1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
|
//===- LoopVectorizationLegality.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides loop vectorization legality analysis. Original code
// resided in LoopVectorize.cpp for a long time.
//
// At this point, it is implemented as a utility class, not as an analysis
// pass. It should be easy to create an analysis pass around it if there
// is a need (but D45420 needs to happen first).
//
#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include "llvm/Transforms/Vectorize/LoopVectorize.h"
using namespace llvm;
using namespace PatternMatch;
#define LV_NAME "loop-vectorize"
#define DEBUG_TYPE LV_NAME
static cl::opt<bool>
EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
cl::desc("Enable if-conversion during vectorization."));
static cl::opt<bool>
AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden,
cl::desc("Enable recognition of non-constant strided "
"pointer induction variables."));
namespace llvm {
cl::opt<bool>
HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
cl::desc("Allow enabling loop hints to reorder "
"FP operations during vectorization."));
}
// TODO: Move size-based thresholds out of legality checking, make cost based
// decisions instead of hard thresholds.
static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
"vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
cl::desc("The maximum number of SCEV checks allowed."));
static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
"pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
cl::desc("The maximum number of SCEV checks allowed with a "
"vectorize(enable) pragma"));
static cl::opt<LoopVectorizeHints::ScalableForceKind>
ForceScalableVectorization(
"scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
cl::Hidden,
cl::desc("Control whether the compiler can use scalable vectors to "
"vectorize a loop"),
cl::values(
clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
"Scalable vectorization is disabled."),
clEnumValN(
LoopVectorizeHints::SK_PreferScalable, "preferred",
"Scalable vectorization is available and favored when the "
"cost is inconclusive."),
clEnumValN(
LoopVectorizeHints::SK_PreferScalable, "on",
"Scalable vectorization is available and favored when the "
"cost is inconclusive.")));
/// Maximum vectorization interleave count.
static const unsigned MaxInterleaveFactor = 16;
namespace llvm {
bool LoopVectorizeHints::Hint::validate(unsigned Val) {
switch (Kind) {
case HK_WIDTH:
return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
case HK_INTERLEAVE:
return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
case HK_FORCE:
return (Val <= 1);
case HK_ISVECTORIZED:
case HK_PREDICATE:
case HK_SCALABLE:
return (Val == 0 || Val == 1);
}
return false;
}
LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
bool InterleaveOnlyWhenForced,
OptimizationRemarkEmitter &ORE,
const TargetTransformInfo *TTI)
: Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
Force("vectorize.enable", FK_Undefined, HK_FORCE),
IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
TheLoop(L), ORE(ORE) {
// Populate values with existing loop metadata.
getHintsFromMetadata();
// force-vector-interleave overrides DisableInterleaving.
if (VectorizerParams::isInterleaveForced())
Interleave.Value = VectorizerParams::VectorizationInterleave;
// If the metadata doesn't explicitly specify whether to enable scalable
// vectorization, then decide based on the following criteria (increasing
// level of priority):
// - Target default
// - Metadata width
// - Force option (always overrides)
if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) {
if (TTI)
Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
: SK_FixedWidthOnly;
if (Width.Value)
// If the width is set, but the metadata says nothing about the scalable
// property, then assume it concerns only a fixed-width UserVF.
// If width is not set, the flag takes precedence.
Scalable.Value = SK_FixedWidthOnly;
}
// If the flag is set to force any use of scalable vectors, override the loop
// hints.
if (ForceScalableVectorization.getValue() !=
LoopVectorizeHints::SK_Unspecified)
Scalable.Value = ForceScalableVectorization.getValue();
// Scalable vectorization is disabled if no preference is specified.
if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
Scalable.Value = SK_FixedWidthOnly;
if (IsVectorized.Value != 1)
// If the vectorization width and interleaving count are both 1 then
// consider the loop to have been already vectorized because there's
// nothing more that we can do.
IsVectorized.Value =
getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
<< "LV: Interleaving disabled by the pass manager\n");
}
void LoopVectorizeHints::setAlreadyVectorized() {
LLVMContext &Context = TheLoop->getHeader()->getContext();
MDNode *IsVectorizedMD = MDNode::get(
Context,
{MDString::get(Context, "llvm.loop.isvectorized"),
ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
MDNode *LoopID = TheLoop->getLoopID();
MDNode *NewLoopID =
makePostTransformationMetadata(Context, LoopID,
{Twine(Prefix(), "vectorize.").str(),
Twine(Prefix(), "interleave.").str()},
{IsVectorizedMD});
TheLoop->setLoopID(NewLoopID);
// Update internal cache.
IsVectorized.Value = 1;
}
bool LoopVectorizeHints::allowVectorization(
Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
if (getForce() == LoopVectorizeHints::FK_Disabled) {
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
emitRemarkWithHints();
return false;
}
if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
emitRemarkWithHints();
return false;
}
if (getIsVectorized() == 1) {
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
// FIXME: Add interleave.disable metadata. This will allow
// vectorize.disable to be used without disabling the pass and errors
// to differentiate between disabled vectorization and a width of 1.
