1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
//===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file provides a LoopVectorizationPlanner class.
/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// LoopVectorizationPlanner - drives the vectorization process after having
/// passed Legality checks.
/// The planner builds and optimizes the Vectorization Plans which record the
/// decisions how to vectorize the given loop. In particular, represent the
/// control-flow of the vectorized version, the replication of instructions that
/// are to be scalarized, and interleave access groups.
///
/// Also provides a VPlan-based builder utility analogous to IRBuilder.
/// It provides an instruction-level API for generating VPInstructions while
/// abstracting away the Recipe manipulation details.
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
#define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
#include "VPlan.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/InstructionCost.h"
namespace llvm {
class LoopInfo;
class LoopVectorizationLegality;
class LoopVectorizationCostModel;
class PredicatedScalarEvolution;
class LoopVectorizeHints;
class OptimizationRemarkEmitter;
class TargetTransformInfo;
class TargetLibraryInfo;
class VPRecipeBuilder;
/// VPlan-based builder utility analogous to IRBuilder.
class VPBuilder {
VPBasicBlock *BB = nullptr;
VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
VPInstruction *createInstruction(unsigned Opcode,
ArrayRef<VPValue *> Operands, DebugLoc DL,
const Twine &Name = "") {
VPInstruction *Instr = new VPInstruction(Opcode, Operands, DL, Name);
if (BB)
BB->insert(Instr, InsertPt);
return Instr;
}
VPInstruction *createInstruction(unsigned Opcode,
std::initializer_list<VPValue *> Operands,
DebugLoc DL, const Twine &Name = "") {
return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name);
}
public:
VPBuilder() = default;
/// Clear the insertion point: created instructions will not be inserted into
/// a block.
void clearInsertionPoint() {
BB = nullptr;
InsertPt = VPBasicBlock::iterator();
}
VPBasicBlock *getInsertBlock() const { return BB; }
VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
/// InsertPoint - A saved insertion point.
class VPInsertPoint {
VPBasicBlock *Block = nullptr;
VPBasicBlock::iterator Point;
public:
/// Creates a new insertion point which doesn't point to anything.
VPInsertPoint() = default;
/// Creates a new insertion point at the given location.
VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
: Block(InsertBlock), Point(InsertPoint) {}
/// Returns true if this insert point is set.
bool isSet() const { return Block != nullptr; }
VPBasicBlock *getBlock() const { return Block; }
VPBasicBlock::iterator getPoint() const { return Point; }
};
/// Sets the current insert point to a previously-saved location.
void restoreIP(VPInsertPoint IP) {
if (IP.isSet())
setInsertPoint(IP.getBlock(), IP.getPoint());
else
clearInsertionPoint();
}
/// This specifies that created VPInstructions should be appended to the end
/// of the specified block.
void setInsertPoint(VPBasicBlock *TheBB) {
assert(TheBB && "Attempting to set a null insert point");
BB = TheBB;
InsertPt = BB->end();
}
/// This specifies that created instructions should be inserted at the
/// specified point.
void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
BB = TheBB;
InsertPt = IP;
}
/// Insert and return the specified instruction.
VPInstruction *insert(VPInstruction *I) const {
BB->insert(I, InsertPt);
return I;
}
/// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
/// its underlying Instruction.
VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
Instruction *Inst = nullptr, const Twine &Name = "") {
DebugLoc DL;
if (Inst)
DL = Inst->getDebugLoc();
VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name);
NewVPInst->setUnderlyingValue(Inst);
return NewVPInst;
}
VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
DebugLoc DL, const Twine &Name = "") {
return createInstruction(Opcode, Operands, DL, Name);
}
VPValue *createNot(VPValue *Operand, DebugLoc DL, const Twine &Name = "") {
return createInstruction(VPInstruction::Not, {Operand}, DL, Name);
}
VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL,
const Twine &Name = "") {
return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name);
}
VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL,
const Twine &Name = "") {
return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}, DL, Name);
}
VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal,
DebugLoc DL, const Twine &Name = "") {
return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal}, DL,
Name);
}
//===--------------------------------------------------------------------===//
// RAII helpers.
