File: max-backedge-taken-count-guard-info-rewrite-expressions.ll

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (845 lines) | stat: -rw-r--r-- 47,287 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
; RUN: opt -passes='print<scalar-evolution>' -disable-output %s 2>&1 | FileCheck %s

; Test cases that require rewriting zext SCEV expression with infomration from
; the loop guards.

define void @rewrite_zext(i32 %n) {
; CHECK-LABEL: 'rewrite_zext'
; CHECK-NEXT:  Classifying expressions for: @rewrite_zext
; CHECK-NEXT:    %ext = zext i32 %n to i64
; CHECK-NEXT:    --> (zext i32 %n to i64) U: [0,4294967296) S: [0,4294967296)
; CHECK-NEXT:    %n.vec = and i64 %ext, -8
; CHECK-NEXT:    --> (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw> U: [0,4294967289) S: [0,4294967289)
; CHECK-NEXT:    %index = phi i64 [ 0, %check ], [ %index.next, %loop ]
; CHECK-NEXT:    --> {0,+,8}<nuw><nsw><%loop> U: [0,17) S: [0,17) Exits: (8 * ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %index.next = add nuw nsw i64 %index, 8
; CHECK-NEXT:    --> {8,+,8}<nuw><nsw><%loop> U: [8,25) S: [8,25) Exits: (8 + (8 * ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @rewrite_zext
; CHECK-NEXT:  Loop %loop: backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 2
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %ext = zext i32 %n to i64
  %cmp5 = icmp ule i64 %ext, 24
  br i1 %cmp5, label %check, label %exit

check:                                 ; preds = %entry
  %min.iters.check = icmp ult i64 %ext, 8
  %n.vec = and i64 %ext, -8
  br i1 %min.iters.check, label %exit, label %loop

loop:
  %index = phi i64 [ 0, %check ], [ %index.next, %loop ]
  %index.next = add nuw nsw i64 %index, 8
  %ec = icmp eq i64 %index.next, %n.vec
  br i1 %ec, label %exit, label %loop

exit:
  ret void
}

; Test case from PR40961.
define i32 @rewrite_zext_min_max(i32 %N, ptr %arr) {
; CHECK-LABEL: 'rewrite_zext_min_max'
; CHECK-NEXT:  Classifying expressions for: @rewrite_zext_min_max
; CHECK-NEXT:    %umin = call i32 @llvm.umin.i32(i32 %N, i32 16)
; CHECK-NEXT:    --> (16 umin %N) U: [0,17) S: [0,17)
; CHECK-NEXT:    %ext = zext i32 %umin to i64
; CHECK-NEXT:    --> (16 umin (zext i32 %N to i64)) U: [0,17) S: [0,17)
; CHECK-NEXT:    %n.vec = and i64 %ext, 28
; CHECK-NEXT:    --> (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw> U: [0,17) S: [0,17)
; CHECK-NEXT:    %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
; CHECK-NEXT:    --> {0,+,4}<nuw><nsw><%loop> U: [0,13) S: [0,13) Exits: (4 * ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %gep = getelementptr inbounds i32, ptr %arr, i64 %index
; CHECK-NEXT:    --> {%arr,+,16}<nuw><%loop> U: full-set S: full-set Exits: ((16 * ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4)) + %arr) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %index.next = add nuw i64 %index, 4
; CHECK-NEXT:    --> {4,+,4}<nuw><nsw><%loop> U: [4,17) S: [4,17) Exits: (4 + (4 * ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @rewrite_zext_min_max
; CHECK-NEXT:  Loop %loop: backedge-taken count is ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 3
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %umin = call i32 @llvm.umin.i32(i32 %N, i32 16)
  %ext = zext i32 %umin to i64
  %min.iters.check = icmp ult i64 %ext, 4
  br i1 %min.iters.check, label %exit, label %loop.ph

loop.ph:
  %n.vec = and i64 %ext, 28
  br label %loop

; %n.vec is [4, 16) and a multiple of 4.
loop:
  %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
  %gep = getelementptr inbounds i32, ptr %arr, i64 %index
  store i32 0, ptr %gep
  %index.next = add nuw i64 %index, 4
  %ec = icmp eq i64 %index.next, %n.vec
  br i1 %ec, label %exit, label %loop