ORE.emit([&]() {
return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
"AllDisabled", L->getStartLoc(),
L->getHeader())
<< "loop not vectorized: vectorization and interleaving are "
"explicitly disabled, or the loop has already been "
"vectorized";
});
return false;
}
return true;
}
void LoopVectorizeHints::emitRemarkWithHints() const {
using namespace ore;
ORE.emit([&]() {
if (Force.Value == LoopVectorizeHints::FK_Disabled)
return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
TheLoop->getStartLoc(),
TheLoop->getHeader())
<< "loop not vectorized: vectorization is explicitly disabled";
else {
OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
TheLoop->getStartLoc(), TheLoop->getHeader());
R << "loop not vectorized";
if (Force.Value == LoopVectorizeHints::FK_Enabled) {
R << " (Force=" << NV("Force", true);
if (Width.Value != 0)
R << ", Vector Width=" << NV("VectorWidth", getWidth());
if (getInterleave() != 0)
R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
R << ")";
}
return R;
}
});
}
const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
if (getWidth() == ElementCount::getFixed(1))
return LV_NAME;
if (getForce() == LoopVectorizeHints::FK_Disabled)
return LV_NAME;
if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
return LV_NAME;
return OptimizationRemarkAnalysis::AlwaysPrint;
}
bool LoopVectorizeHints::allowReordering() const {
// Allow the vectorizer to change the order of operations if enabling
// loop hints are provided
ElementCount EC = getWidth();
return HintsAllowReordering &&
(getForce() == LoopVectorizeHints::FK_Enabled ||
EC.getKnownMinValue() > 1);
}
void LoopVectorizeHints::getHintsFromMetadata() {
MDNode *LoopID = TheLoop->getLoopID();
if (!LoopID)
return;
// First operand should refer to the loop id itself.
assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
const MDString *S = nullptr;
SmallVector<Metadata *, 4> Args;
// The expected hint is either a MDString or a MDNode with the first
// operand a MDString.
if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
if (!MD || MD->getNumOperands() == 0)
continue;
S = dyn_cast<MDString>(MD->getOperand(0));
for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
Args.push_back(MD->getOperand(i));
} else {
S = dyn_cast<MDString>(LoopID->getOperand(i));
assert(Args.size() == 0 && "too many arguments for MDString");
}
if (!S)
continue;
// Check if the hint starts with the loop metadata prefix.
StringRef Name = S->getString();
if (Args.size() == 1)
setHint(Name, Args[0]);
}
}
void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
if (!Name.startswith(Prefix()))
return;
Name = Name.substr(Prefix().size(), StringRef::npos);
const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
if (!C)
return;
unsigned Val = C->getZExtValue();
Hint *Hints[] = {&Width, &Interleave, &Force,
&IsVectorized, &Predicate, &Scalable};
for (auto *H : Hints) {
if (Name == H->Name) {
if (H->validate(Val))
H->Value = Val;
else
LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
break;
}
}
}
// Return true if the inner loop \p Lp is uniform with regard to the outer loop
// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
// executing the inner loop will execute the same iterations). This check is
// very constrained for now but it will be relaxed in the future. \p Lp is
// considered uniform if it meets all the following conditions:
// 1) it has a canonical IV (starting from 0 and with stride 1),
// 2) its latch terminator is a conditional branch and,
// 3) its latch condition is a compare instruction whose operands are the
// canonical IV and an OuterLp invariant.
// This check doesn't take into account the uniformity of other conditions not
// related to the loop latch because they don't affect the loop uniformity.
//
// NOTE: We decided to keep all these checks and its associated documentation
// together so that we can easily have a picture of the current supported loop
// nests. However, some of the current checks don't depend on \p OuterLp and
// would be redundantly executed for each \p Lp if we invoked this function for
// different candidate outer loops. This is not the case for now because we
// don't currently have the infrastructure to evaluate multiple candidate outer
// loops and \p OuterLp will be a fixed parameter while we only support explicit
// outer loop vectorization. It's also very likely that these checks go away
// before introducing the aforementioned infrastructure. However, if this is not
// the case, we should move the \p OuterLp independent checks to a separate
// function that is only executed once for each \p Lp.
static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
// If Lp is the outer loop, it's uniform by definition.
if (Lp == OuterLp)
return true;
assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
// 1.
PHINode *IV = Lp->getCanonicalInductionVariable();
if (!IV) {
LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
return false;
}
// 2.
BasicBlock *Latch = Lp->getLoopLatch();
auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
if (!LatchBr || LatchBr->isUnconditional()) {
LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
return false;
}
// 3.
auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
if (!LatchCmp) {
LLVM_DEBUG(
dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
return false;
}
Value *CondOp0 = LatchCmp->getOperand(0);
Value *CondOp1 = LatchCmp->getOperand(1);
Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
!(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
return false;
}
return true;
}
// Return true if \p Lp and all its nested loops are uniform with regard to \p
// OuterLp.
static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
if (!isUniformLoop(Lp, OuterLp))
return false;
// Check if nested loops are uniform.
for (Loop *SubLp : *Lp)
if (!isUniformLoopNest(SubLp, OuterLp))
return false;
return true;
}
static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
if (Ty->isPointerTy())
return DL.getIntPtrType(Ty);
// It is possible that char's or short's overflow when we ask for the loop's
// trip count, work around this by changing the type size.
if (Ty->getScalarSizeInBits() < 32)
return Type::getInt32Ty(Ty->getContext());
return Ty;
}
static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
Ty0 = convertPointerToIntegerType(DL, Ty0);
Ty1 = convertPointerToIntegerType(DL, Ty1);
if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
return Ty0;
return Ty1;
}
/// Check that the instruction has outside loop users and is not an
/// identified reduction variable.
static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
SmallPtrSetImpl<Value *> &AllowedExit) {
// Reductions, Inductions and non-header phis are allowed to have exit users. All
// other instructions must not have external users.
if (!AllowedExit.count(Inst))
// Check that all of the users of the loop are inside the BB.
for (User *U : Inst->users()) {
Instruction *UI = cast<Instruction>(U);
// This user may be a reduction exit value.
