1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
|
//===- LowerMemIntrinsics.cpp ----------------------------------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <optional>
#define DEBUG_TYPE "lower-mem-intrinsics"
using namespace llvm;
void llvm::createMemCpyLoopKnownSize(
Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr,
ConstantInt *CopyLen, Align SrcAlign, Align DstAlign, bool SrcIsVolatile,
bool DstIsVolatile, bool CanOverlap, const TargetTransformInfo &TTI,
std::optional<uint32_t> AtomicElementSize) {
// No need to expand zero length copies.
if (CopyLen->isZero())
return;
BasicBlock *PreLoopBB = InsertBefore->getParent();
BasicBlock *PostLoopBB = nullptr;
Function *ParentFunc = PreLoopBB->getParent();
LLVMContext &Ctx = PreLoopBB->getContext();
const DataLayout &DL = ParentFunc->getParent()->getDataLayout();
MDBuilder MDB(Ctx);
MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain("MemCopyDomain");
StringRef Name = "MemCopyAliasScope";
MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
Type *TypeOfCopyLen = CopyLen->getType();
Type *LoopOpType = TTI.getMemcpyLoopLoweringType(
Ctx, CopyLen, SrcAS, DstAS, SrcAlign.value(), DstAlign.value(),
AtomicElementSize);
assert((!AtomicElementSize || !LoopOpType->isVectorTy()) &&
"Atomic memcpy lowering is not supported for vector operand type");
unsigned LoopOpSize = DL.getTypeStoreSize(LoopOpType);
assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) &&
"Atomic memcpy lowering is not supported for selected operand size");
uint64_t LoopEndCount = CopyLen->getZExtValue() / LoopOpSize;
if (LoopEndCount != 0) {
// Split
PostLoopBB = PreLoopBB->splitBasicBlock(InsertBefore, "memcpy-split");
BasicBlock *LoopBB =
BasicBlock::Create(Ctx, "load-store-loop", ParentFunc, PostLoopBB);
PreLoopBB->getTerminator()->setSuccessor(0, LoopBB);
IRBuilder<> PLBuilder(PreLoopBB->getTerminator());
// Cast the Src and Dst pointers to pointers to the loop operand type (if
// needed).
PointerType *SrcOpType = PointerType::get(LoopOpType, SrcAS);
PointerType *DstOpType = PointerType::get(LoopOpType, DstAS);
if (SrcAddr->getType() != SrcOpType) {
SrcAddr = PLBuilder.CreateBitCast(SrcAddr, SrcOpType);
}
if (DstAddr->getType() != DstOpType) {
DstAddr = PLBuilder.CreateBitCast(DstAddr, DstOpType);
}
Align PartDstAlign(commonAlignment(DstAlign, LoopOpSize));
Align PartSrcAlign(commonAlignment(SrcAlign, LoopOpSize));
IRBuilder<> LoopBuilder(LoopBB);
PHINode *LoopIndex = LoopBuilder.CreatePHI(TypeOfCopyLen, 2, "loop-index");
LoopIndex->addIncoming(ConstantInt::get(TypeOfCopyLen, 0U), PreLoopBB);
// Loop Body
Value *SrcGEP =
LoopBuilder.CreateInBoundsGEP(LoopOpType, SrcAddr, LoopIndex);
LoadInst *Load = LoopBuilder.CreateAlignedLoad(LoopOpType, SrcGEP,
PartSrcAlign, SrcIsVolatile);
if (!CanOverlap) {
// Set alias scope for loads.
Load->setMetadata(LLVMContext::MD_alias_scope,
MDNode::get(Ctx, NewScope));
}
Value *DstGEP =
LoopBuilder.CreateInBoundsGEP(LoopOpType, DstAddr, LoopIndex);
StoreInst *Store = LoopBuilder.CreateAlignedStore(
Load, DstGEP, PartDstAlign, DstIsVolatile);
if (!CanOverlap) {
// Indicate that stores don't overlap loads.
Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
}
if (AtomicElementSize) {
Load->setAtomic(AtomicOrdering::Unordered);
Store->setAtomic(AtomicOrdering::Unordered);
}
Value *NewIndex =
LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(TypeOfCopyLen, 1U));
LoopIndex->addIncoming(NewIndex, LoopBB);
// Create the loop branch condition.
