1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
|
//===- LoopPeel.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Loop Peeling Utilities.
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/LoopPeel.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <optional>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "loop-peel"
STATISTIC(NumPeeled, "Number of loops peeled");
static cl::opt<unsigned> UnrollPeelCount(
"unroll-peel-count", cl::Hidden,
cl::desc("Set the unroll peeling count, for testing purposes"));
static cl::opt<bool>
UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
cl::desc("Allows loops to be peeled when the dynamic "
"trip count is known to be low."));
static cl::opt<bool>
UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
cl::init(false), cl::Hidden,
cl::desc("Allows loop nests to be peeled."));
static cl::opt<unsigned> UnrollPeelMaxCount(
"unroll-peel-max-count", cl::init(7), cl::Hidden,
cl::desc("Max average trip count which will cause loop peeling."));
static cl::opt<unsigned> UnrollForcePeelCount(
"unroll-force-peel-count", cl::init(0), cl::Hidden,
cl::desc("Force a peel count regardless of profiling information."));
static cl::opt<bool> DisableAdvancedPeeling(
"disable-advanced-peeling", cl::init(false), cl::Hidden,
cl::desc(
"Disable advance peeling. Issues for convergent targets (D134803)."));
static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
// Check whether we are capable of peeling this loop.
bool llvm::canPeel(const Loop *L) {
// Make sure the loop is in simplified form
if (!L->isLoopSimplifyForm())
return false;
if (!DisableAdvancedPeeling)
return true;
SmallVector<BasicBlock *, 4> Exits;
L->getUniqueNonLatchExitBlocks(Exits);
// The latch must either be the only exiting block or all non-latch exit
// blocks have either a deopt or unreachable terminator or compose a chain of
// blocks where the last one is either deopt or unreachable terminated. Both
// deopt and unreachable terminators are a strong indication they are not
// taken. Note that this is a profitability check, not a legality check. Also
// note that LoopPeeling currently can only update the branch weights of latch
// blocks and branch weights to blocks with deopt or unreachable do not need
// updating.
return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable);
}
namespace {
// As a loop is peeled, it may be the case that Phi nodes become
// loop-invariant (ie, known because there is only one choice).
// For example, consider the following function:
// void g(int);
// void binary() {
// int x = 0;
// int y = 0;
// int a = 0;
// for(int i = 0; i <100000; ++i) {
// g(x);
// x = y;
// g(a);
// y = a + 1;
// a = 5;
// }
// }
// Peeling 3 iterations is beneficial because the values for x, y and a
// become known. The IR for this loop looks something like the following:
//
// %i = phi i32 [ 0, %entry ], [ %inc, %if.end ]
// %a = phi i32 [ 0, %entry ], [ 5, %if.end ]
// %y = phi i32 [ 0, %entry ], [ %add, %if.end ]
// %x = phi i32 [ 0, %entry ], [ %y, %if.end ]
// ...
// tail call void @_Z1gi(i32 signext %x)
// tail call void @_Z1gi(i32 signext %a)
// %add = add nuw nsw i32 %a, 1
// %inc = add nuw nsw i32 %i, 1
// %exitcond = icmp eq i32 %inc, 100000
// br i1 %exitcond, label %for.cond.cleanup, label %for.body
//
// The arguments for the calls to g will become known after 3 iterations
// of the loop, because the phi nodes values become known after 3 iterations
// of the loop (ie, they are known on the 4th iteration, so peel 3 iterations).
// The first iteration has g(0), g(0); the second has g(0), g(5); the
// third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5).
// Now consider the phi nodes:
// %a is a phi with constants so it is determined after iteration 1.
// %y is a phi based on a constant and %a so it is determined on
// the iteration after %a is determined, so iteration 2.
// %x is a phi based on a constant and %y so it is determined on
// the iteration after %y, so iteration 3.
// %i is based on itself (and is an induction variable) so it is
// never determined.
// This means that peeling off 3 iterations will result in being able to
// remove the phi nodes for %a, %y, and %x. The arguments for the
// corresponding calls to g are determined and the code for computing
// x, y, and a can be removed.