if (!TheLoop->contains(UI)) {
LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
return true;
}
}
return false;
}
/// Returns true if A and B have same pointer operands or same SCEVs addresses
static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A,
StoreInst *B) {
// Compare store
if (A == B)
return true;
// Otherwise Compare pointers
Value *APtr = A->getPointerOperand();
Value *BPtr = B->getPointerOperand();
if (APtr == BPtr)
return true;
// Otherwise compare address SCEVs
if (SE->getSCEV(APtr) == SE->getSCEV(BPtr))
return true;
return false;
}
int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy,
Value *Ptr) const {
// FIXME: Currently, the set of symbolic strides is sometimes queried before
// it's collected. This happens from canVectorizeWithIfConvert, when the
// pointer is checked to reference consecutive elements suitable for a
// masked access.
const auto &Strides =
LAI ? LAI->getSymbolicStrides() : DenseMap<Value *, const SCEV *>();
Function *F = TheLoop->getHeader()->getParent();
bool OptForSize = F->hasOptSize() ||
llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI,
PGSOQueryType::IRPass);
bool CanAddPredicate = !OptForSize;
int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
CanAddPredicate, false).value_or(0);
if (Stride == 1 || Stride == -1)
return Stride;
return 0;
}
bool LoopVectorizationLegality::isInvariant(Value *V) const {
return LAI->isInvariant(V);
}
namespace {
/// A rewriter to build the SCEVs for each of the VF lanes in the expected
/// vectorized loop, which can then be compared to detect their uniformity. This
/// is done by replacing the AddRec SCEVs of the original scalar loop (TheLoop)
/// with new AddRecs where the step is multiplied by StepMultiplier and Offset *
/// Step is added. Also checks if all sub-expressions are analyzable w.r.t.
/// uniformity.
class SCEVAddRecForUniformityRewriter
: public SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter> {
/// Multiplier to be applied to the step of AddRecs in TheLoop.
unsigned StepMultiplier;
/// Offset to be added to the AddRecs in TheLoop.
unsigned Offset;
/// Loop for which to rewrite AddRecsFor.
Loop *TheLoop;
/// Is any sub-expressions not analyzable w.r.t. uniformity?
bool CannotAnalyze = false;
bool canAnalyze() const { return !CannotAnalyze; }
public:
SCEVAddRecForUniformityRewriter(ScalarEvolution &SE, unsigned StepMultiplier,
unsigned Offset, Loop *TheLoop)
: SCEVRewriteVisitor(SE), StepMultiplier(StepMultiplier), Offset(Offset),
TheLoop(TheLoop) {}
const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
assert(Expr->getLoop() == TheLoop &&
"addrec outside of TheLoop must be invariant and should have been "
"handled earlier");
// Build a new AddRec by multiplying the step by StepMultiplier and
// incrementing the start by Offset * step.
Type *Ty = Expr->getType();
auto *Step = Expr->getStepRecurrence(SE);
if (!SE.isLoopInvariant(Step, TheLoop)) {
CannotAnalyze = true;
return Expr;
}
auto *NewStep = SE.getMulExpr(Step, SE.getConstant(Ty, StepMultiplier));
auto *ScaledOffset = SE.getMulExpr(Step, SE.getConstant(Ty, Offset));
auto *NewStart = SE.getAddExpr(Expr->getStart(), ScaledOffset);
return SE.getAddRecExpr(NewStart, NewStep, TheLoop, SCEV::FlagAnyWrap);
}
const SCEV *visit(const SCEV *S) {
if (CannotAnalyze || SE.isLoopInvariant(S, TheLoop))
return S;
return SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter>::visit(S);
}
const SCEV *visitUnknown(const SCEVUnknown *S) {
if (SE.isLoopInvariant(S, TheLoop))
return S;
// The value could vary across iterations.
CannotAnalyze = true;
return S;
}
const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *S) {
// Could not analyze the expression.
CannotAnalyze = true;
return S;
}
static const SCEV *rewrite(const SCEV *S, ScalarEvolution &SE,
unsigned StepMultiplier, unsigned Offset,
Loop *TheLoop) {
/// Bail out if the expression does not contain an UDiv expression.
/// Uniform values which are not loop invariant require operations to strip
/// out the lowest bits. For now just look for UDivs and use it to avoid
/// re-writing UDIV-free expressions for other lanes to limit compile time.
if (!SCEVExprContains(S,
[](const SCEV *S) { return isa<SCEVUDivExpr>(S); }))
return SE.getCouldNotCompute();
SCEVAddRecForUniformityRewriter Rewriter(SE, StepMultiplier, Offset,
TheLoop);
const SCEV *Result = Rewriter.visit(S);
if (Rewriter.canAnalyze())
return Result;
return SE.getCouldNotCompute();
}
};
} // namespace
bool LoopVectorizationLegality::isUniform(Value *V, ElementCount VF) const {
if (isInvariant(V))
return true;
if (VF.isScalable())
return false;
if (VF.isScalar())
return true;
// Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
// never considered uniform.
auto *SE = PSE.getSE();
if (!SE->isSCEVable(V->getType()))
return false;
const SCEV *S = SE->getSCEV(V);
// Rewrite AddRecs in TheLoop to step by VF and check if the expression for
// lane 0 matches the expressions for all other lanes.
unsigned FixedVF = VF.getKnownMinValue();
const SCEV *FirstLaneExpr =
SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, 0, TheLoop);
if (isa<SCEVCouldNotCompute>(FirstLaneExpr))
return false;
// Make sure the expressions for lanes FixedVF-1..1 match the expression for
// lane 0. We check lanes in reverse order for compile-time, as frequently
// checking the last lane is sufficient to rule out uniformity.
return all_of(reverse(seq<unsigned>(1, FixedVF)), [&](unsigned I) {
const SCEV *IthLaneExpr =
SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, I, TheLoop);
return FirstLaneExpr == IthLaneExpr;
});
}
bool LoopVectorizationLegality::isUniformMemOp(Instruction &I,
ElementCount VF) const {
Value *Ptr = getLoadStorePointerOperand(&I);
if (!Ptr)
return false;
// Note: There's nothing inherent which prevents predicated loads and
// stores from being uniform. The current lowering simply doesn't handle
// it; in particular, the cost model distinguishes scatter/gather from
// scalar w/predication, and we currently rely on the scalar path.