Constant *LoopEndCI = ConstantInt::get(TypeOfCopyLen, LoopEndCount);
LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpULT(NewIndex, LoopEndCI),
LoopBB, PostLoopBB);
}
uint64_t BytesCopied = LoopEndCount * LoopOpSize;
uint64_t RemainingBytes = CopyLen->getZExtValue() - BytesCopied;
if (RemainingBytes) {
IRBuilder<> RBuilder(PostLoopBB ? PostLoopBB->getFirstNonPHI()
: InsertBefore);
SmallVector<Type *, 5> RemainingOps;
TTI.getMemcpyLoopResidualLoweringType(RemainingOps, Ctx, RemainingBytes,
SrcAS, DstAS, SrcAlign.value(),
DstAlign.value(), AtomicElementSize);
for (auto *OpTy : RemainingOps) {
Align PartSrcAlign(commonAlignment(SrcAlign, BytesCopied));
Align PartDstAlign(commonAlignment(DstAlign, BytesCopied));
// Calculate the new index
unsigned OperandSize = DL.getTypeStoreSize(OpTy);
assert(
(!AtomicElementSize || OperandSize % *AtomicElementSize == 0) &&
"Atomic memcpy lowering is not supported for selected operand size");
uint64_t GepIndex = BytesCopied / OperandSize;
assert(GepIndex * OperandSize == BytesCopied &&
"Division should have no Remainder!");
// Cast source to operand type and load
PointerType *SrcPtrType = PointerType::get(OpTy, SrcAS);
Value *CastedSrc = SrcAddr->getType() == SrcPtrType
? SrcAddr
: RBuilder.CreateBitCast(SrcAddr, SrcPtrType);
Value *SrcGEP = RBuilder.CreateInBoundsGEP(
OpTy, CastedSrc, ConstantInt::get(TypeOfCopyLen, GepIndex));
LoadInst *Load =
RBuilder.CreateAlignedLoad(OpTy, SrcGEP, PartSrcAlign, SrcIsVolatile);
if (!CanOverlap) {
// Set alias scope for loads.
Load->setMetadata(LLVMContext::MD_alias_scope,
MDNode::get(Ctx, NewScope));
}
// Cast destination to operand type and store.
PointerType *DstPtrType = PointerType::get(OpTy, DstAS);
Value *CastedDst = DstAddr->getType() == DstPtrType
? DstAddr
: RBuilder.CreateBitCast(DstAddr, DstPtrType);
Value *DstGEP = RBuilder.CreateInBoundsGEP(
OpTy, CastedDst, ConstantInt::get(TypeOfCopyLen, GepIndex));
StoreInst *Store = RBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign,
DstIsVolatile);
if (!CanOverlap) {
// Indicate that stores don't overlap loads.
Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
}
if (AtomicElementSize) {
Load->setAtomic(AtomicOrdering::Unordered);
Store->setAtomic(AtomicOrdering::Unordered);
}
BytesCopied += OperandSize;
}
}
assert(BytesCopied == CopyLen->getZExtValue() &&
"Bytes copied should match size in the call!");
}
void llvm::createMemCpyLoopUnknownSize(
Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr, Value *CopyLen,
Align SrcAlign, Align DstAlign, bool SrcIsVolatile, bool DstIsVolatile,
bool CanOverlap, const TargetTransformInfo &TTI,
std::optional<uint32_t> AtomicElementSize) {
BasicBlock *PreLoopBB = InsertBefore->getParent();
BasicBlock *PostLoopBB =
PreLoopBB->splitBasicBlock(InsertBefore, "post-loop-memcpy-expansion");
Function *ParentFunc = PreLoopBB->getParent();
const DataLayout &DL = ParentFunc->getParent()->getDataLayout();
LLVMContext &Ctx = PreLoopBB->getContext();
MDBuilder MDB(Ctx);
MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain("MemCopyDomain");
StringRef Name = "MemCopyAliasScope";
MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
Type *LoopOpType = TTI.getMemcpyLoopLoweringType(
Ctx, CopyLen, SrcAS, DstAS, SrcAlign.value(), DstAlign.value(),
AtomicElementSize);
assert((!AtomicElementSize || !LoopOpType->isVectorTy()) &&
"Atomic memcpy lowering is not supported for vector operand type");
unsigned LoopOpSize = DL.getTypeStoreSize(LoopOpType);
assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) &&
"Atomic memcpy lowering is not supported for selected operand size");
IRBuilder<> PLBuilder(PreLoopBB->getTerminator());
PointerType *SrcOpType = PointerType::get(LoopOpType, SrcAS);
PointerType *DstOpType = PointerType::get(LoopOpType, DstAS);
if (SrcAddr->getType() != SrcOpType) {
SrcAddr = PLBuilder.CreateBitCast(SrcAddr, SrcOpType);
}
if (DstAddr->getType() != DstOpType) {
DstAddr = PLBuilder.CreateBitCast(DstAddr, DstOpType);
}
// Calculate the loop trip count, and remaining bytes to copy after the loop.
