_to_fit();
Edges.clear();
Edges.shrink_to_fit();
}
// Unique chain identifier.
uint64_t Id;
// Cached ext-tsp score for the chain.
double Score{0};
// The total execution count of the chain.
uint64_t ExecutionCount{0};
// The total size of the chain.
uint64_t Size{0};
// Nodes of the chain.
std::vector<NodeT *> Nodes;
// Adjacent chains and corresponding edges (lists of jumps).
std::vector<std::pair<ChainT *, ChainEdge *>> Edges;
};
/// An edge in the graph representing jumps between two chains.
/// When nodes are merged into chains, the edges are combined too so that
/// there is always at most one edge between a pair of chains
struct ChainEdge {
ChainEdge(const ChainEdge &) = delete;
ChainEdge(ChainEdge &&) = default;
ChainEdge &operator=(const ChainEdge &) = delete;
ChainEdge &operator=(ChainEdge &&) = delete;
explicit ChainEdge(JumpT *Jump)
: SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain),
Jumps(1, Jump) {}
ChainT *srcChain() const { return SrcChain; }
ChainT *dstChain() const { return DstChain; }
bool isSelfEdge() const { return SrcChain == DstChain; }
const std::vector<JumpT *> &jumps() const { return Jumps; }
void appendJump(JumpT *Jump) { Jumps.push_back(Jump); }
void moveJumps(ChainEdge *Other) {
Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
Other->Jumps.clear();
Other->Jumps.shrink_to_fit();
}
void changeEndpoint(ChainT *From, ChainT *To) {
if (From == SrcChain)
SrcChain = To;
if (From == DstChain)
DstChain = To;
}
bool hasCachedMergeGain(ChainT *Src, ChainT *Dst) const {
return Src == SrcChain ? CacheValidForward : CacheValidBackward;
}
MergeGainT getCachedMergeGain(ChainT *Src, ChainT *Dst) const {
return Src == SrcChain ? CachedGainForward : CachedGainBackward;
}
void setCachedMergeGain(ChainT *Src, ChainT *Dst, MergeGainT MergeGain) {
if (Src == SrcChain) {
CachedGainForward = MergeGain;
CacheValidForward = true;
} else {
CachedGainBackward = MergeGain;
CacheValidBackward = true;
}
}
void invalidateCache() {
CacheValidForward = false;
CacheValidBackward = false;
}
void setMergeGain(MergeGainT Gain) { CachedGain = Gain; }
MergeGainT getMergeGain() const { return CachedGain; }
double gain() const { return CachedGain.score(); }
private:
// Source chain.
ChainT *SrcChain{nullptr};
// Destination chain.
ChainT *DstChain{nullptr};
// Original jumps in the binary with corresponding execution counts.
std::vector<JumpT *> Jumps;
// Cached gain value for merging the pair of chains.
MergeGainT CachedGain;
// Cached gain values for merging the pair of chains. Since the gain of
// merging (Src, Dst) and (Dst, Src) might be different, we store both values
// here and a flag indicating which of the options results in a higher gain.
// Cached gain values.
MergeGainT CachedGainForward;
MergeGainT CachedGainBackward;
// Whether the cached value must be recomputed.
bool CacheValidForward{false};
bool CacheValidBackward{false};
};
uint64_t NodeT::outCount() const {
uint64_t Count = 0;
for (JumpT *Jump : OutJumps) {
Count += Jump->ExecutionCount;
}
return Count;
}
uint64_t NodeT::inCount() const {
uint64_t Count = 0;
for (JumpT *Jump : InJumps) {
Count += Jump->ExecutionCount;
}
return Count;
}
void ChainT::mergeEdges(ChainT *Other) {
// Update edges adjacent to chain Other
for (auto EdgeIt : Other->Edges) {
ChainT *DstChain = EdgeIt.first;
ChainEdge *DstEdge = EdgeIt.second;
ChainT *TargetChain = DstChain == Other ? this : DstChain;
ChainEdge *CurEdge = getEdge(TargetChain);
if (CurEdge == nullptr) {
DstEdge->changeEndpoint(Other, this);
this->addEdge(TargetChain, DstEdge);
if (DstChain != this && DstChain != Other) {
DstChain->addEdge(this, DstEdge);
}
} else {
CurEdge->moveJumps(DstEdge);
}
// Cleanup leftover edge
if (DstChain != Other) {
DstChain->removeEdge(Other);
}
}
}
using NodeIter = std::vector<NodeT *>::const_iterator;
/// A wrapper around three chains of nodes; it is used to avoid extra
/// instantiation of the vectors.