//
// The PhiAnalyzer class calculates how many times a loop should be
// peeled based on the above analysis of the phi nodes in the loop while
// respecting the maximum specified.
class PhiAnalyzer {
public:
PhiAnalyzer(const Loop &L, unsigned MaxIterations);
// Calculate the sufficient minimum number of iterations of the loop to peel
// such that phi instructions become determined (subject to allowable limits)
std::optional<unsigned> calculateIterationsToPeel();
protected:
using PeelCounter = std::optional<unsigned>;
const PeelCounter Unknown = std::nullopt;
// Add 1 respecting Unknown and return Unknown if result over MaxIterations
PeelCounter addOne(PeelCounter PC) const {
if (PC == Unknown)
return Unknown;
return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown;
}
// Calculate the number of iterations after which the given value
// becomes an invariant.
PeelCounter calculate(const Value &);
const Loop &L;
const unsigned MaxIterations;
// Map of Values to number of iterations to invariance
SmallDenseMap<const Value *, PeelCounter> IterationsToInvariance;
};
PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations)
: L(L), MaxIterations(MaxIterations) {
assert(canPeel(&L) && "loop is not suitable for peeling");
assert(MaxIterations > 0 && "no peeling is allowed?");
}
// This function calculates the number of iterations after which the value
// becomes an invariant. The pre-calculated values are memorized in a map.
// N.B. This number will be Unknown or <= MaxIterations.
// The function is calculated according to the following definition:
// Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
// F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown)
// G(%y) = 0 if %y is a loop invariant
// G(%y) = G(%BackEdgeValue) if %y is a phi in the header block
// G(%y) = TODO: if %y is an expression based on phis and loop invariants
// The example looks like:
// %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration.
// %y = phi(0, 5)
// %a = %y + 1
// G(%y) = Unknown otherwise (including phi not in header block)
PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) {
// If we already know the answer, take it from the map.
auto I = IterationsToInvariance.find(&V);
if (I != IterationsToInvariance.end())
return I->second;
// Place Unknown to map to avoid infinite recursion. Such
// cycles can never stop on an invariant.
IterationsToInvariance[&V] = Unknown;
if (L.isLoopInvariant(&V))
// Loop invariant so known at start.
return (IterationsToInvariance[&V] = 0);
if (const PHINode *Phi = dyn_cast<PHINode>(&V)) {
if (Phi->getParent() != L.getHeader()) {
// Phi is not in header block so Unknown.
assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
return Unknown;
}
// We need to analyze the input from the back edge and add 1.
Value *Input = Phi->getIncomingValueForBlock(L.getLoopLatch());
PeelCounter Iterations = calculate(*Input);
assert(IterationsToInvariance[Input] == Iterations &&
"unexpected value saved");
return (IterationsToInvariance[Phi] = addOne(Iterations));
}
if (const Instruction *I = dyn_cast<Instruction>(&V)) {
if (isa<CmpInst>(I) || I->isBinaryOp()) {
// Binary instructions get the max of the operands.
PeelCounter LHS = calculate(*I->getOperand(0));
if (LHS == Unknown)
return Unknown;
PeelCounter RHS = calculate(*I->getOperand(1));
if (RHS == Unknown)
return Unknown;
return (IterationsToInvariance[I] = {std::max(*LHS, *RHS)});
}
if (I->isCast())
// Cast instructions get the value of the operand.
return (IterationsToInvariance[I] = calculate(*I->getOperand(0)));
}
// TODO: handle more expressions
// Everything else is Unknown.
assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
return Unknown;
}
std::optional<unsigned> PhiAnalyzer::calculateIterationsToPeel() {
unsigned Iterations = 0;
for (auto &PHI : L.getHeader()->phis()) {
PeelCounter ToInvariance = calculate(PHI);
if (ToInvariance != Unknown) {
assert(*ToInvariance <= MaxIterations && "bad result in phi analysis");
Iterations = std::max(Iterations, *ToInvariance);
if (Iterations == MaxIterations)
break;
}
}
assert((Iterations <= MaxIterations) && "bad result in phi analysis");
return Iterations ? std::optional<unsigned>(Iterations) : std::nullopt;
}
} // unnamed namespace
// Try to find any invariant memory reads that will become dereferenceable in
// the remainder loop after peeling. The load must also be used (transitively)
// by an exit condition. Returns the number of iterations to peel off (at the
// moment either 0 or 1).