return isUniform(Ptr, VF) && !blockNeedsPredication(I.getParent());
}
bool LoopVectorizationLegality::canVectorizeOuterLoop() {
assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
// Store the result and return it at the end instead of exiting early, in case
// allowExtraAnalysis is used to report multiple reasons for not vectorizing.
bool Result = true;
bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
for (BasicBlock *BB : TheLoop->blocks()) {
// Check whether the BB terminator is a BranchInst. Any other terminator is
// not supported yet.
auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
if (!Br) {
reportVectorizationFailure("Unsupported basic block terminator",
"loop control flow is not understood by vectorizer",
"CFGNotUnderstood", ORE, TheLoop);
if (DoExtraAnalysis)
Result = false;
else
return false;
}
// Check whether the BranchInst is a supported one. Only unconditional
// branches, conditional branches with an outer loop invariant condition or
// backedges are supported.
// FIXME: We skip these checks when VPlan predication is enabled as we
// want to allow divergent branches. This whole check will be removed
// once VPlan predication is on by default.
if (Br && Br->isConditional() &&
!TheLoop->isLoopInvariant(Br->getCondition()) &&
!LI->isLoopHeader(Br->getSuccessor(0)) &&
!LI->isLoopHeader(Br->getSuccessor(1))) {
reportVectorizationFailure("Unsupported conditional branch",
"loop control flow is not understood by vectorizer",
"CFGNotUnderstood", ORE, TheLoop);
if (DoExtraAnalysis)
Result = false;
else
return false;
}
}
// Check whether inner loops are uniform. At this point, we only support
// simple outer loops scenarios with uniform nested loops.
if (!isUniformLoopNest(TheLoop /*loop nest*/,
TheLoop /*context outer loop*/)) {
reportVectorizationFailure("Outer loop contains divergent loops",
"loop control flow is not understood by vectorizer",
"CFGNotUnderstood", ORE, TheLoop);
if (DoExtraAnalysis)
Result = false;
else
return false;
}
// Check whether we are able to set up outer loop induction.
if (!setupOuterLoopInductions()) {
reportVectorizationFailure("Unsupported outer loop Phi(s)",
"Unsupported outer loop Phi(s)",
"UnsupportedPhi", ORE, TheLoop);
if (DoExtraAnalysis)
Result = false;
else
return false;
}
return Result;
}
void LoopVectorizationLegality::addInductionPhi(
PHINode *Phi, const InductionDescriptor &ID,
SmallPtrSetImpl<Value *> &AllowedExit) {
Inductions[Phi] = ID;
// In case this induction also comes with casts that we know we can ignore
// in the vectorized loop body, record them here. All casts could be recorded
// here for ignoring, but suffices to record only the first (as it is the
// only one that may bw used outside the cast sequence).
const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
if (!Casts.empty())
InductionCastsToIgnore.insert(*Casts.begin());
Type *PhiTy = Phi->getType();
const DataLayout &DL = Phi->getModule()->getDataLayout();
// Get the widest type.
if (!PhiTy->isFloatingPointTy()) {
if (!WidestIndTy)
WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
else
WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
}
// Int inductions are special because we only allow one IV.
if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
isa<Constant>(ID.getStartValue()) &&
cast<Constant>(ID.getStartValue())->isNullValue()) {
// Use the phi node with the widest type as induction. Use the last
// one if there are multiple (no good reason for doing this other
// than it is expedient). We've checked that it begins at zero and
// steps by one, so this is a canonical induction variable.
if (!PrimaryInduction || PhiTy == WidestIndTy)
PrimaryInduction = Phi;
}
// Both the PHI node itself, and the "post-increment" value feeding
// back into the PHI node may have external users.
// We can allow those uses, except if the SCEVs we have for them rely
// on predicates that only hold within the loop, since allowing the exit
// currently means re-using this SCEV outside the loop (see PR33706 for more
// details).
if (PSE.getPredicate().isAlwaysTrue()) {
AllowedExit.insert(Phi);
AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
}
LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
}
bool LoopVectorizationLegality::setupOuterLoopInductions() {
BasicBlock *Header = TheLoop->getHeader();
// Returns true if a given Phi is a supported induction.
auto isSupportedPhi = [&](PHINode &Phi) -> bool {
InductionDescriptor ID;
if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
ID.getKind() == InductionDescriptor::IK_IntInduction) {
addInductionPhi(&Phi, ID, AllowedExit);
return true;
} else {
// Bail out for any Phi in the outer loop header that is not a supported
// induction.
LLVM_DEBUG(
dbgs()
<< "LV: Found unsupported PHI for outer loop vectorization.\n");
return false;
}
};
if (llvm::all_of(Header->phis(), isSupportedPhi))
return true;
else
return false;
}
/// Checks if a function is scalarizable according to the TLI, in
/// the sense that it should be vectorized and then expanded in
/// multiple scalar calls. This is represented in the
/// TLI via mappings that do not specify a vector name, as in the
/// following example:
///
/// const VecDesc VecIntrinsics[] = {
/// {"llvm.phx.abs.i32", "", 4}
/// };
static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
const StringRef ScalarName = CI.getCalledFunction()->getName();
bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
// Check that all known VFs are not associated to a vector
// function, i.e. the vector name is emty.
if (Scalarize) {
ElementCount WidestFixedVF, WidestScalableVF;
TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
for (ElementCount VF = ElementCount::getFixed(2);
ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
for (ElementCount VF = ElementCount::getScalable(1);
ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
assert((WidestScalableVF.isZero() || !Scalarize) &&
"Caller may decide to scalarize a variant using a scalable VF");
}
return Scalarize;
}
bool LoopVectorizationLegality::canVectorizeInstrs() {
BasicBlock *Header = TheLoop->getHeader();
// For each block in the loop.