struct MergedChain {
MergedChain(NodeIter Begin1, NodeIter End1, NodeIter Begin2 = NodeIter(),
NodeIter End2 = NodeIter(), NodeIter Begin3 = NodeIter(),
NodeIter End3 = NodeIter())
: Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
End3(End3) {}
template <typename F> void forEach(const F &Func) const {
for (auto It = Begin1; It != End1; It++)
Func(*It);
for (auto It = Begin2; It != End2; It++)
Func(*It);
for (auto It = Begin3; It != End3; It++)
Func(*It);
}
std::vector<NodeT *> getNodes() const {
std::vector<NodeT *> Result;
Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
std::distance(Begin3, End3));
Result.insert(Result.end(), Begin1, End1);
Result.insert(Result.end(), Begin2, End2);
Result.insert(Result.end(), Begin3, End3);
return Result;
}
const NodeT *getFirstNode() const { return *Begin1; }
private:
NodeIter Begin1;
NodeIter End1;
NodeIter Begin2;
NodeIter End2;
NodeIter Begin3;
NodeIter End3;
};
/// Merge two chains of nodes respecting a given 'type' and 'offset'.
///
/// If MergeType == 0, then the result is a concatenation of two chains.
/// Otherwise, the first chain is cut into two sub-chains at the offset,
/// and merged using all possible ways of concatenating three chains.
MergedChain mergeNodes(const std::vector<NodeT *> &X,
const std::vector<NodeT *> &Y, size_t MergeOffset,
MergeTypeT MergeType) {
// Split the first chain, X, into X1 and X2
NodeIter BeginX1 = X.begin();
NodeIter EndX1 = X.begin() + MergeOffset;
NodeIter BeginX2 = X.begin() + MergeOffset;
NodeIter EndX2 = X.end();
NodeIter BeginY = Y.begin();
NodeIter EndY = Y.end();
// Construct a new chain from the three existing ones
switch (MergeType) {
case MergeTypeT::X_Y:
return MergedChain(BeginX1, EndX2, BeginY, EndY);
case MergeTypeT::Y_X:
return MergedChain(BeginY, EndY, BeginX1, EndX2);
case MergeTypeT::X1_Y_X2:
return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
case MergeTypeT::Y_X2_X1:
return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
case MergeTypeT::X2_X1_Y:
return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
}
llvm_unreachable("unexpected chain merge type");
}
/// The implementation of the ExtTSP algorithm.
class ExtTSPImpl {
public:
ExtTSPImpl(const std::vector<uint64_t> &NodeSizes,
const std::vector<uint64_t> &NodeCounts,
const std::vector<EdgeCountT> &EdgeCounts)
: NumNodes(NodeSizes.size()) {
initialize(NodeSizes, NodeCounts, EdgeCounts);
}
/// Run the algorithm and return an optimized ordering of nodes.
void run(std::vector<uint64_t> &Result) {
// Pass 1: Merge nodes with their mutually forced successors
mergeForcedPairs();
// Pass 2: Merge pairs of chains while improving the ExtTSP objective
mergeChainPairs();
// Pass 3: Merge cold nodes to reduce code size
mergeColdChains();
// Collect nodes from all chains
concatChains(Result);
}
private:
/// Initialize the algorithm's data structures.