static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L,
DominatorTree &DT,
AssumptionCache *AC) {
// Skip loops with a single exiting block, because there should be no benefit
// for the heuristic below.
if (L.getExitingBlock())
return 0;
// All non-latch exit blocks must have an UnreachableInst terminator.
// Otherwise the heuristic below may not be profitable.
SmallVector<BasicBlock *, 4> Exits;
L.getUniqueNonLatchExitBlocks(Exits);
if (any_of(Exits, [](const BasicBlock *BB) {
return !isa<UnreachableInst>(BB->getTerminator());
}))
return 0;
// Now look for invariant loads that dominate the latch and are not known to
// be dereferenceable. If there are such loads and no writes, they will become
// dereferenceable in the loop if the first iteration is peeled off. Also
// collect the set of instructions controlled by such loads. Only peel if an
// exit condition uses (transitively) such a load.
BasicBlock *Header = L.getHeader();
BasicBlock *Latch = L.getLoopLatch();
SmallPtrSet<Value *, 8> LoadUsers;
const DataLayout &DL = L.getHeader()->getModule()->getDataLayout();
for (BasicBlock *BB : L.blocks()) {
for (Instruction &I : *BB) {
if (I.mayWriteToMemory())
return 0;
auto Iter = LoadUsers.find(&I);
if (Iter != LoadUsers.end()) {
for (Value *U : I.users())
LoadUsers.insert(U);
}
// Do not look for reads in the header; they can already be hoisted
// without peeling.
if (BB == Header)
continue;
if (auto *LI = dyn_cast<LoadInst>(&I)) {
Value *Ptr = LI->getPointerOperand();
if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) &&
!isDereferenceablePointer(Ptr, LI->getType(), DL, LI, AC, &DT))
for (Value *U : I.users())
LoadUsers.insert(U);
}
}
}
SmallVector<BasicBlock *> ExitingBlocks;
L.getExitingBlocks(ExitingBlocks);
if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) {
return LoadUsers.contains(Exiting->getTerminator());
}))
return 1;
return 0;
}
// Return the number of iterations to peel off that make conditions in the
// body true/false. For example, if we peel 2 iterations off the loop below,
// the condition i < 2 can be evaluated at compile time.
// for (i = 0; i < n; i++)
// if (i < 2)
// ..
// else
// ..
// }
static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
ScalarEvolution &SE) {
assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
unsigned DesiredPeelCount = 0;
// Do not peel the entire loop.
const SCEV *BE = SE.getConstantMaxBackedgeTakenCount(&L);
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(BE))
MaxPeelCount =
std::min((unsigned)SC->getAPInt().getLimitedValue() - 1, MaxPeelCount);
auto ComputePeelCount = [&](Value *Condition) -> void {
if (!Condition->getType()->isIntegerTy())
return;
Value *LeftVal, *RightVal;
CmpInst::Predicate Pred;
if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
return;
const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
const SCEV *RightSCEV = SE.getSCEV(RightVal);
// Do not consider predicates that are known to be true or false
// independently of the loop iteration.
if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV))
return;
// Check if we have a condition with one AddRec and one non AddRec
// expression. Normalize LeftSCEV to be the AddRec.
if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
if (isa<SCEVAddRecExpr>(RightSCEV)) {
std::swap(LeftSCEV, RightSCEV);
Pred = ICmpInst::getSwappedPredicate(Pred);
} else
return;
}
const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
// Avoid huge SCEV computations in the loop below, make sure we only
// consider AddRecs of the loop we are trying to peel.
if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
return;
if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
!SE.getMonotonicPredicateType(LeftAR, Pred))
return;
// Check if extending the current DesiredPeelCount lets us evaluate Pred
// or !Pred in the loop body statically.