Type *CopyLenType = CopyLen->getType();
IntegerType *ILengthType = dyn_cast<IntegerType>(CopyLenType);
assert(ILengthType &&
"expected size argument to memcpy to be an integer type!");
Type *Int8Type = Type::getInt8Ty(Ctx);
bool LoopOpIsInt8 = LoopOpType == Int8Type;
ConstantInt *CILoopOpSize = ConstantInt::get(ILengthType, LoopOpSize);
Value *RuntimeLoopCount = LoopOpIsInt8 ?
CopyLen :
PLBuilder.CreateUDiv(CopyLen, CILoopOpSize);
BasicBlock *LoopBB =
BasicBlock::Create(Ctx, "loop-memcpy-expansion", ParentFunc, PostLoopBB);
IRBuilder<> LoopBuilder(LoopBB);
Align PartSrcAlign(commonAlignment(SrcAlign, LoopOpSize));
Align PartDstAlign(commonAlignment(DstAlign, LoopOpSize));
PHINode *LoopIndex = LoopBuilder.CreatePHI(CopyLenType, 2, "loop-index");
LoopIndex->addIncoming(ConstantInt::get(CopyLenType, 0U), PreLoopBB);
Value *SrcGEP = LoopBuilder.CreateInBoundsGEP(LoopOpType, SrcAddr, LoopIndex);
LoadInst *Load = LoopBuilder.CreateAlignedLoad(LoopOpType, SrcGEP,
PartSrcAlign, SrcIsVolatile);
if (!CanOverlap) {
// Set alias scope for loads.
Load->setMetadata(LLVMContext::MD_alias_scope, MDNode::get(Ctx, NewScope));
}
Value *DstGEP = LoopBuilder.CreateInBoundsGEP(LoopOpType, DstAddr, LoopIndex);
StoreInst *Store =
LoopBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign, DstIsVolatile);
if (!CanOverlap) {
// Indicate that stores don't overlap loads.
Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
}
if (AtomicElementSize) {
Load->setAtomic(AtomicOrdering::Unordered);
Store->setAtomic(AtomicOrdering::Unordered);
}
Value *NewIndex =
LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(CopyLenType, 1U));
LoopIndex->addIncoming(NewIndex, LoopBB);
bool requiresResidual =
!LoopOpIsInt8 && !(AtomicElementSize && LoopOpSize == AtomicElementSize);
if (requiresResidual) {
Type *ResLoopOpType = AtomicElementSize
? Type::getIntNTy(Ctx, *AtomicElementSize * 8)
: Int8Type;
unsigned ResLoopOpSize = DL.getTypeStoreSize(ResLoopOpType);
assert((ResLoopOpSize == AtomicElementSize ? *AtomicElementSize : 1) &&
"Store size is expected to match type size");
// Add in the
Value *RuntimeResidual = PLBuilder.CreateURem(CopyLen, CILoopOpSize);
Value *RuntimeBytesCopied = PLBuilder.CreateSub(CopyLen, RuntimeResidual);
// Loop body for the residual copy.
BasicBlock *ResLoopBB = BasicBlock::Create(Ctx, "loop-memcpy-residual",
PreLoopBB->getParent(),
PostLoopBB);
// Residual loop header.
BasicBlock *ResHeaderBB = BasicBlock::Create(
Ctx, "loop-memcpy-residual-header", PreLoopBB->getParent(), nullptr);
// Need to update the pre-loop basic block to branch to the correct place.
// branch to the main loop if the count is non-zero, branch to the residual
// loop if the copy size is smaller then 1 iteration of the main loop but
// non-zero and finally branch to after the residual loop if the memcpy
// size is zero.