void initialize(const std::vector<uint64_t> &NodeSizes,
const std::vector<uint64_t> &NodeCounts,
const std::vector<EdgeCountT> &EdgeCounts) {
// Initialize nodes
AllNodes.reserve(NumNodes);
for (uint64_t Idx = 0; Idx < NumNodes; Idx++) {
uint64_t Size = std::max<uint64_t>(NodeSizes[Idx], 1ULL);
uint64_t ExecutionCount = NodeCounts[Idx];
// The execution count of the entry node is set to at least one
if (Idx == 0 && ExecutionCount == 0)
ExecutionCount = 1;
AllNodes.emplace_back(Idx, Size, ExecutionCount);
}
// Initialize jumps between nodes
SuccNodes.resize(NumNodes);
PredNodes.resize(NumNodes);
std::vector<uint64_t> OutDegree(NumNodes, 0);
AllJumps.reserve(EdgeCounts.size());
for (auto It : EdgeCounts) {
uint64_t Pred = It.first.first;
uint64_t Succ = It.first.second;
OutDegree[Pred]++;
// Ignore self-edges
if (Pred == Succ)
continue;
SuccNodes[Pred].push_back(Succ);
PredNodes[Succ].push_back(Pred);
uint64_t ExecutionCount = It.second;
if (ExecutionCount > 0) {
NodeT &PredNode = AllNodes[Pred];
NodeT &SuccNode = AllNodes[Succ];
AllJumps.emplace_back(&PredNode, &SuccNode, ExecutionCount);
SuccNode.InJumps.push_back(&AllJumps.back());
PredNode.OutJumps.push_back(&AllJumps.back());
}
}
for (JumpT &Jump : AllJumps) {
assert(OutDegree[Jump.Source->Index] > 0);
Jump.IsConditional = OutDegree[Jump.Source->Index] > 1;
}
// Initialize chains
AllChains.reserve(NumNodes);
HotChains.reserve(NumNodes);
for (NodeT &Node : AllNodes) {
AllChains.emplace_back(Node.Index, &Node);
Node.CurChain = &AllChains.back();
if (Node.ExecutionCount > 0) {
HotChains.push_back(&AllChains.back());
}
}
// Initialize chain edges
AllEdges.reserve(AllJumps.size());
for (NodeT &PredNode : AllNodes) {
for (JumpT *Jump : PredNode.OutJumps) {
NodeT *SuccNode = Jump->Target;
ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain);
// this edge is already present in the graph
if (CurEdge != nullptr) {
assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr);
CurEdge->appendJump(Jump);
continue;
}
// this is a new edge
AllEdges.emplace_back(Jump);
PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back());
SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back());
}
}
}
/// For a pair of nodes, A and B, node B is the forced successor of A,
/// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
/// to B are from A. Such nodes should be adjacent in the optimal ordering;
/// the method finds and merges such pairs of nodes.
void mergeForcedPairs() {
// Find fallthroughs based on edge weights
for (NodeT &Node : AllNodes) {
if (SuccNodes[Node.Index].size() == 1 &&
PredNodes[SuccNodes[Node.Index][0]].size() == 1 &&
SuccNodes[Node.Index][0] != 0) {
size_t SuccIndex = SuccNodes[Node.Index][0];
Node.ForcedSucc = &AllNodes[SuccIndex];
AllNodes[SuccIndex].ForcedPred = &Node;
}
}
// There might be 'cycles' in the forced dependencies, since profile
// data isn't 100% accurate. Typically this is observed in loops, when the
// loop edges are the hottest successors for the basic blocks of the loop.
// Break the cycles by choosing the node with the smallest index as the
// head. This helps to keep the original order of the loops, which likely
// have already been rotated in the optimized manner.
for (NodeT &Node : AllNodes) {
if (Node.ForcedSucc == nullptr || Node.ForcedPred == nullptr)
continue;
NodeT *SuccNode = Node.ForcedSucc;
while (SuccNode != nullptr && SuccNode != &Node) {
SuccNode = SuccNode->ForcedSucc;
}
if (SuccNode == nullptr)
continue;
// Break the cycle
AllNodes[Node.ForcedPred->Index].ForcedSucc = nullptr;
Node.ForcedPred = nullptr;
}
// Merge nodes with their fallthrough successors
for (NodeT &Node : AllNodes) {
if (Node.ForcedPred == nullptr && Node.ForcedSucc != nullptr) {
const NodeT *CurBlock = &Node;
while (CurBlock->ForcedSucc != nullptr) {
const NodeT *NextBlock = CurBlock->ForcedSucc;
mergeChains(Node.CurChain, NextBlock->CurChain, 0, MergeTypeT::X_Y);
CurBlock = NextBlock;
}
}
}
}
/// Merge pairs of chains while improving the ExtTSP objective.