exit:
  ret i32 0
}

; This is same as rewrite_zext_min_max, but zext and umin are swapped.
; It should be able to prove the same exit count.
define i32 @rewrite_min_max_zext(i32 %N, ptr %arr) {
; CHECK-LABEL: 'rewrite_min_max_zext'
; CHECK-NEXT:  Classifying expressions for: @rewrite_min_max_zext
; CHECK-NEXT:    %N.wide = zext i32 %N to i64
; CHECK-NEXT:    --> (zext i32 %N to i64) U: [0,4294967296) S: [0,4294967296)
; CHECK-NEXT:    %umin = call i64 @llvm.umin.i64(i64 %N.wide, i64 16)
; CHECK-NEXT:    --> (16 umin (zext i32 %N to i64)) U: [0,17) S: [0,17)
; CHECK-NEXT:    %n.vec = and i64 %umin, 28
; CHECK-NEXT:    --> (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw> U: [0,17) S: [0,17)
; CHECK-NEXT:    %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
; CHECK-NEXT:    --> {0,+,4}<nuw><nsw><%loop> U: [0,13) S: [0,13) Exits: (4 * ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %gep = getelementptr inbounds i32, ptr %arr, i64 %index
; CHECK-NEXT:    --> {%arr,+,16}<nuw><%loop> U: full-set S: full-set Exits: ((16 * ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4)) + %arr) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %index.next = add nuw i64 %index, 4
; CHECK-NEXT:    --> {4,+,4}<nuw><nsw><%loop> U: [4,17) S: [4,17) Exits: (4 + (4 * ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @rewrite_min_max_zext
; CHECK-NEXT:  Loop %loop: backedge-taken count is ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 3
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %N.wide = zext i32 %N to i64
  %umin = call i64 @llvm.umin.i64(i64 %N.wide, i64 16)
  %min.iters.check = icmp ult i64 %umin, 4
  br i1 %min.iters.check, label %exit, label %loop.ph

loop.ph:
  %n.vec = and i64 %umin, 28
  br label %loop

; %n.vec is [4, 16) and a multiple of 4.
loop:
  %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
  %gep = getelementptr inbounds i32, ptr %arr, i64 %index
  store i32 0, ptr %gep
  %index.next = add nuw i64 %index, 4
  %ec = icmp eq i64 %index.next, %n.vec
  br i1 %ec, label %exit, label %loop

exit:
  ret i32 0
}

; same as rewrite_zext_min_max, but everything is signed.
; It should be able to prove the same exit count.
define i32 @rewrite_sext_min_max(i32 %N, ptr %arr) {
; CHECK-LABEL: 'rewrite_sext_min_max'
; CHECK-NEXT:  Classifying expressions for: @rewrite_sext_min_max
; CHECK-NEXT:    %smin = call i32 @llvm.smin.i32(i32 %N, i32 16)
; CHECK-NEXT:    --> (16 smin %N) U: [-2147483648,17) S: [-2147483648,17)
; CHECK-NEXT:    %ext = sext i32 %smin to i64
; CHECK-NEXT:    --> (16 smin (sext i32 %N to i64)) U: [-2147483648,17) S: [-2147483648,17)
; CHECK-NEXT:    %n.vec = and i64 %ext, 28
; CHECK-NEXT:    --> (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw> U: [0,29) S: [0,29)
; CHECK-NEXT:    %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
; CHECK-NEXT:    --> {0,+,4}<nuw><nsw><%loop> U: [0,13) S: [0,13) Exits: (4 * ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %gep = getelementptr inbounds i32, ptr %arr, i64 %index
; CHECK-NEXT:    --> {%arr,+,16}<nuw><%loop> U: full-set S: full-set Exits: ((16 * ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)) + %arr) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %index.next = add nsw i64 %index, 4
; CHECK-NEXT:    --> {4,+,4}<nuw><nsw><%loop> U: [4,17) S: [4,17) Exits: (4 + (4 * ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @rewrite_sext_min_max
; CHECK-NEXT:  Loop %loop: backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 3
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %smin = call i32 @llvm.smin.i32(i32 %N, i32 16)
  %ext = sext i32 %smin to i64
  %min.iters.check = icmp slt i64 %ext, 4
  br i1 %min.iters.check, label %exit, label %loop.ph