ConstantInt *Zero = ConstantInt::get(ILengthType, 0U);
PLBuilder.CreateCondBr(PLBuilder.CreateICmpNE(RuntimeLoopCount, Zero),
LoopBB, ResHeaderBB);
PreLoopBB->getTerminator()->eraseFromParent();
LoopBuilder.CreateCondBr(
LoopBuilder.CreateICmpULT(NewIndex, RuntimeLoopCount), LoopBB,
ResHeaderBB);
// Determine if we need to branch to the residual loop or bypass it.
IRBuilder<> RHBuilder(ResHeaderBB);
RHBuilder.CreateCondBr(RHBuilder.CreateICmpNE(RuntimeResidual, Zero),
ResLoopBB, PostLoopBB);
// Copy the residual with single byte load/store loop.
IRBuilder<> ResBuilder(ResLoopBB);
PHINode *ResidualIndex =
ResBuilder.CreatePHI(CopyLenType, 2, "residual-loop-index");
ResidualIndex->addIncoming(Zero, ResHeaderBB);
Value *SrcAsResLoopOpType = ResBuilder.CreateBitCast(
SrcAddr, PointerType::get(ResLoopOpType, SrcAS));
Value *DstAsResLoopOpType = ResBuilder.CreateBitCast(
DstAddr, PointerType::get(ResLoopOpType, DstAS));
Value *FullOffset = ResBuilder.CreateAdd(RuntimeBytesCopied, ResidualIndex);
Value *SrcGEP = ResBuilder.CreateInBoundsGEP(
ResLoopOpType, SrcAsResLoopOpType, FullOffset);
LoadInst *Load = ResBuilder.CreateAlignedLoad(ResLoopOpType, SrcGEP,
PartSrcAlign, SrcIsVolatile);
if (!CanOverlap) {
// Set alias scope for loads.
Load->setMetadata(LLVMContext::MD_alias_scope,
MDNode::get(Ctx, NewScope));
}
Value *DstGEP = ResBuilder.CreateInBoundsGEP(
ResLoopOpType, DstAsResLoopOpType, FullOffset);
StoreInst *Store = ResBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign,
DstIsVolatile);
if (!CanOverlap) {
// Indicate that stores don't overlap loads.
Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
}
if (AtomicElementSize) {
Load->setAtomic(AtomicOrdering::Unordered);
Store->setAtomic(AtomicOrdering::Unordered);
}
Value *ResNewIndex = ResBuilder.CreateAdd(
ResidualIndex, ConstantInt::get(CopyLenType, ResLoopOpSize));
ResidualIndex->addIncoming(ResNewIndex, ResLoopBB);
// Create the loop branch condition.
ResBuilder.CreateCondBr(
ResBuilder.CreateICmpULT(ResNewIndex, RuntimeResidual), ResLoopBB,
PostLoopBB);
} else {
// In this case the loop operand type was a byte, and there is no need for a
// residual loop to copy the remaining memory after the main loop.
// We do however need to patch up the control flow by creating the
// terminators for the preloop block and the memcpy loop.
ConstantInt *Zero = ConstantInt::get(ILengthType, 0U);
PLBuilder.CreateCondBr(PLBuilder.CreateICmpNE(RuntimeLoopCount, Zero),
LoopBB, PostLoopBB);
PreLoopBB->getTerminator()->eraseFromParent();
LoopBuilder.CreateCondBr(
LoopBuilder.CreateICmpULT(NewIndex, RuntimeLoopCount), LoopBB,
PostLoopBB);
}
}
// Lower memmove to IR. memmove is required to correctly copy overlapping memory
// regions; therefore, it has to check the relative positions of the source and
// destination pointers and choose the copy direction accordingly.
//
// The code below is an IR rendition of this C function:
//
// void* memmove(void* dst, const void* src, size_t n) {
// unsigned char* d = dst;
// const unsigned char* s = src;
// if (s < d) {
// // copy backwards
// while (n--) {
// d[n] = s[n];
// }
// } else {
// // copy forward
// for (size_t i = 0; i < n; ++i) {
// d[i] = s[i];
// }
// }
// return dst;
// }
static void createMemMoveLoop(Instruction *InsertBefore, Value *SrcAddr,
Value *DstAddr, Value *CopyLen, Align SrcAlign,
Align DstAlign, bool SrcIsVolatile,
bool DstIsVolatile,
const TargetTransformInfo &TTI) {
Type *TypeOfCopyLen = CopyLen->getType();
BasicBlock *OrigBB = InsertBefore->getParent();
Function *F = OrigBB->getParent();
const DataLayout &DL = F->getParent()->getDataLayout();
// TODO: Use different element type if possible?