unsigned NewPeelCount = DesiredPeelCount;
const SCEV *IterVal = LeftAR->evaluateAtIteration(
SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
// If the original condition is not known, get the negated predicate
// (which holds on the else branch) and check if it is known. This allows
// us to peel of iterations that make the original condition false.
if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
Pred = ICmpInst::getInversePredicate(Pred);
const SCEV *Step = LeftAR->getStepRecurrence(SE);
const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
&NewPeelCount]() {
IterVal = NextIterVal;
NextIterVal = SE.getAddExpr(IterVal, Step);
NewPeelCount++;
};
auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
return NewPeelCount < MaxPeelCount;
};
while (CanPeelOneMoreIteration() &&
SE.isKnownPredicate(Pred, IterVal, RightSCEV))
PeelOneMoreIteration();
// With *that* peel count, does the predicate !Pred become known in the
// first iteration of the loop body after peeling?
if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
RightSCEV))
return; // If not, give up.
// However, for equality comparisons, that isn't always sufficient to
// eliminate the comparsion in loop body, we may need to peel one more
// iteration. See if that makes !Pred become unknown again.
if (ICmpInst::isEquality(Pred) &&
!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
RightSCEV) &&
!SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
if (!CanPeelOneMoreIteration())
return; // Need to peel one more iteration, but can't. Give up.
PeelOneMoreIteration(); // Great!
}
DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
};
for (BasicBlock *BB : L.blocks()) {
for (Instruction &I : *BB) {
if (SelectInst *SI = dyn_cast<SelectInst>(&I))
ComputePeelCount(SI->getCondition());
}
auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || BI->isUnconditional())
continue;
// Ignore loop exit condition.
if (L.getLoopLatch() == BB)
continue;
ComputePeelCount(BI->getCondition());
}
return DesiredPeelCount;
}
/// This "heuristic" exactly matches implicit behavior which used to exist
/// inside getLoopEstimatedTripCount. It was added here to keep an
/// improvement inside that API from causing peeling to become more aggressive.
/// This should probably be removed.
static bool violatesLegacyMultiExitLoopCheck(Loop *L) {
BasicBlock *Latch = L->getLoopLatch();
if (!Latch)
return true;
BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
return true;
assert((LatchBR->getSuccessor(0) == L->getHeader() ||
LatchBR->getSuccessor(1) == L->getHeader()) &&
"At least one edge out of the latch must go to the header");
SmallVector<BasicBlock *, 4> ExitBlocks;
L->getUniqueNonLatchExitBlocks(ExitBlocks);
return any_of(ExitBlocks, [](const BasicBlock *EB) {
return !EB->getTerminatingDeoptimizeCall();
});
}
// Return the number of iterations we want to peel off.
void llvm::computePeelCount(Loop *L, unsigned LoopSize,
TargetTransformInfo::PeelingPreferences &PP,
unsigned TripCount, DominatorTree &DT,
ScalarEvolution &SE, AssumptionCache *AC,
unsigned Threshold) {
assert(LoopSize > 0 && "Zero loop size is not allowed!");
// Save the PP.PeelCount value set by the target in
// TTI.getPeelingPreferences or by the flag -unroll-peel-count.
unsigned TargetPeelCount = PP.PeelCount;
PP.PeelCount = 0;
if (!canPeel(L))
return;
// Only try to peel innermost loops by default.
// The constraint can be relaxed by the target in TTI.getPeelingPreferences
// or by the flag -unroll-allow-loop-nests-peeling.
if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
return;
// If the user provided a peel count, use that.
bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
if (UserPeelCount) {
LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
<< " iterations.\n");
PP.PeelCount = UnrollForcePeelCount;
PP.PeelProfiledIterations = true;
return;
}
// Skip peeling if it's disabled.
if (!PP.AllowPeeling)
return;
// Check that we can peel at least one iteration.
if (2 * LoopSize > Threshold)
return;
unsigned AlreadyPeeled = 0;
if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
AlreadyPeeled = *Peeled;
// Stop if we already peeled off the maximum number of iterations.