//===--------------------------------------------------------------------===//
/// RAII object that stores the current insertion point and restores it when
/// the object is destroyed.
class InsertPointGuard {
VPBuilder &Builder;
VPBasicBlock *Block;
VPBasicBlock::iterator Point;
public:
InsertPointGuard(VPBuilder &B)
: Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
InsertPointGuard(const InsertPointGuard &) = delete;
InsertPointGuard &operator=(const InsertPointGuard &) = delete;
~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
};
};
/// TODO: The following VectorizationFactor was pulled out of
/// LoopVectorizationCostModel class. LV also deals with
/// VectorizerParams::VectorizationFactor and VectorizationCostTy.
/// We need to streamline them.
/// Information about vectorization costs.
struct VectorizationFactor {
/// Vector width with best cost.
ElementCount Width;
/// Cost of the loop with that width.
InstructionCost Cost;
/// Cost of the scalar loop.
InstructionCost ScalarCost;
/// The minimum trip count required to make vectorization profitable, e.g. due
/// to runtime checks.
ElementCount MinProfitableTripCount;
VectorizationFactor(ElementCount Width, InstructionCost Cost,
InstructionCost ScalarCost)
: Width(Width), Cost(Cost), ScalarCost(ScalarCost) {}
/// Width 1 means no vectorization, cost 0 means uncomputed cost.
static VectorizationFactor Disabled() {
return {ElementCount::getFixed(1), 0, 0};
}
bool operator==(const VectorizationFactor &rhs) const {
return Width == rhs.Width && Cost == rhs.Cost;
}
bool operator!=(const VectorizationFactor &rhs) const {
return !(*this == rhs);
}
};
/// ElementCountComparator creates a total ordering for ElementCount
/// for the purposes of using it in a set structure.
struct ElementCountComparator {
bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
}
};
using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
/// A class that represents two vectorization factors (initialized with 0 by
/// default). One for fixed-width vectorization and one for scalable
/// vectorization. This can be used by the vectorizer to choose from a range of
/// fixed and/or scalable VFs in order to find the most cost-effective VF to
/// vectorize with.
struct FixedScalableVFPair {
ElementCount FixedVF;
ElementCount ScalableVF;
FixedScalableVFPair()
: FixedVF(ElementCount::getFixed(0)),
ScalableVF(ElementCount::getScalable(0)) {}
FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() {
*(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
}
FixedScalableVFPair(const ElementCount &FixedVF,
const ElementCount &ScalableVF)
: FixedVF(FixedVF), ScalableVF(ScalableVF) {
assert(!FixedVF.isScalable() && ScalableVF.isScalable() &&
"Invalid scalable properties");
}
static FixedScalableVFPair getNone() { return FixedScalableVFPair(); }
/// \return true if either fixed- or scalable VF is non-zero.
explicit operator bool() const { return FixedVF || ScalableVF; }
/// \return true if either fixed- or scalable VF is a valid vector VF.
bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
};
/// Planner drives the vectorization process after having passed
/// Legality checks.
class LoopVectorizationPlanner {
/// The loop that we evaluate.
Loop *OrigLoop;
/// Loop Info analysis.
LoopInfo *LI;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// Target Transform Info.
const TargetTransformInfo &TTI;
/// The legality analysis.
LoopVectorizationLegality *Legal;
/// The profitability analysis.
LoopVectorizationCostModel &CM;
/// The interleaved access analysis.
InterleavedAccessInfo &IAI;
PredicatedScalarEvolution &PSE;
const LoopVectorizeHints &Hints;
OptimizationRemarkEmitter *ORE;
SmallVector<VPlanPtr, 4> VPlans;
/// Profitable vector factors.
SmallVector<VectorizationFactor, 8> ProfitableVFs;
/// A builder used to construct the current plan.