loop.ph:
  %n.vec = and i64 %ext, 28
  br label %loop

; %n.vec is [4, 16) and a multiple of 4.
loop:
  %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
  %gep = getelementptr inbounds i32, ptr %arr, i64 %index
  store i32 0, ptr %gep
  %index.next = add nsw i64 %index, 4
  %ec = icmp eq i64 %index.next, %n.vec
  br i1 %ec, label %exit, label %loop

exit:
  ret i32 0
}

; This is a signed version of rewrite_min_max_zext.
; It should be able to prove the same exit count.
define i32 @rewrite_min_max_sext(i32 %N, ptr %arr) {
; CHECK-LABEL: 'rewrite_min_max_sext'
; CHECK-NEXT:  Classifying expressions for: @rewrite_min_max_sext
; CHECK-NEXT:    %N.wide = sext i32 %N to i64
; CHECK-NEXT:    --> (sext i32 %N to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648)
; CHECK-NEXT:    %smin = call i64 @llvm.smin.i64(i64 %N.wide, i64 16)
; CHECK-NEXT:    --> (16 smin (sext i32 %N to i64)) U: [-2147483648,17) S: [-2147483648,17)
; CHECK-NEXT:    %n.vec = and i64 %smin, 28
; CHECK-NEXT:    --> (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw> U: [0,29) S: [0,29)
; CHECK-NEXT:    %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
; CHECK-NEXT:    --> {0,+,4}<nuw><nsw><%loop> U: [0,13) S: [0,13) Exits: (4 * ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %gep = getelementptr inbounds i32, ptr %arr, i64 %index
; CHECK-NEXT:    --> {%arr,+,16}<nuw><%loop> U: full-set S: full-set Exits: ((16 * ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)) + %arr) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %index.next = add nsw i64 %index, 4
; CHECK-NEXT:    --> {4,+,4}<nuw><nsw><%loop> U: [4,17) S: [4,17) Exits: (4 + (4 * ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @rewrite_min_max_sext
; CHECK-NEXT:  Loop %loop: backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 3
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %N.wide = sext i32 %N to i64
  %smin = call i64 @llvm.smin.i64(i64 %N.wide, i64 16)
  %min.iters.check = icmp slt i64 %smin, 4
  br i1 %min.iters.check, label %exit, label %loop.ph

loop.ph:
  %n.vec = and i64 %smin, 28
  br label %loop

; %n.vec is [4, 16) and a multiple of 4.
loop:
  %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
  %gep = getelementptr inbounds i32, ptr %arr, i64 %index
  store i32 0, ptr %gep
  %index.next = add nsw i64 %index, 4
  %ec = icmp eq i64 %index.next, %n.vec
  br i1 %ec, label %exit, label %loop

exit:
  ret i32 0
}

; Test case from PR52464. applyLoopGuards needs to apply information about %and
; to %ext, which requires rewriting the zext.
define i32 @rewrite_zext_with_info_from_icmp_ne(i32 %N) {
; CHECK-LABEL: 'rewrite_zext_with_info_from_icmp_ne'
; CHECK-NEXT:  Classifying expressions for: @rewrite_zext_with_info_from_icmp_ne
; CHECK-NEXT:    %and = and i32 %N, 3
; CHECK-NEXT:    --> (zext i2 (trunc i32 %N to i2) to i32) U: [0,4) S: [0,4)
; CHECK-NEXT:    %and.sub.1 = add nsw i32 %and, -1
; CHECK-NEXT:    --> (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> U: [-1,3) S: [-1,3)
; CHECK-NEXT:    %ext = zext i32 %and.sub.1 to i64
; CHECK-NEXT:    --> (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64) U: [0,4294967296) S: [0,4294967296)
; CHECK-NEXT:    %n.rnd.up = add nuw nsw i64 %ext, 4
; CHECK-NEXT:    --> (4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> U: [4,4294967300) S: [4,4294967300)
; CHECK-NEXT:    %n.vec = and i64 %n.rnd.up, 8589934588
; CHECK-NEXT:    --> (4 * ((4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> /u 4))<nuw><nsw> U: [4,4294967297) S: [4,4294967297)
; CHECK-NEXT:    %iv = phi i64 [ 0, %loop.ph ], [ %iv.next, %loop ]
; CHECK-NEXT:    --> {0,+,4}<nuw><nsw><%loop> U: [0,1) S: [0,1) Exits: 0 LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %iv.next = add i64 %iv, 4
; CHECK-NEXT:    --> {4,+,4}<nuw><nsw><%loop> U: [4,5) S: [4,5) Exits: 4 LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @rewrite_zext_with_info_from_icmp_ne
; CHECK-NEXT:  Loop %loop: backedge-taken count is 0
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 0
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is 0
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is 0
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %and = and i32 %N, 3
  %cmp6.not = icmp eq i32 %and, 0
  br i1 %cmp6.not, label %exit, label %loop.ph