void mergeChainPairs() {
/// Deterministically compare pairs of chains
auto compareChainPairs = [](const ChainT *A1, const ChainT *B1,
const ChainT *A2, const ChainT *B2) {
if (A1 != A2)
return A1->Id < A2->Id;
return B1->Id < B2->Id;
};
while (HotChains.size() > 1) {
ChainT *BestChainPred = nullptr;
ChainT *BestChainSucc = nullptr;
MergeGainT BestGain;
// Iterate over all pairs of chains
for (ChainT *ChainPred : HotChains) {
// Get candidates for merging with the current chain
for (auto EdgeIt : ChainPred->Edges) {
ChainT *ChainSucc = EdgeIt.first;
ChainEdge *Edge = EdgeIt.second;
// Ignore loop edges
if (ChainPred == ChainSucc)
continue;
// Stop early if the combined chain violates the maximum allowed size
if (ChainPred->numBlocks() + ChainSucc->numBlocks() >= MaxChainSize)
continue;
// Compute the gain of merging the two chains
MergeGainT CurGain = getBestMergeGain(ChainPred, ChainSucc, Edge);
if (CurGain.score() <= EPS)
continue;
if (BestGain < CurGain ||
(std::abs(CurGain.score() - BestGain.score()) < EPS &&
compareChainPairs(ChainPred, ChainSucc, BestChainPred,
BestChainSucc))) {
BestGain = CurGain;
BestChainPred = ChainPred;
BestChainSucc = ChainSucc;
}
}
}
// Stop merging when there is no improvement
if (BestGain.score() <= EPS)
break;
// Merge the best pair of chains
mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
BestGain.mergeType());
}
}
/// Merge remaining nodes into chains w/o taking jump counts into
/// consideration. This allows to maintain the original node order in the
/// absence of profile data
void mergeColdChains() {
for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) {
// Iterating in reverse order to make sure original fallthrough jumps are
// merged first; this might be beneficial for code size.
size_t NumSuccs = SuccNodes[SrcBB].size();
for (size_t Idx = 0; Idx < NumSuccs; Idx++) {
size_t DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1];
ChainT *SrcChain = AllNodes[SrcBB].CurChain;
ChainT *DstChain = AllNodes[DstBB].CurChain;
if (SrcChain != DstChain && !DstChain->isEntry() &&
SrcChain->Nodes.back()->Index == SrcBB &&
DstChain->Nodes.front()->Index == DstBB &&
SrcChain->isCold() == DstChain->isCold()) {
mergeChains(SrcChain, DstChain, 0, MergeTypeT::X_Y);
}
}
}
}
/// Compute the Ext-TSP score for a given node order and a list of jumps.
double extTSPScore(const MergedChain &MergedBlocks,
const std::vector<JumpT *> &Jumps) const {
if (Jumps.empty())
return 0.0;
uint64_t CurAddr = 0;
MergedBlocks.forEach([&](const NodeT *Node) {
Node->EstimatedAddr = CurAddr;
CurAddr += Node->Size;
});
double Score = 0;
for (JumpT *Jump : Jumps) {
const NodeT *SrcBlock = Jump->Source;
const NodeT *DstBlock = Jump->Target;
Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
DstBlock->EstimatedAddr, Jump->ExecutionCount,
Jump->IsConditional);
}
return Score;
}
/// Compute the gain of merging two chains.
///
/// The function considers all possible ways of merging two chains and
/// computes the one having the largest increase in ExtTSP objective. The
/// result is a pair with the first element being the gain and the second
/// element being the corresponding merging type.