Type *EltTy = Type::getInt8Ty(F->getContext());
// Create the a comparison of src and dst, based on which we jump to either
// the forward-copy part of the function (if src >= dst) or the backwards-copy
// part (if src < dst).
// SplitBlockAndInsertIfThenElse conveniently creates the basic if-then-else
// structure. Its block terminators (unconditional branches) are replaced by
// the appropriate conditional branches when the loop is built.
ICmpInst *PtrCompare = new ICmpInst(InsertBefore, ICmpInst::ICMP_ULT,
SrcAddr, DstAddr, "compare_src_dst");
Instruction *ThenTerm, *ElseTerm;
SplitBlockAndInsertIfThenElse(PtrCompare, InsertBefore, &ThenTerm,
&ElseTerm);
// Each part of the function consists of two blocks:
// copy_backwards: used to skip the loop when n == 0
// copy_backwards_loop: the actual backwards loop BB
// copy_forward: used to skip the loop when n == 0
// copy_forward_loop: the actual forward loop BB
BasicBlock *CopyBackwardsBB = ThenTerm->getParent();
CopyBackwardsBB->setName("copy_backwards");
BasicBlock *CopyForwardBB = ElseTerm->getParent();
CopyForwardBB->setName("copy_forward");
BasicBlock *ExitBB = InsertBefore->getParent();
ExitBB->setName("memmove_done");
unsigned PartSize = DL.getTypeStoreSize(EltTy);
Align PartSrcAlign(commonAlignment(SrcAlign, PartSize));
Align PartDstAlign(commonAlignment(DstAlign, PartSize));
// Initial comparison of n == 0 that lets us skip the loops altogether. Shared
// between both backwards and forward copy clauses.
ICmpInst *CompareN =
new ICmpInst(OrigBB->getTerminator(), ICmpInst::ICMP_EQ, CopyLen,
ConstantInt::get(TypeOfCopyLen, 0), "compare_n_to_0");
// Copying backwards.
BasicBlock *LoopBB =
BasicBlock::Create(F->getContext(), "copy_backwards_loop", F, CopyForwardBB);
IRBuilder<> LoopBuilder(LoopBB);
PHINode *LoopPhi = LoopBuilder.CreatePHI(TypeOfCopyLen, 0);
Value *IndexPtr = LoopBuilder.CreateSub(
LoopPhi, ConstantInt::get(TypeOfCopyLen, 1), "index_ptr");
Value *Element = LoopBuilder.CreateAlignedLoad(
EltTy, LoopBuilder.CreateInBoundsGEP(EltTy, SrcAddr, IndexPtr),
PartSrcAlign, "element");
LoopBuilder.CreateAlignedStore(
Element, LoopBuilder.CreateInBoundsGEP(EltTy, DstAddr, IndexPtr),
PartDstAlign);
LoopBuilder.CreateCondBr(
LoopBuilder.CreateICmpEQ(IndexPtr, ConstantInt::get(TypeOfCopyLen, 0)),
ExitBB, LoopBB);
LoopPhi->addIncoming(IndexPtr, LoopBB);
LoopPhi->addIncoming(CopyLen, CopyBackwardsBB);
BranchInst::Create(ExitBB, LoopBB, CompareN, ThenTerm);
ThenTerm->eraseFromParent();
// Copying forward.