for (BasicBlock *BB : TheLoop->blocks()) {
// Scan the instructions in the block and look for hazards.
for (Instruction &I : *BB) {
if (auto *Phi = dyn_cast<PHINode>(&I)) {
Type *PhiTy = Phi->getType();
// Check that this PHI type is allowed.
if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
!PhiTy->isPointerTy()) {
reportVectorizationFailure("Found a non-int non-pointer PHI",
"loop control flow is not understood by vectorizer",
"CFGNotUnderstood", ORE, TheLoop);
return false;
}
// If this PHINode is not in the header block, then we know that we
// can convert it to select during if-conversion. No need to check if
// the PHIs in this block are induction or reduction variables.
if (BB != Header) {
// Non-header phi nodes that have outside uses can be vectorized. Add
// them to the list of allowed exits.
// Unsafe cyclic dependencies with header phis are identified during
// legalization for reduction, induction and fixed order
// recurrences.
AllowedExit.insert(&I);
continue;
}
// We only allow if-converted PHIs with exactly two incoming values.
if (Phi->getNumIncomingValues() != 2) {
reportVectorizationFailure("Found an invalid PHI",
"loop control flow is not understood by vectorizer",
"CFGNotUnderstood", ORE, TheLoop, Phi);
return false;
}
RecurrenceDescriptor RedDes;
if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
DT, PSE.getSE())) {
Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
AllowedExit.insert(RedDes.getLoopExitInstr());
Reductions[Phi] = RedDes;
continue;
}
// We prevent matching non-constant strided pointer IVS to preserve
// historical vectorizer behavior after a generalization of the
// IVDescriptor code. The intent is to remove this check, but we
// have to fix issues around code quality for such loops first.
auto isDisallowedStridedPointerInduction =
[](const InductionDescriptor &ID) {
if (AllowStridedPointerIVs)
return false;
return ID.getKind() == InductionDescriptor::IK_PtrInduction &&
ID.getConstIntStepValue() == nullptr;
};
// TODO: Instead of recording the AllowedExit, it would be good to
// record the complementary set: NotAllowedExit. These include (but may
// not be limited to):
// 1. Reduction phis as they represent the one-before-last value, which
// is not available when vectorized
// 2. Induction phis and increment when SCEV predicates cannot be used
// outside the loop - see addInductionPhi
// 3. Non-Phis with outside uses when SCEV predicates cannot be used
// outside the loop - see call to hasOutsideLoopUser in the non-phi
// handling below
// 4. FixedOrderRecurrence phis that can possibly be handled by
// extraction.
// By recording these, we can then reason about ways to vectorize each
// of these NotAllowedExit.
InductionDescriptor ID;
if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID) &&
!isDisallowedStridedPointerInduction(ID)) {
addInductionPhi(Phi, ID, AllowedExit);
Requirements->addExactFPMathInst(ID.getExactFPMathInst());
continue;
}
if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, DT)) {
AllowedExit.insert(Phi);
FixedOrderRecurrences.insert(Phi);
continue;
}
// As a last resort, coerce the PHI to a AddRec expression
// and re-try classifying it a an induction PHI.
if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true) &&
!isDisallowedStridedPointerInduction(ID)) {
addInductionPhi(Phi, ID, AllowedExit);
continue;
}
reportVectorizationFailure("Found an unidentified PHI",
"value that could not be identified as "
"reduction is used outside the loop",
"NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
return false;
} // end of PHI handling
// We handle calls that:
// * Are debug info intrinsics.
// * Have a mapping to an IR intrinsic.
// * Have a vector version available.
auto *CI = dyn_cast<CallInst>(&I);
if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
!isa<DbgInfoIntrinsic>(CI) &&
!(CI->getCalledFunction() && TLI &&
(!VFDatabase::getMappings(*CI).empty() ||
isTLIScalarize(*TLI, *CI)))) {
// If the call is a recognized math libary call, it is likely that
// we can vectorize it given loosened floating-point constraints.
LibFunc Func;
bool IsMathLibCall =
TLI && CI->getCalledFunction() &&
CI->getType()->isFloatingPointTy() &&
TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
TLI->hasOptimizedCodeGen(Func);
if (IsMathLibCall) {
// TODO: Ideally, we should not use clang-specific language here,
// but it's hard to provide meaningful yet generic advice.
// Also, should this be guarded by allowExtraAnalysis() and/or be part
// of the returned info from isFunctionVectorizable()?
reportVectorizationFailure(
"Found a non-intrinsic callsite",
"library call cannot be vectorized. "
"Try compiling with -fno-math-errno, -ffast-math, "
"or similar flags",
"CantVectorizeLibcall", ORE, TheLoop, CI);
} else {
reportVectorizationFailure("Found a non-intrinsic callsite",
"call instruction cannot be vectorized",
"CantVectorizeLibcall", ORE, TheLoop, CI);
}
return false;
}
// Some intrinsics have scalar arguments and should be same in order for
// them to be vectorized (i.e. loop invariant).
if (CI) {
auto *SE = PSE.getSE();
Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
for (unsigned i = 0, e = CI->arg_size(); i != e; ++i)
if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, i)) {
if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
reportVectorizationFailure("Found unvectorizable intrinsic",
"intrinsic instruction cannot be vectorized",
"CantVectorizeIntrinsic", ORE, TheLoop, CI);
return false;
}
}
}
// Check that the instruction return type is vectorizable.