MergeGainT getBestMergeGain(ChainT *ChainPred, ChainT *ChainSucc,
ChainEdge *Edge) const {
if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) {
return Edge->getCachedMergeGain(ChainPred, ChainSucc);
}
// Precompute jumps between ChainPred and ChainSucc
auto Jumps = Edge->jumps();
ChainEdge *EdgePP = ChainPred->getEdge(ChainPred);
if (EdgePP != nullptr) {
Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end());
}
assert(!Jumps.empty() && "trying to merge chains w/o jumps");
// The object holds the best currently chosen gain of merging the two chains
MergeGainT Gain = MergeGainT();
/// Given a merge offset and a list of merge types, try to merge two chains
/// and update Gain with a better alternative
auto tryChainMerging = [&](size_t Offset,
const std::vector<MergeTypeT> &MergeTypes) {
// Skip merging corresponding to concatenation w/o splitting
if (Offset == 0 || Offset == ChainPred->Nodes.size())
return;
// Skip merging if it breaks Forced successors
NodeT *Node = ChainPred->Nodes[Offset - 1];
if (Node->ForcedSucc != nullptr)
return;
// Apply the merge, compute the corresponding gain, and update the best
// value, if the merge is beneficial
for (const MergeTypeT &MergeType : MergeTypes) {
Gain.updateIfLessThan(
computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType));
}
};
// Try to concatenate two chains w/o splitting
Gain.updateIfLessThan(
computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeT::X_Y));
if (EnableChainSplitAlongJumps) {
// Attach (a part of) ChainPred before the first node of ChainSucc
for (JumpT *Jump : ChainSucc->Nodes.front()->InJumps) {
const NodeT *SrcBlock = Jump->Source;
if (SrcBlock->CurChain != ChainPred)
continue;
size_t Offset = SrcBlock->CurIndex + 1;
tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::X2_X1_Y});
}
// Attach (a part of) ChainPred after the last node of ChainSucc
for (JumpT *Jump : ChainSucc->Nodes.back()->OutJumps) {
const NodeT *DstBlock = Jump->Source;
if (DstBlock->CurChain != ChainPred)
continue;
size_t Offset = DstBlock->CurIndex;
tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1});
}
}
// Try to break ChainPred in various ways and concatenate with ChainSucc
if (ChainPred->Nodes.size() <= ChainSplitThreshold) {
for (size_t Offset = 1; Offset < ChainPred->Nodes.size(); Offset++) {
// Try to split the chain in different ways. In practice, applying
// X2_Y_X1 merging is almost never provides benefits; thus, we exclude
// it from consideration to reduce the search space
tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1,
MergeTypeT::X2_X1_Y});
}
}
Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
return Gain;
}
/// Compute the score gain of merging two chains, respecting a given
/// merge 'type' and 'offset'.
///
/// The two chains are not modified in the method.
MergeGainT computeMergeGain(const ChainT *ChainPred, const ChainT *ChainSucc,
const std::vector<JumpT *> &Jumps,
size_t MergeOffset, MergeTypeT MergeType) const {
auto MergedBlocks =
mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType);
// Do not allow a merge that does not preserve the original entry point
if ((ChainPred->isEntry() || ChainSucc->isEntry()) &&
!MergedBlocks.getFirstNode()->isEntry())
return MergeGainT();
// The gain for the new chain
auto NewGainScore = extTSPScore(MergedBlocks, Jumps) - ChainPred->Score;
return MergeGainT(NewGainScore, MergeOffset, MergeType);
}
/// Merge chain From into chain Into, update the list of active chains,
/// adjacency information, and the corresponding cached values.
void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset,
MergeTypeT MergeType) {
assert(Into != From && "a chain cannot be merged with itself");
// Merge the nodes
MergedChain MergedNodes =
mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType);
Into->merge(From, MergedNodes.getNodes());
// Merge the edges
Into->mergeEdges(From);
From->clear();
// Update cached ext-tsp score for the new chain
ChainEdge *SelfEdge = Into->getEdge(Into);
if (SelfEdge != nullptr) {
MergedNodes = MergedChain(Into->Nodes.begin(), Into->Nodes.end());
Into->Score = extTSPScore(MergedNodes, SelfEdge->jumps());
}
// Remove the chain from the list of active chains
llvm::erase_value(HotChains, From);
// Invalidate caches
for (auto EdgeIt : Into->Edges)
EdgeIt.second->invalidateCache();
}
/// Concatenate all chains into the final order.