BasicBlock *FwdLoopBB =
BasicBlock::Create(F->getContext(), "copy_forward_loop", F, ExitBB);
IRBuilder<> FwdLoopBuilder(FwdLoopBB);
PHINode *FwdCopyPhi = FwdLoopBuilder.CreatePHI(TypeOfCopyLen, 0, "index_ptr");
Value *SrcGEP = FwdLoopBuilder.CreateInBoundsGEP(EltTy, SrcAddr, FwdCopyPhi);
Value *FwdElement =
FwdLoopBuilder.CreateAlignedLoad(EltTy, SrcGEP, PartSrcAlign, "element");
Value *DstGEP = FwdLoopBuilder.CreateInBoundsGEP(EltTy, DstAddr, FwdCopyPhi);
FwdLoopBuilder.CreateAlignedStore(FwdElement, DstGEP, PartDstAlign);
Value *FwdIndexPtr = FwdLoopBuilder.CreateAdd(
FwdCopyPhi, ConstantInt::get(TypeOfCopyLen, 1), "index_increment");
FwdLoopBuilder.CreateCondBr(FwdLoopBuilder.CreateICmpEQ(FwdIndexPtr, CopyLen),
ExitBB, FwdLoopBB);
FwdCopyPhi->addIncoming(FwdIndexPtr, FwdLoopBB);
FwdCopyPhi->addIncoming(ConstantInt::get(TypeOfCopyLen, 0), CopyForwardBB);
BranchInst::Create(ExitBB, FwdLoopBB, CompareN, ElseTerm);
ElseTerm->eraseFromParent();
}
static void createMemSetLoop(Instruction *InsertBefore, Value *DstAddr,
Value *CopyLen, Value *SetValue, Align DstAlign,
bool IsVolatile) {
Type *TypeOfCopyLen = CopyLen->getType();
BasicBlock *OrigBB = InsertBefore->getParent();
Function *F = OrigBB->getParent();
const DataLayout &DL = F->getParent()->getDataLayout();
BasicBlock *NewBB =
OrigBB->splitBasicBlock(InsertBefore, "split");
BasicBlock *LoopBB
= BasicBlock::Create(F->getContext(), "loadstoreloop", F, NewBB);
IRBuilder<> Builder(OrigBB->getTerminator());
// Cast pointer to the type of value getting stored
unsigned dstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
DstAddr = Builder.CreateBitCast(DstAddr,
PointerType::get(SetValue->getType(), dstAS));
Builder.CreateCondBr(
Builder.CreateICmpEQ(ConstantInt::get(TypeOfCopyLen, 0), CopyLen), NewBB,
LoopBB);
OrigBB->getTerminator()->eraseFromParent();
unsigned PartSize = DL.getTypeStoreSize(SetValue->getType());
Align PartAlign(commonAlignment(DstAlign, PartSize));
IRBuilder<> LoopBuilder(LoopBB);
PHINode *LoopIndex = LoopBuilder.CreatePHI(TypeOfCopyLen, 0);
LoopIndex->addIncoming(ConstantInt::get(TypeOfCopyLen, 0), OrigBB);
LoopBuilder.CreateAlignedStore(
SetValue,
LoopBuilder.CreateInBoundsGEP(SetValue->getType(), DstAddr, LoopIndex),
PartAlign, IsVolatile);
Value *NewIndex =
LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(TypeOfCopyLen, 1));
LoopIndex->addIncoming(NewIndex, LoopBB);
LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpULT(NewIndex, CopyLen), LoopBB,
NewBB);
}
template <typename T>
static bool canOverlap(MemTransferBase<T> *Memcpy, ScalarEvolution *SE) {
if (SE) {
auto *SrcSCEV = SE->getSCEV(Memcpy->getRawSource());
auto *DestSCEV = SE->getSCEV(Memcpy->getRawDest());
if (SE->isKnownPredicateAt(CmpInst::ICMP_NE, SrcSCEV, DestSCEV, Memcpy))
return false;
}
return true;
}
void llvm::expandMemCpyAsLoop(MemCpyInst *Memcpy,
const TargetTransformInfo &TTI,
ScalarEvolution *SE) {
bool CanOverlap = canOverlap(Memcpy, SE);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Memcpy->getLength())) {
createMemCpyLoopKnownSize(
/* InsertBefore */ Memcpy,
/* SrcAddr */ Memcpy->getRawSource(),
/* DstAddr */ Memcpy->getRawDest(),
/* CopyLen */ CI,
/* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(),
/* DestAlign */ Memcpy->getDestAlign().valueOrOne(),
/* SrcIsVolatile */ Memcpy->isVolatile(),
/* DstIsVolatile */ Memcpy->isVolatile(),
/* CanOverlap */ CanOverlap,
/* TargetTransformInfo */ TTI);
} else {
createMemCpyLoopUnknownSize(
/* InsertBefore */ Memcpy,
/* SrcAddr */ Memcpy->getRawSource(),
/* DstAddr */ Memcpy->getRawDest(),
/* CopyLen */ Memcpy->getLength(),
/* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(),
/* DestAlign */ Memcpy->getDestAlign().valueOrOne(),
/* SrcIsVolatile */ Memcpy->isVolatile(),
/* DstIsVolatile */ Memcpy->isVolatile(),
/* CanOverlap */ CanOverlap,
/* TargetTransformInfo */ TTI);
}
}
bool llvm::expandMemMoveAsLoop(MemMoveInst *Memmove,
const TargetTransformInfo &TTI) {
Value *CopyLen = Memmove->getLength();
Value *SrcAddr = Memmove->getRawSource();
Value *DstAddr = Memmove->getRawDest();
Align SrcAlign = Memmove->getSourceAlign().valueOrOne();
Align DstAlign = Memmove->getDestAlign().valueOrOne();
bool SrcIsVolatile = Memmove->isVolatile();
bool DstIsVolatile = SrcIsVolatile;
IRBuilder<> CastBuilder(Memmove);
unsigned SrcAS = SrcAddr->getType()->getPointerAddressSpace();
unsigned DstAS = DstAddr->getType()->getPointerAddressSpace();
if (SrcAS != DstAS) {
if (!TTI.addrspacesMayAlias(SrcAS, DstAS)) {
// We may not be able to emit a pointer comparison, but we don't have
// to. Expand as memcpy.