// Also, we can't vectorize extractelement instructions.
if ((!VectorType::isValidElementType(I.getType()) &&
!I.getType()->isVoidTy()) ||
isa<ExtractElementInst>(I)) {
reportVectorizationFailure("Found unvectorizable type",
"instruction return type cannot be vectorized",
"CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
return false;
}
// Check that the stored type is vectorizable.
if (auto *ST = dyn_cast<StoreInst>(&I)) {
Type *T = ST->getValueOperand()->getType();
if (!VectorType::isValidElementType(T)) {
reportVectorizationFailure("Store instruction cannot be vectorized",
"store instruction cannot be vectorized",
"CantVectorizeStore", ORE, TheLoop, ST);
return false;
}
// For nontemporal stores, check that a nontemporal vector version is
// supported on the target.
if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
// Arbitrarily try a vector of 2 elements.
auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
assert(VecTy && "did not find vectorized version of stored type");
if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
reportVectorizationFailure(
"nontemporal store instruction cannot be vectorized",
"nontemporal store instruction cannot be vectorized",
"CantVectorizeNontemporalStore", ORE, TheLoop, ST);
return false;
}
}
} else if (auto *LD = dyn_cast<LoadInst>(&I)) {
if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
// For nontemporal loads, check that a nontemporal vector version is
// supported on the target (arbitrarily try a vector of 2 elements).
auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
assert(VecTy && "did not find vectorized version of load type");
if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
reportVectorizationFailure(
"nontemporal load instruction cannot be vectorized",
"nontemporal load instruction cannot be vectorized",
"CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
return false;
}
}
// FP instructions can allow unsafe algebra, thus vectorizable by
// non-IEEE-754 compliant SIMD units.
// This applies to floating-point math operations and calls, not memory
// operations, shuffles, or casts, as they don't change precision or
// semantics.
} else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
!I.isFast()) {
LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
Hints->setPotentiallyUnsafe();
}
// Reduction instructions are allowed to have exit users.
// All other instructions must not have external users.
if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
// We can safely vectorize loops where instructions within the loop are
// used outside the loop only if the SCEV predicates within the loop is
// same as outside the loop. Allowing the exit means reusing the SCEV
// outside the loop.
if (PSE.getPredicate().isAlwaysTrue()) {
AllowedExit.insert(&I);
continue;
}
reportVectorizationFailure("Value cannot be used outside the loop",
"value cannot be used outside the loop",
"ValueUsedOutsideLoop", ORE, TheLoop, &I);
return false;
}
} // next instr.
}
if (!PrimaryInduction) {
if (Inductions.empty()) {
reportVectorizationFailure("Did not find one integer induction var",
"loop induction variable could not be identified",
"NoInductionVariable", ORE, TheLoop);
return false;
} else if (!WidestIndTy) {
reportVectorizationFailure("Did not find one integer induction var",
"integer loop induction variable could not be identified",
"NoIntegerInductionVariable", ORE, TheLoop);
return false;
} else {
LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
}
}
// Now we know the widest induction type, check if our found induction
// is the same size. If it's not, unset it here and InnerLoopVectorizer
// will create another.
if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
PrimaryInduction = nullptr;
return true;
}
bool LoopVectorizationLegality::canVectorizeMemory() {
LAI = &LAIs.getInfo(*TheLoop);
const OptimizationRemarkAnalysis *LAR = LAI->getReport();
if (LAR) {
ORE->emit([&]() {
return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
"loop not vectorized: ", *LAR);
});
}
if (!LAI->canVectorizeMemory())
return false;
// We can vectorize stores to invariant address when final reduction value is
// guaranteed to be stored at the end of the loop. Also, if decision to
// vectorize loop is made, runtime checks are added so as to make sure that
// invariant address won't alias with any other objects.
if (!LAI->getStoresToInvariantAddresses().empty()) {
// For each invariant address, check if last stored value is unconditional
// and the address is not calculated inside the loop.
for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
if (!isInvariantStoreOfReduction(SI))
continue;
if (blockNeedsPredication(SI->getParent())) {
reportVectorizationFailure(
"We don't allow storing to uniform addresses",
"write of conditional recurring variant value to a loop "
"invariant address could not be vectorized",
"CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
return false;
}
// Invariant address should be defined outside of loop. LICM pass usually
// makes sure it happens, but in rare cases it does not, we do not want
// to overcomplicate vectorization to support this case.
if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) {
if (TheLoop->contains(Ptr)) {
reportVectorizationFailure(
"Invariant address is calculated inside the loop",
"write to a loop invariant address could not "
"be vectorized",
"CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
return false;
}
}
}
if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
// For each invariant address, check its last stored value is the result
// of one of our reductions.
//
// We do not check if dependence with loads exists because they are
// currently rejected earlier in LoopAccessInfo::analyzeLoop. In case this
// behaviour changes we have to modify this code.
ScalarEvolution *SE = PSE.getSE();
SmallVector<StoreInst *, 4> UnhandledStores;
for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
if (isInvariantStoreOfReduction(SI)) {
// Earlier stores to this address are effectively deadcode.
// With opaque pointers it is possible for one pointer to be used with
// different sizes of stored values:
// store i32 0, ptr %x
// store i8 0, ptr %x
// The latest store doesn't complitely overwrite the first one in the
// example. That is why we have to make sure that types of stored
// values are same.
// TODO: Check that bitwidth of unhandled store is smaller then the
// one that overwrites it and add a test.
erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
return storeToSameAddress(SE, SI, I) &&
I->getValueOperand()->getType() ==
SI->getValueOperand()->getType();
});
continue;
}
UnhandledStores.push_back(SI);
}
bool IsOK = UnhandledStores.empty();
// TODO: we should also validate against InvariantMemSets.
if (!IsOK) {
reportVectorizationFailure(
"We don't allow storing to uniform addresses",
"write to a loop invariant address could not "
"be vectorized",
"CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
return false;
}
}
}
PSE.addPredicate(LAI->getPSE().getPredicate());
return true;
}
bool LoopVectorizationLegality::canVectorizeFPMath(
bool EnableStrictReductions) {
// First check if there is any ExactFP math or if we allow reassociations
if (!Requirements->getExactFPInst() || Hints->allowReordering())
return true;
// If the above is false, we have ExactFPMath & do not allow reordering.