void concatChains(std::vector<uint64_t> &Order) {
// Collect chains and calculate density stats for their sorting
std::vector<const ChainT *> SortedChains;
DenseMap<const ChainT *, double> ChainDensity;
for (ChainT &Chain : AllChains) {
if (!Chain.Nodes.empty()) {
SortedChains.push_back(&Chain);
// Using doubles to avoid overflow of ExecutionCounts
double Size = 0;
double ExecutionCount = 0;
for (NodeT *Node : Chain.Nodes) {
Size += static_cast<double>(Node->Size);
ExecutionCount += static_cast<double>(Node->ExecutionCount);
}
assert(Size > 0 && "a chain of zero size");
ChainDensity[&Chain] = ExecutionCount / Size;
}
}
// Sorting chains by density in the decreasing order
std::stable_sort(SortedChains.begin(), SortedChains.end(),
[&](const ChainT *L, const ChainT *R) {
// Make sure the original entry point is at the
// beginning of the order
if (L->isEntry() != R->isEntry())
return L->isEntry();
const double DL = ChainDensity[L];
const double DR = ChainDensity[R];
// Compare by density and break ties by chain identifiers
return (DL != DR) ? (DL > DR) : (L->Id < R->Id);
});
// Collect the nodes in the order specified by their chains
Order.reserve(NumNodes);
for (const ChainT *Chain : SortedChains) {
for (NodeT *Node : Chain->Nodes) {
Order.push_back(Node->Index);
}
}
}
private:
/// The number of nodes in the graph.
const size_t NumNodes;
/// Successors of each node.
std::vector<std::vector<uint64_t>> SuccNodes;
/// Predecessors of each node.
std::vector<std::vector<uint64_t>> PredNodes;
/// All nodes (basic blocks) in the graph.
std::vector<NodeT> AllNodes;
/// All jumps between the nodes.
std::vector<JumpT> AllJumps;
/// All chains of nodes.
std::vector<ChainT> AllChains;
/// All edges between the chains.
std::vector<ChainEdge> AllEdges;
/// Active chains. The vector gets updated at runtime when chains are merged.
std::vector<ChainT *> HotChains;
};
} // end of anonymous namespace
std::vector<uint64_t>
llvm::applyExtTspLayout(const std::vector<uint64_t> &NodeSizes,
const std::vector<uint64_t> &NodeCounts,
const std::vector<EdgeCountT> &EdgeCounts) {
// Verify correctness of the input data
assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input");
assert(NodeSizes.size() > 2 && "Incorrect input");
// Apply the reordering algorithm
ExtTSPImpl Alg(NodeSizes, NodeCounts, EdgeCounts);
std::vector<uint64_t> Result;
Alg.run(Result);
// Verify correctness of the output
assert(Result.front() == 0 && "Original entry point is not preserved");
assert(Result.size() == NodeSizes.size() && "Incorrect size of layout");
return Result;
}
double llvm::calcExtTspScore(const std::vector<uint64_t> &Order,
const std::vector<uint64_t> &NodeSizes,
const std::vector<uint64_t> &NodeCounts,
const std::vector<EdgeCountT> &EdgeCounts) {
// Estimate addresses of the blocks in memory
std::vector<uint64_t> Addr(NodeSizes.size(), 0);
for (size_t Idx = 1; Idx < Order.size(); Idx++) {
Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]];
}
std::vector<uint64_t> OutDegree(NodeSizes.size(), 0);
for (auto It : EdgeCounts) {
uint64_t Pred = It.first.first;
OutDegree[Pred]++;
}
// Increase the score for each jump
double Score = 0;
for (auto It : EdgeCounts) {
uint64_t Pred = It.first.first;
uint64_t Succ = It.first.second;
uint64_t Count = It.second;
bool IsConditional = OutDegree[Pred] > 1;
Score += ::extTSPScore(Addr[Pred], NodeSizes[Pred], Addr[Succ], Count,
IsConditional);
}
return Score;
}
double llvm::calcExtTspScore(const std::vector<uint64_t> &NodeSizes,
const std::vector<uint64_t> &NodeCounts,
const std::vector<EdgeCountT> &EdgeCounts) {
std::vector<uint64_t> Order(NodeSizes.size());
for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) {
Order[Idx] = Idx;
}
return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts);
}
|