loop.ph:
  %and.sub.1 = add nsw i32 %and, -1
  %ext = zext i32 %and.sub.1 to i64
  %n.rnd.up = add nuw nsw i64 %ext, 4
  %n.vec = and i64 %n.rnd.up, 8589934588
  br label %loop

loop:
  %iv = phi i64 [ 0, %loop.ph ], [ %iv.next, %loop ]
  %iv.next = add i64 %iv, 4
  call void @use(i64 %iv.next)
  %ec = icmp eq i64 %iv.next, %n.vec
  br i1 %ec, label %exit, label %loop

exit:
  ret i32 0
}

; Similar to @rewrite_zext_with_info_from_icmp_ne, but the loop is not guarded by %and != 0,
; hence the subsequent subtraction may yield a negative number.
define i32 @rewrite_zext_no_icmp_ne(i32 %N) {
; CHECK-LABEL: 'rewrite_zext_no_icmp_ne'
; CHECK-NEXT:  Classifying expressions for: @rewrite_zext_no_icmp_ne
; CHECK-NEXT:    %and = and i32 %N, 3
; CHECK-NEXT:    --> (zext i2 (trunc i32 %N to i2) to i32) U: [0,4) S: [0,4)
; CHECK-NEXT:    %and.sub.1 = add nsw i32 %and, -1
; CHECK-NEXT:    --> (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> U: [-1,3) S: [-1,3)
; CHECK-NEXT:    %ext = zext i32 %and.sub.1 to i64
; CHECK-NEXT:    --> (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64) U: [0,4294967296) S: [0,4294967296)
; CHECK-NEXT:    %n.rnd.up = add nuw nsw i64 %ext, 4
; CHECK-NEXT:    --> (4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> U: [4,4294967300) S: [4,4294967300)
; CHECK-NEXT:    %n.vec = and i64 %n.rnd.up, 8589934588
; CHECK-NEXT:    --> (4 * ((4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> /u 4))<nuw><nsw> U: [4,4294967297) S: [4,4294967297)
; CHECK-NEXT:    %iv = phi i64 [ 0, %loop.ph ], [ %iv.next, %loop ]
; CHECK-NEXT:    --> {0,+,4}<nuw><nsw><%loop> U: [0,4294967293) S: [0,4294967293) Exits: (4 * ((-4 + (4 * ((4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> /u 4))<nuw><nsw>)<nsw> /u 4))<nuw><nsw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %iv.next = add i64 %iv, 4
; CHECK-NEXT:    --> {4,+,4}<nuw><nsw><%loop> U: [4,4294967297) S: [4,4294967297) Exits: (4 + (4 * ((-4 + (4 * ((4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> /u 4))<nuw><nsw>)<nsw> /u 4))<nuw><nsw>)<nuw><nsw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @rewrite_zext_no_icmp_ne
; CHECK-NEXT:  Loop %loop: backedge-taken count is ((-4 + (4 * ((4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 1073741823
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((-4 + (4 * ((4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is ((-4 + (4 * ((4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %and = and i32 %N, 3
  br label %loop.ph

loop.ph:
  %and.sub.1 = add nsw i32 %and, -1
  %ext = zext i32 %and.sub.1 to i64
  %n.rnd.up = add nuw nsw i64 %ext, 4
  %n.vec = and i64 %n.rnd.up, 8589934588
  br label %loop