if (AlreadyPeeled >= UnrollPeelMaxCount)
return;
// Pay respect to limitations implied by loop size and the max peel count.
unsigned MaxPeelCount = UnrollPeelMaxCount;
MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);
// Start the max computation with the PP.PeelCount value set by the target
// in TTI.getPeelingPreferences or by the flag -unroll-peel-count.
unsigned DesiredPeelCount = TargetPeelCount;
// Here we try to get rid of Phis which become invariants after 1, 2, ..., N
// iterations of the loop. For this we compute the number for iterations after
// which every Phi is guaranteed to become an invariant, and try to peel the
// maximum number of iterations among these values, thus turning all those
// Phis into invariants.
if (MaxPeelCount > DesiredPeelCount) {
// Check how many iterations are useful for resolving Phis
auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel();
if (NumPeels)
DesiredPeelCount = std::max(DesiredPeelCount, *NumPeels);
}
DesiredPeelCount = std::max(DesiredPeelCount,
countToEliminateCompares(*L, MaxPeelCount, SE));
if (DesiredPeelCount == 0)
DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT, AC);
if (DesiredPeelCount > 0) {
DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
// Consider max peel count limitation.
assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
<< " iteration(s) to turn"
<< " some Phis into invariants.\n");
PP.PeelCount = DesiredPeelCount;
PP.PeelProfiledIterations = false;
return;
}
}
// Bail if we know the statically calculated trip count.
// In this case we rather prefer partial unrolling.
if (TripCount)
return;
// Do not apply profile base peeling if it is disabled.
if (!PP.PeelProfiledIterations)
return;
// If we don't know the trip count, but have reason to believe the average
// trip count is low, peeling should be beneficial, since we will usually
// hit the peeled section.
// We only do this in the presence of profile information, since otherwise
// our estimates of the trip count are not reliable enough.
if (L->getHeader()->getParent()->hasProfileData()) {
if (violatesLegacyMultiExitLoopCheck(L))
return;
std::optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L);
if (!EstimatedTripCount)
return;
LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is "
<< *EstimatedTripCount << "\n");
if (*EstimatedTripCount) {
if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) {
unsigned PeelCount = *EstimatedTripCount;
LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n");
PP.PeelCount = PeelCount;
return;
}
LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n");
LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
LLVM_DEBUG(dbgs() << "Max peel count by cost: "
<< (Threshold / LoopSize - 1) << "\n");
}
}
}
struct WeightInfo {
// Weights for current iteration.
SmallVector<uint32_t> Weights;
// Weights to subtract after each iteration.
const SmallVector<uint32_t> SubWeights;
};
/// Update the branch weights of an exiting block of a peeled-off loop
/// iteration.
/// Let F is a weight of the edge to continue (fallthrough) into the loop.
/// Let E is a weight of the edge to an exit.
/// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
/// go to exit.
/// Then, Estimated ExitCount = F / E.
/// For I-th (counting from 0) peeled off iteration we set the the weights for
/// the peeled exit as (EC - I, 1). It gives us reasonable distribution,
/// The probability to go to exit 1/(EC-I) increases. At the same time
/// the estimated exit count in the remainder loop reduces by I.
/// To avoid dealing with division rounding we can just multiple both part
/// of weights to E and use weight as (F - I * E, E).
static void updateBranchWeights(Instruction *Term, WeightInfo &Info) {
MDBuilder MDB(Term->getContext());
Term->setMetadata(LLVMContext::MD_prof,
MDB.createBranchWeights(Info.Weights));
for (auto [Idx, SubWeight] : enumerate(Info.SubWeights))
if (SubWeight != 0)
Info.Weights[Idx] = Info.Weights[Idx] > SubWeight
? Info.Weights[Idx] - SubWeight
: 1;
}
/// Initialize the weights for all exiting blocks.
static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos,
Loop *L) {
SmallVector<BasicBlock *> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
for (BasicBlock *ExitingBlock : ExitingBlocks) {
Instruction *Term = ExitingBlock->getTerminator();
SmallVector<uint32_t> Weights;
if (!extractBranchWeights(*Term, Weights))
continue;
// See the comment on updateBranchWeights() for an explanation of what we
// do here.
uint32_t FallThroughWeights = 0;
uint32_t ExitWeights = 0;
for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
if (L->contains(Succ))
FallThroughWeights += Weight;
else
ExitWeights += Weight;
}
// Don't try to update weights for degenerate case.
if (FallThroughWeights == 0)
continue;
SmallVector<uint32_t> SubWeights;
for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
if (!L->contains(Succ)) {
// Exit weights stay the same.