if (ConstantInt *CI = dyn_cast<ConstantInt>(CopyLen)) {
createMemCpyLoopKnownSize(/*InsertBefore=*/Memmove, SrcAddr, DstAddr,
CI, SrcAlign, DstAlign, SrcIsVolatile,
DstIsVolatile,
/*CanOverlap=*/false, TTI);
} else {
createMemCpyLoopUnknownSize(/*InsertBefore=*/Memmove, SrcAddr, DstAddr,
CopyLen, SrcAlign, DstAlign, SrcIsVolatile,
DstIsVolatile,
/*CanOverlap=*/false, TTI);
}
return true;
}
if (TTI.isValidAddrSpaceCast(DstAS, SrcAS))
DstAddr = CastBuilder.CreateAddrSpaceCast(DstAddr, SrcAddr->getType());
else if (TTI.isValidAddrSpaceCast(SrcAS, DstAS))
SrcAddr = CastBuilder.CreateAddrSpaceCast(SrcAddr, DstAddr->getType());
else {
// We don't know generically if it's legal to introduce an
// addrspacecast. We need to know either if it's legal to insert an
// addrspacecast, or if the address spaces cannot alias.
LLVM_DEBUG(
dbgs() << "Do not know how to expand memmove between different "
"address spaces\n");
return false;
}
}
createMemMoveLoop(
/*InsertBefore=*/Memmove, SrcAddr, DstAddr, CopyLen, SrcAlign, DstAlign,
SrcIsVolatile, DstIsVolatile, TTI);
return true;
}
void llvm::expandMemSetAsLoop(MemSetInst *Memset) {
createMemSetLoop(/* InsertBefore */ Memset,
/* DstAddr */ Memset->getRawDest(),
/* CopyLen */ Memset->getLength(),
/* SetValue */ Memset->getValue(),
/* Alignment */ Memset->getDestAlign().valueOrOne(),
Memset->isVolatile());
}
void llvm::expandAtomicMemCpyAsLoop(AtomicMemCpyInst *AtomicMemcpy,
const TargetTransformInfo &TTI,
ScalarEvolution *SE) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(AtomicMemcpy->getLength())) {
createMemCpyLoopKnownSize(
/* InsertBefore */ AtomicMemcpy,
/* SrcAddr */ AtomicMemcpy->getRawSource(),
/* DstAddr */ AtomicMemcpy->getRawDest(),
/* CopyLen */ CI,
/* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(),
/* DestAlign */ AtomicMemcpy->getDestAlign().valueOrOne(),
/* SrcIsVolatile */ AtomicMemcpy->isVolatile(),
/* DstIsVolatile */ AtomicMemcpy->isVolatile(),
/* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec.
/* TargetTransformInfo */ TTI,
/* AtomicCpySize */ AtomicMemcpy->getElementSizeInBytes());
} else {
createMemCpyLoopUnknownSize(
/* InsertBefore */ AtomicMemcpy,
/* SrcAddr */ AtomicMemcpy->getRawSource(),
/* DstAddr */ AtomicMemcpy->getRawDest(),
/* CopyLen */ AtomicMemcpy->getLength(),
/* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(),
/* DestAlign */ AtomicMemcpy->getDestAlign().valueOrOne(),
/* SrcIsVolatile */ AtomicMemcpy->isVolatile(),
/* DstIsVolatile */ AtomicMemcpy->isVolatile(),
/* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec.
/* TargetTransformInfo */ TTI,
/* AtomicCpySize */ AtomicMemcpy->getElementSizeInBytes());
}
}
|