1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
//===-- MoveAutoInit.cpp - move auto-init inst closer to their use site----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass moves instruction maked as auto-init closer to the basic block that
// use it, eventually removing it from some control path of the function.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/MoveAutoInit.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
using namespace llvm;
#define DEBUG_TYPE "move-auto-init"
STATISTIC(NumMoved, "Number of instructions moved");
static cl::opt<unsigned> MoveAutoInitThreshold(
"move-auto-init-threshold", cl::Hidden, cl::init(128),
cl::desc("Maximum instructions to analyze per moved initialization"));
static bool hasAutoInitMetadata(const Instruction &I) {
return I.hasMetadata(LLVMContext::MD_annotation) &&
any_of(I.getMetadata(LLVMContext::MD_annotation)->operands(),
[](const MDOperand &Op) { return Op.equalsStr("auto-init"); });
}
static std::optional<MemoryLocation> writeToAlloca(const Instruction &I) {
MemoryLocation ML;
if (auto *MI = dyn_cast<MemIntrinsic>(&I))
ML = MemoryLocation::getForDest(MI);
else if (auto *SI = dyn_cast<StoreInst>(&I))
ML = MemoryLocation::get(SI);
else
assert(false && "memory location set");
if (isa<AllocaInst>(getUnderlyingObject(ML.Ptr)))
return ML;
else
return {};
}
/// Finds a BasicBlock in the CFG where instruction `I` can be moved to while
/// not changing the Memory SSA ordering and being guarded by at least one
/// condition.
static BasicBlock *usersDominator(const MemoryLocation &ML, Instruction *I,
DominatorTree &DT, MemorySSA &MSSA) {
BasicBlock *CurrentDominator = nullptr;
MemoryUseOrDef &IMA = *MSSA.getMemoryAccess(I);
BatchAAResults AA(MSSA.getAA());
SmallPtrSet<MemoryAccess *, 8> Visited;
auto AsMemoryAccess = [](User *U) { return cast<MemoryAccess>(U); };
SmallVector<MemoryAccess *> WorkList(map_range(IMA.users(), AsMemoryAccess));
while (!WorkList.empty()) {
MemoryAccess *MA = WorkList.pop_back_val();
if (!Visited.insert(MA).second)
continue;
if (Visited.size() > MoveAutoInitThreshold)
return nullptr;
bool FoundClobberingUser = false;
if (auto *M = dyn_cast<MemoryUseOrDef>(MA)) {
Instruction *MI = M->getMemoryInst();
// If this memory instruction may not clobber `I`, we can skip it.
// LifetimeEnd is a valid user, but we do not want it in the user
// dominator.
if (AA.getModRefInfo(MI, ML) != ModRefInfo::NoModRef &&
!MI->isLifetimeStartOrEnd() && MI != I) {
FoundClobberingUser = true;
CurrentDominator = CurrentDominator
? DT.findNearestCommonDominator(CurrentDominator,
MI->getParent())
: MI->getParent();
}
}
if (!FoundClobberingUser) {
auto UsersAsMemoryAccesses = map_range(MA->users(), AsMemoryAccess);
append_range(WorkList, UsersAsMemoryAccesses);
}
}
return CurrentDominator;
}
static bool runMoveAutoInit(Function &F, DominatorTree &DT, MemorySSA &MSSA) {
BasicBlock &EntryBB = F.getEntryBlock();
SmallVector<std::pair<Instruction *, BasicBlock *>> JobList;
//
// Compute movable instructions.
//
for (Instruction &I : EntryBB) {
if (!hasAutoInitMetadata(I))
continue;
std::optional<MemoryLocation> ML = writeToAlloca(I);
if (!ML)
continue;
if (I.isVolatile())
continue;
BasicBlock *UsersDominator = usersDominator(ML.value(), &I, DT, MSSA);
if (!UsersDominator)
continue;
if (UsersDominator == &EntryBB)
continue;
// Traverse the CFG to detect cycles `UsersDominator` would be part of.
SmallPtrSet<BasicBlock *, 8> TransitiveSuccessors;
SmallVector<BasicBlock *> WorkList(successors(UsersDominator));
bool HasCycle = false;
while (!WorkList.empty()) {
BasicBlock *CurrBB = WorkList.pop_back_val();
if (CurrBB == UsersDominator)
// No early exit because we want to compute the full set of transitive
// successors.
HasCycle = true;
for (BasicBlock *Successor : successors(CurrBB)) {
if (!TransitiveSuccessors.insert(Successor).second)
continue;
WorkList.push_back(Successor);
}
}
// Don't insert if that could create multiple execution of I,
// but we can insert it in the non back-edge predecessors, if it exists.
if (HasCycle) {
BasicBlock *UsersDominatorHead = UsersDominator;
while (BasicBlock *UniquePredecessor =
UsersDominatorHead->getUniquePredecessor())
UsersDominatorHead = UniquePredecessor;
if (UsersDominatorHead == &EntryBB)
continue;
BasicBlock *DominatingPredecessor = nullptr;
for (BasicBlock *Pred : predecessors(UsersDominatorHead)) {
// If one of the predecessor of the dominator also transitively is a
// successor, moving to the dominator would do the inverse of loop
// hoisting, and we don't want that.
if (TransitiveSuccessors.count(Pred))
continue;
DominatingPredecessor =
DominatingPredecessor
? DT.findNearestCommonDominator(DominatingPredecessor, Pred)
: Pred;
}
if (!DominatingPredecessor || DominatingPredecessor == &EntryBB)
continue;
UsersDominator = DominatingPredecessor;
}
// CatchSwitchInst blocks can only have one instruction, so they are not
// good candidates for insertion.
while (isa<CatchSwitchInst>(UsersDominator->getFirstInsertionPt())) {
for (BasicBlock *Pred : predecessors(UsersDominator))
UsersDominator = DT.findNearestCommonDominator(UsersDominator, Pred);
}
// We finally found a place where I can be moved while not introducing extra
// execution, and guarded by at least one condition.
if (UsersDominator != &EntryBB)
JobList.emplace_back(&I, UsersDominator);
}
//
// Perform the actual substitution.
//
if (JobList.empty())
return false;
MemorySSAUpdater MSSAU(&MSSA);
// Reverse insertion to respect relative order between instructions:
// if two instructions are moved from the same BB to the same BB, we insert
// the second one in the front, then the first on top of it.
for (auto &Job : reverse(JobList)) {
Job.first->moveBefore(&*Job.second->getFirstInsertionPt());
MSSAU.moveToPlace(MSSA.getMemoryAccess(Job.first), Job.first->getParent(),
MemorySSA::InsertionPlace::Beginning);
}
if (VerifyMemorySSA)
MSSA.verifyMemorySSA();
NumMoved += JobList.size();
return true;
}
PreservedAnalyses MoveAutoInitPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
if (!runMoveAutoInit(F, DT, MSSA))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<MemorySSAAnalysis>();
PA.preserveSet<CFGAnalyses>();
return PA;
}
|