SubWeights.push_back(0);
continue;
}
// Subtract exit weights on each iteration, distributed across all
// fallthrough edges.
double W = (double)Weight / (double)FallThroughWeights;
SubWeights.push_back((uint32_t)(ExitWeights * W));
}
WeightInfos.insert({Term, {std::move(Weights), std::move(SubWeights)}});
}
}
/// Update the weights of original exiting block after peeling off all
/// iterations.
static void fixupBranchWeights(Instruction *Term, const WeightInfo &Info) {
MDBuilder MDB(Term->getContext());
Term->setMetadata(LLVMContext::MD_prof,
MDB.createBranchWeights(Info.Weights));
}
/// Clones the body of the loop L, putting it between \p InsertTop and \p
/// InsertBot.
/// \param IterNumber The serial number of the iteration currently being
/// peeled off.
/// \param ExitEdges The exit edges of the original loop.
/// \param[out] NewBlocks A list of the blocks in the newly created clone
/// \param[out] VMap The value map between the loop and the new clone.
/// \param LoopBlocks A helper for DFS-traversal of the loop.
/// \param LVMap A value-map that maps instructions from the original loop to
/// instructions in the last peeled-off iteration.
static void cloneLoopBlocks(
Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes,
ScalarEvolution &SE) {
BasicBlock *Header = L->getHeader();
BasicBlock *Latch = L->getLoopLatch();
BasicBlock *PreHeader = L->getLoopPreheader();
Function *F = Header->getParent();
LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
Loop *ParentLoop = L->getParentLoop();
// For each block in the original loop, create a new copy,
// and update the value map with the newly created values.
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
NewBlocks.push_back(NewBB);
// If an original block is an immediate child of the loop L, its copy
// is a child of a ParentLoop after peeling. If a block is a child of
// a nested loop, it is handled in the cloneLoop() call below.
if (ParentLoop && LI->getLoopFor(*BB) == L)
ParentLoop->addBasicBlockToLoop(NewBB, *LI);
VMap[*BB] = NewBB;
// If dominator tree is available, insert nodes to represent cloned blocks.
if (DT) {
if (Header == *BB)
DT->addNewBlock(NewBB, InsertTop);
else {
DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
// VMap must contain entry for IDom, as the iteration order is RPO.
DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
}
}
}
{
// Identify what other metadata depends on the cloned version. After
// cloning, replace the metadata with the corrected version for both
// memory instructions and noalias intrinsics.
std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
Header->getContext(), Ext);
}
// Recursively create the new Loop objects for nested loops, if any,
// to preserve LoopInfo.
for (Loop *ChildLoop : *L) {
cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
}
// Hook-up the control flow for the newly inserted blocks.
// The new header is hooked up directly to the "top", which is either
// the original loop preheader (for the first iteration) or the previous
// iteration's exiting block (for every other iteration)
InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
// Similarly, for the latch:
// The original exiting edge is still hooked up to the loop exit.
// The backedge now goes to the "bottom", which is either the loop's real
// header (for the last peeled iteration) or the copied header of the next
// iteration (for every other iteration)
BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
auto *LatchTerm = cast<Instruction>(NewLatch->getTerminator());
for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx)
if (LatchTerm->getSuccessor(idx) == Header) {
LatchTerm->setSuccessor(idx, InsertBot);
break;
}
if (DT)
DT->changeImmediateDominator(InsertBot, NewLatch);
// The new copy of the loop body starts with a bunch of PHI nodes
// that pick an incoming value from either the preheader, or the previous
// loop iteration. Since this copy is no longer part of the loop, we
// resolve this statically:
// For the first iteration, we use the value from the preheader directly.