// If the EnableStrictReductions flag is set, first check if we have any
// Exact FP induction vars, which we cannot vectorize.
if (!EnableStrictReductions ||
any_of(getInductionVars(), [&](auto &Induction) -> bool {
InductionDescriptor IndDesc = Induction.second;
return IndDesc.getExactFPMathInst();
}))
return false;
// We can now only vectorize if all reductions with Exact FP math also
// have the isOrdered flag set, which indicates that we can move the
// reduction operations in-loop.
return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
const RecurrenceDescriptor &RdxDesc = Reduction.second;
return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
}));
}
bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) {
return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
const RecurrenceDescriptor &RdxDesc = Reduction.second;
return RdxDesc.IntermediateStore == SI;
});
}
bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) {
return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
const RecurrenceDescriptor &RdxDesc = Reduction.second;
if (!RdxDesc.IntermediateStore)
return false;
ScalarEvolution *SE = PSE.getSE();
Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
return V == InvariantAddress ||
SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
});
}
bool LoopVectorizationLegality::isInductionPhi(const Value *V) const {
Value *In0 = const_cast<Value *>(V);
PHINode *PN = dyn_cast_or_null<PHINode>(In0);
if (!PN)
return false;
return Inductions.count(PN);
}
const InductionDescriptor *
LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const {
if (!isInductionPhi(Phi))
return nullptr;
auto &ID = getInductionVars().find(Phi)->second;
if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
ID.getKind() == InductionDescriptor::IK_FpInduction)
return &ID;
return nullptr;
}
const InductionDescriptor *
LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const {
if (!isInductionPhi(Phi))
return nullptr;
auto &ID = getInductionVars().find(Phi)->second;
if (ID.getKind() == InductionDescriptor::IK_PtrInduction)
return &ID;
return nullptr;
}
bool LoopVectorizationLegality::isCastedInductionVariable(
const Value *V) const {
auto *Inst = dyn_cast<Instruction>(V);
return (Inst && InductionCastsToIgnore.count(Inst));
}
bool LoopVectorizationLegality::isInductionVariable(const Value *V) const {
return isInductionPhi(V) || isCastedInductionVariable(V);
}
bool LoopVectorizationLegality::isFixedOrderRecurrence(
const PHINode *Phi) const {
return FixedOrderRecurrences.count(Phi);
}
bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
}
bool LoopVectorizationLegality::blockCanBePredicated(
BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
SmallPtrSetImpl<const Instruction *> &MaskedOp,
SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const {
for (Instruction &I : *BB) {
// We can predicate blocks with calls to assume, as long as we drop them in
// case we flatten the CFG via predication.
if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
ConditionalAssumes.insert(&I);
continue;
}
// Do not let llvm.experimental.noalias.scope.decl block the vectorization.
// TODO: there might be cases that it should block the vectorization. Let's
// ignore those for now.
if (isa<NoAliasScopeDeclInst>(&I))
continue;
// We can allow masked calls if there's at least one vector variant, even
// if we end up scalarizing due to the cost model calculations.
// TODO: Allow other calls if they have appropriate attributes... readonly
// and argmemonly?
if (CallInst *CI = dyn_cast<CallInst>(&I))
if (VFDatabase::hasMaskedVariant(*CI)) {
MaskedOp.insert(CI);
continue;
}
// Loads are handled via masking (or speculated if safe to do so.)
if (auto *LI = dyn_cast<LoadInst>(&I)) {
if (!SafePtrs.count(LI->getPointerOperand()))
MaskedOp.insert(LI);
continue;
}
// Predicated store requires some form of masking:
// 1) masked store HW instruction,
// 2) emulation via load-blend-store (only if safe and legal to do so,
// be aware on the race conditions), or
// 3) element-by-element predicate check and scalar store.
if (auto *SI = dyn_cast<StoreInst>(&I)) {
MaskedOp.insert(SI);
continue;
}
if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
return false;
}
return true;
}
bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
if (!EnableIfConversion) {
reportVectorizationFailure("If-conversion is disabled",
"if-conversion is disabled",
"IfConversionDisabled",
ORE, TheLoop);
return false;
}
assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
// A list of pointers which are known to be dereferenceable within scope of
// the loop body for each iteration of the loop which executes. That is,
// the memory pointed to can be dereferenced (with the access size implied by
// the value's type) unconditionally within the loop header without
// introducing a new fault.
SmallPtrSet<Value *, 8> SafePointers;
// Collect safe addresses.
for (BasicBlock *BB : TheLoop->blocks()) {
if (!blockNeedsPredication(BB)) {
for (Instruction &I : *BB)
if (auto *Ptr = getLoadStorePointerOperand(&I))
SafePointers.insert(Ptr);
continue;
}
// For a block which requires predication, a address may be safe to access
// in the loop w/o predication if we can prove dereferenceability facts
// sufficient to ensure it'll never fault within the loop. For the moment,
// we restrict this to loads; stores are more complicated due to
// concurrency restrictions.