VPBuilder Builder;
public:
LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI,
const TargetTransformInfo &TTI,
LoopVectorizationLegality *Legal,
LoopVectorizationCostModel &CM,
InterleavedAccessInfo &IAI,
PredicatedScalarEvolution &PSE,
const LoopVectorizeHints &Hints,
OptimizationRemarkEmitter *ORE)
: OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI),
PSE(PSE), Hints(Hints), ORE(ORE) {}
/// Plan how to best vectorize, return the best VF and its cost, or
/// std::nullopt if vectorization and interleaving should be avoided up front.
std::optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC);
/// Use the VPlan-native path to plan how to best vectorize, return the best
/// VF and its cost.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF);
/// Return the best VPlan for \p VF.
VPlan &getBestPlanFor(ElementCount VF) const;
/// Generate the IR code for the body of the vectorized loop according to the
/// best selected \p VF, \p UF and VPlan \p BestPlan.
/// TODO: \p IsEpilogueVectorization is needed to avoid issues due to epilogue
/// vectorization re-using plans for both the main and epilogue vector loops.
/// It should be removed once the re-use issue has been fixed.
/// \p ExpandedSCEVs is passed during execution of the plan for epilogue loop
/// to re-use expansion results generated during main plan execution. Returns
/// a mapping of SCEVs to their expanded IR values. Note that this is a
/// temporary workaround needed due to the current epilogue handling.
DenseMap<const SCEV *, Value *>
executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan,
InnerLoopVectorizer &LB, DominatorTree *DT,
bool IsEpilogueVectorization,
DenseMap<const SCEV *, Value *> *ExpandedSCEVs = nullptr);
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void printPlans(raw_ostream &O);
#endif
/// Look through the existing plans and return true if we have one with
/// vectorization factor \p VF.
bool hasPlanWithVF(ElementCount VF) const {
return any_of(VPlans,
[&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
}
/// Test a \p Predicate on a \p Range of VF's. Return the value of applying
/// \p Predicate on Range.Start, possibly decreasing Range.End such that the
/// returned value holds for the entire \p Range.
static bool
getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
VFRange &Range);
/// \return The most profitable vectorization factor and the cost of that VF
/// for vectorizing the epilogue. Returns VectorizationFactor::Disabled if
/// epilogue vectorization is not supported for the loop.
VectorizationFactor
selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC);
protected:
/// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
/// according to the information gathered by Legal when it checked if it is
/// legal to vectorize the loop.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
private:
/// Build a VPlan according to the information gathered by Legal. \return a
/// VPlan for vectorization factors \p Range.Start and up to \p Range.End
/// exclusive, possibly decreasing \p Range.End.
VPlanPtr buildVPlan(VFRange &Range);
/// Build a VPlan using VPRecipes according to the information gather by
/// Legal. This method is only used for the legacy inner loop vectorizer.
/// \p Range's largest included VF is restricted to the maximum VF the
/// returned VPlan is valid for. If no VPlan can be built for the input range,
/// set the largest included VF to the maximum VF for which no plan could be
/// built.
std::optional<VPlanPtr> tryToBuildVPlanWithVPRecipes(
VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions);
/// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
/// according to the information gathered by Legal when it checked if it is
/// legal to vectorize the loop. This method creates VPlans using VPRecipes.
void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
// Adjust the recipes for reductions. For in-loop reductions the chain of
// instructions leading from the loop exit instr to the phi need to be
// converted to reductions, with one operand being vector and the other being
// the scalar reduction chain. For other reductions, a select is introduced
// between the phi and live-out recipes when folding the tail.
void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan,
VPRecipeBuilder &RecipeBuilder,
ElementCount MinVF);
/// \return The most profitable vectorization factor and the cost of that VF.
/// This method checks every VF in \p CandidateVFs.
VectorizationFactor
selectVectorizationFactor(const ElementCountSet &CandidateVFs);
/// Returns true if the per-lane cost of VectorizationFactor A is lower than
/// that of B.
bool isMoreProfitable(const VectorizationFactor &A,
const VectorizationFactor &B) const;
/// Determines if we have the infrastructure to vectorize the loop and its
/// epilogue, assuming the main loop is vectorized by \p VF.
bool isCandidateForEpilogueVectorization(const ElementCount VF) const;
};
} // namespace llvm
#endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
|