// For any other iteration, we replace the phi with the value generated by
// the immediately preceding clone of the loop body (which represents
// the previous iteration).
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
if (IterNumber == 0) {
VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
} else {
Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
if (LatchInst && L->contains(LatchInst))
VMap[&*I] = LVMap[LatchInst];
else
VMap[&*I] = LatchVal;
}
NewPHI->eraseFromParent();
}
// Fix up the outgoing values - we need to add a value for the iteration
// we've just created. Note that this must happen *after* the incoming
// values are adjusted, since the value going out of the latch may also be
// a value coming into the header.
for (auto Edge : ExitEdges)
for (PHINode &PHI : Edge.second->phis()) {
Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
if (LatchInst && L->contains(LatchInst))
LatchVal = VMap[LatchVal];
PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
SE.forgetValue(&PHI);
}
// LastValueMap is updated with the values for the current loop
// which are used the next time this function is called.
for (auto KV : VMap)
LVMap[KV.first] = KV.second;
}
TargetTransformInfo::PeelingPreferences
llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE,
const TargetTransformInfo &TTI,
std::optional<bool> UserAllowPeeling,
std::optional<bool> UserAllowProfileBasedPeeling,
bool UnrollingSpecficValues) {
TargetTransformInfo::PeelingPreferences PP;
// Set the default values.
PP.PeelCount = 0;
PP.AllowPeeling = true;
PP.AllowLoopNestsPeeling = false;
PP.PeelProfiledIterations = true;
// Get the target specifc values.
TTI.getPeelingPreferences(L, SE, PP);
// User specified values using cl::opt.
if (UnrollingSpecficValues) {
if (UnrollPeelCount.getNumOccurrences() > 0)
PP.PeelCount = UnrollPeelCount;
if (UnrollAllowPeeling.getNumOccurrences() > 0)
PP.AllowPeeling = UnrollAllowPeeling;
if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
}
// User specifed values provided by argument.
if (UserAllowPeeling)
PP.AllowPeeling = *UserAllowPeeling;
if (UserAllowProfileBasedPeeling)
PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
return PP;
}
/// Peel off the first \p PeelCount iterations of loop \p L.
///
/// Note that this does not peel them off as a single straight-line block.
/// Rather, each iteration is peeled off separately, and needs to check the
/// exit condition.
/// For loops that dynamically execute \p PeelCount iterations or less
/// this provides a benefit, since the peeled off iterations, which account
/// for the bulk of dynamic execution, can be further simplified by scalar
/// optimizations.
bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC,
bool PreserveLCSSA, ValueToValueMapTy &LVMap) {
assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
LoopBlocksDFS LoopBlocks(L);
LoopBlocks.perform(LI);
BasicBlock *Header = L->getHeader();
BasicBlock *PreHeader = L->getLoopPreheader();
BasicBlock *Latch = L->getLoopLatch();
SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
L->getExitEdges(ExitEdges);
// Remember dominators of blocks we might reach through exits to change them
// later. Immediate dominator of such block might change, because we add more
// routes which can lead to the exit: we can reach it from the peeled
// iterations too.
DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom;
for (auto *BB : L->blocks()) {
auto *BBDomNode = DT.getNode(BB);
SmallVector<BasicBlock *, 16> ChildrenToUpdate;
for (auto *ChildDomNode : BBDomNode->children()) {
auto *ChildBB = ChildDomNode->getBlock();
if (!L->contains(ChildBB))
ChildrenToUpdate.push_back(ChildBB);
}
// The new idom of the block will be the nearest common dominator
// of all copies of the previous idom. This is equivalent to the
// nearest common dominator of the previous idom and the first latch,
// which dominates all copies of the previous idom.
BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch);
for (auto *ChildBB : ChildrenToUpdate)
NonLoopBlocksIDom[ChildBB] = NewIDom;
}
Function *F = Header->getParent();
// Set up all the necessary basic blocks. It is convenient to split the
// preheader into 3 parts - two blocks to anchor the peeled copy of the loop
// body, and a new preheader for the "real" loop.