ScalarEvolution &SE = *PSE.getSE();
for (Instruction &I : *BB) {
LoadInst *LI = dyn_cast<LoadInst>(&I);
if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC))
SafePointers.insert(LI->getPointerOperand());
}
}
// Collect the blocks that need predication.
for (BasicBlock *BB : TheLoop->blocks()) {
// We don't support switch statements inside loops.
if (!isa<BranchInst>(BB->getTerminator())) {
reportVectorizationFailure("Loop contains a switch statement",
"loop contains a switch statement",
"LoopContainsSwitch", ORE, TheLoop,
BB->getTerminator());
return false;
}
// We must be able to predicate all blocks that need to be predicated.
if (blockNeedsPredication(BB)) {
if (!blockCanBePredicated(BB, SafePointers, MaskedOp,
ConditionalAssumes)) {
reportVectorizationFailure(
"Control flow cannot be substituted for a select",
"control flow cannot be substituted for a select",
"NoCFGForSelect", ORE, TheLoop,
BB->getTerminator());
return false;
}
}
}
// We can if-convert this loop.
return true;
}
// Helper function to canVectorizeLoopNestCFG.
bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
bool UseVPlanNativePath) {
assert((UseVPlanNativePath || Lp->isInnermost()) &&
"VPlan-native path is not enabled.");
// TODO: ORE should be improved to show more accurate information when an
// outer loop can't be vectorized because a nested loop is not understood or
// legal. Something like: "outer_loop_location: loop not vectorized:
// (inner_loop_location) loop control flow is not understood by vectorizer".
// Store the result and return it at the end instead of exiting early, in case
// allowExtraAnalysis is used to report multiple reasons for not vectorizing.
bool Result = true;
bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
// We must have a loop in canonical form. Loops with indirectbr in them cannot
// be canonicalized.
if (!Lp->getLoopPreheader()) {
reportVectorizationFailure("Loop doesn't have a legal pre-header",
"loop control flow is not understood by vectorizer",
"CFGNotUnderstood", ORE, TheLoop);
if (DoExtraAnalysis)
Result = false;
else
return false;
}
// We must have a single backedge.
if (Lp->getNumBackEdges() != 1) {
reportVectorizationFailure("The loop must have a single backedge",
"loop control flow is not understood by vectorizer",
"CFGNotUnderstood", ORE, TheLoop);
if (DoExtraAnalysis)
Result = false;
else
return false;
}
return Result;
}
bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
Loop *Lp, bool UseVPlanNativePath) {
// Store the result and return it at the end instead of exiting early, in case
// allowExtraAnalysis is used to report multiple reasons for not vectorizing.
bool Result = true;
bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
if (DoExtraAnalysis)
Result = false;
else
return false;
}
// Recursively check whether the loop control flow of nested loops is
// understood.
for (Loop *SubLp : *Lp)
if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
if (DoExtraAnalysis)
Result = false;
else
return false;
}
return Result;
}
bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
// Store the result and return it at the end instead of exiting early, in case
// allowExtraAnalysis is used to report multiple reasons for not vectorizing.
bool Result = true;
bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
// Check whether the loop-related control flow in the loop nest is expected by
// vectorizer.
if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
if (DoExtraAnalysis)
Result = false;
else
return false;
}
// We need to have a loop header.
LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
<< '\n');
// Specific checks for outer loops. We skip the remaining legal checks at this
// point because they don't support outer loops.
if (!TheLoop->isInnermost()) {
assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
if (!canVectorizeOuterLoop()) {
reportVectorizationFailure("Unsupported outer loop",
"unsupported outer loop",
"UnsupportedOuterLoop",
ORE, TheLoop);
// TODO: Implement DoExtraAnalysis when subsequent legal checks support
// outer loops.
return false;
}
LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
return Result;
}
assert(TheLoop->isInnermost() && "Inner loop expected.");
// Check if we can if-convert non-single-bb loops.
unsigned NumBlocks = TheLoop->getNumBlocks();
if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
if (DoExtraAnalysis)
Result = false;
else
return false;
}
// Check if we can vectorize the instructions and CFG in this loop.
if (!canVectorizeInstrs()) {
LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
if (DoExtraAnalysis)
Result = false;
else
return false;
}
// Go over each instruction and look at memory deps.
if (!canVectorizeMemory()) {
LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
if (DoExtraAnalysis)
Result = false;
else
return false;
}
LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
<< (LAI->getRuntimePointerChecking()->Need
? " (with a runtime bound check)"
: "")
<< "!\n");
unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
reportVectorizationFailure("Too many SCEV checks needed",
"Too many SCEV assumptions need to be made and checked at runtime",
"TooManySCEVRunTimeChecks", ORE, TheLoop);
if (DoExtraAnalysis)
Result = false;
else
return false;
}
// Okay! We've done all the tests. If any have failed, return false. Otherwise
// we can vectorize, and at this point we don't have any other mem analysis
// which may limit our maximum vectorization factor, so just return true with
// no restrictions.
return Result;
}
bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
SmallPtrSet<const Value *, 8> ReductionLiveOuts;
for (const auto &Reduction : getReductionVars())
ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
// TODO: handle non-reduction outside users when tail is folded by masking.
for (auto *AE : AllowedExit) {
// Check that all users of allowed exit values are inside the loop or
// are the live-out of a reduction.
if (ReductionLiveOuts.count(AE))
continue;
for (User *U : AE->users()) {
Instruction *UI = cast<Instruction>(U);
if (TheLoop->contains(UI))
continue;
LLVM_DEBUG(
dbgs()
<< "LV: Cannot fold tail by masking, loop has an outside user for "
<< *UI << "\n");
return false;
}
}
// The list of pointers that we can safely read and write to remains empty.
SmallPtrSet<Value *, 8> SafePointers;
SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
SmallPtrSet<Instruction *, 8> TmpConditionalAssumes;
// Check and mark all blocks for predication, including those that ordinarily
// do not need predication such as the header block.
for (BasicBlock *BB : TheLoop->blocks()) {
if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp,
TmpConditionalAssumes)) {
LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
return false;
}
}
LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end());
ConditionalAssumes.insert(TmpConditionalAssumes.begin(),
TmpConditionalAssumes.end());
return true;
}
} // namespace llvm
|