// Peeling the first iteration transforms.
//
// PreHeader:
// ...
// Header:
// LoopBody
// If (cond) goto Header
// Exit:
//
// into
//
// InsertTop:
// LoopBody
// If (!cond) goto Exit
// InsertBot:
// NewPreHeader:
// ...
// Header:
// LoopBody
// If (cond) goto Header
// Exit:
//
// Each following iteration will split the current bottom anchor in two,
// and put the new copy of the loop body between these two blocks. That is,
// after peeling another iteration from the example above, we'll split
// InsertBot, and get:
//
// InsertTop:
// LoopBody
// If (!cond) goto Exit
// InsertBot:
// LoopBody
// If (!cond) goto Exit
// InsertBot.next:
// NewPreHeader:
// ...
// Header:
// LoopBody
// If (cond) goto Header
// Exit:
BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI);
BasicBlock *InsertBot =
SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI);
BasicBlock *NewPreHeader =
SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
InsertTop->setName(Header->getName() + ".peel.begin");
InsertBot->setName(Header->getName() + ".peel.next");
NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
Instruction *LatchTerm =
cast<Instruction>(cast<BasicBlock>(Latch)->getTerminator());
// If we have branch weight information, we'll want to update it for the
// newly created branches.
DenseMap<Instruction *, WeightInfo> Weights;
initBranchWeights(Weights, L);
// Identify what noalias metadata is inside the loop: if it is inside the
// loop, the associated metadata must be cloned for each iteration.
SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
// For each peeled-off iteration, make a copy of the loop.
for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
SmallVector<BasicBlock *, 8> NewBlocks;
ValueToValueMapTy VMap;
cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
LoopBlocks, VMap, LVMap, &DT, LI,
LoopLocalNoAliasDeclScopes, *SE);
// Remap to use values from the current iteration instead of the
// previous one.
remapInstructionsInBlocks(NewBlocks, VMap);
// Update IDoms of the blocks reachable through exits.
if (Iter == 0)
for (auto BBIDom : NonLoopBlocksIDom)
DT.changeImmediateDominator(BBIDom.first,
cast<BasicBlock>(LVMap[BBIDom.second]));
#ifdef EXPENSIVE_CHECKS
assert(DT.verify(DominatorTree::VerificationLevel::Fast));
#endif
for (auto &[Term, Info] : Weights) {
auto *TermCopy = cast<Instruction>(VMap[Term]);
updateBranchWeights(TermCopy, Info);
}
// Remove Loop metadata from the latch branch instruction
// because it is not the Loop's latch branch anymore.
auto *LatchTermCopy = cast<Instruction>(VMap[LatchTerm]);
LatchTermCopy->setMetadata(LLVMContext::MD_loop, nullptr);
InsertTop = InsertBot;
InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
InsertBot->setName(Header->getName() + ".peel.next");
F->splice(InsertTop->getIterator(), F, NewBlocks[0]->getIterator(),
F->end());
}
// Now adjust the phi nodes in the loop header to get their initial values
// from the last peeled-off iteration instead of the preheader.
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
PHINode *PHI = cast<PHINode>(I);
Value *NewVal = PHI->getIncomingValueForBlock(Latch);
Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
if (LatchInst && L->contains(LatchInst))
NewVal = LVMap[LatchInst];
PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
}
for (const auto &[Term, Info] : Weights)
fixupBranchWeights(Term, Info);
// Update Metadata for count of peeled off iterations.
unsigned AlreadyPeeled = 0;
if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
AlreadyPeeled = *Peeled;
addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
if (Loop *ParentLoop = L->getParentLoop())
L = ParentLoop;
// We modified the loop, update SE.
SE->forgetTopmostLoop(L);
SE->forgetBlockAndLoopDispositions();
#ifdef EXPENSIVE_CHECKS
// Finally DomtTree must be correct.
assert(DT.verify(DominatorTree::VerificationLevel::Fast));
#endif
// FIXME: Incrementally update loop-simplify
simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA);
NumPeeled++;
return true;
}
|