loop:
  %iv = phi i64 [ 0, %loop.ph ], [ %iv.next, %loop ]
  %iv.next = add i64 %iv, 4
  call void @use(i64 %iv.next)
  %ec = icmp eq i64 %iv.next, %n.vec
  br i1 %ec, label %exit, label %loop

exit:
  ret i32 0
}

; Make sure no information is lost for conditions on both %n and (zext %n).
define void @rewrite_zext_and_base_1(i32 %n) {
; CHECK-LABEL: 'rewrite_zext_and_base_1'
; CHECK-NEXT:  Classifying expressions for: @rewrite_zext_and_base_1
; CHECK-NEXT:    %ext = zext i32 %n to i64
; CHECK-NEXT:    --> (zext i32 %n to i64) U: [0,4294967296) S: [0,4294967296)
; CHECK-NEXT:    %n.vec = and i64 %ext, -8
; CHECK-NEXT:    --> (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw> U: [0,4294967289) S: [0,4294967289)
; CHECK-NEXT:    %index = phi i64 [ 0, %check ], [ %index.next, %loop ]
; CHECK-NEXT:    --> {0,+,8}<nuw><nsw><%loop> U: [0,25) S: [0,25) Exits: (8 * ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %index.next = add nuw nsw i64 %index, 8
; CHECK-NEXT:    --> {8,+,8}<nuw><nsw><%loop> U: [8,33) S: [8,33) Exits: (8 + (8 * ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @rewrite_zext_and_base_1
; CHECK-NEXT:  Loop %loop: backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 3
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %ext = zext i32 %n to i64
  %cmp5 = icmp ule i64 %ext, 48
  br i1 %cmp5, label %check.1, label %exit

check.1:
  %cmp.2 = icmp ule i32 %n, 32
  br i1 %cmp.2, label %check, label %exit


check:                                 ; preds = %entry
  %min.iters.check = icmp ult i64 %ext, 8
  %n.vec = and i64 %ext, -8
  br i1 %min.iters.check, label %exit, label %loop

loop:
  %index = phi i64 [ 0, %check ], [ %index.next, %loop ]
  %index.next = add nuw nsw i64 %index, 8
  %ec = icmp eq i64 %index.next, %n.vec
  br i1 %ec, label %exit, label %loop

exit:
  ret void
}

; Make sure no information is lost for conditions on both %n and (zext %n).
define void @rewrite_zext_and_base_2(i32 %n) {
; CHECK-LABEL: 'rewrite_zext_and_base_2'
; CHECK-NEXT:  Classifying expressions for: @rewrite_zext_and_base_2
; CHECK-NEXT:    %ext = zext i32 %n to i64
; CHECK-NEXT:    --> (zext i32 %n to i64) U: [0,4294967296) S: [0,4294967296)
; CHECK-NEXT:    %n.vec = and i64 %ext, -8
; CHECK-NEXT:    --> (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw> U: [0,4294967289) S: [0,4294967289)
; CHECK-NEXT:    %index = phi i64 [ 0, %check ], [ %index.next, %loop ]
; CHECK-NEXT:    --> {0,+,8}<nuw><nsw><%loop> U: [0,25) S: [0,25) Exits: (8 * ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %index.next = add nuw nsw i64 %index, 8
; CHECK-NEXT:    --> {8,+,8}<nuw><nsw><%loop> U: [8,33) S: [8,33) Exits: (8 + (8 * ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @rewrite_zext_and_base_2
; CHECK-NEXT:  Loop %loop: backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 3
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %ext = zext i32 %n to i64
  %cmp5 = icmp ule i64 %ext, 32
  br i1 %cmp5, label %check.1, label %exit

check.1:
  %cmp.2 = icmp ule i32 %n, 48
  br i1 %cmp.2, label %check, label %exit

check:                                 ; preds = %entry
  %min.iters.check = icmp ult i64 %ext, 8
  %n.vec = and i64 %ext, -8
  br i1 %min.iters.check, label %exit, label %loop

loop:
  %index = phi i64 [ 0, %check ], [ %index.next, %loop ]
  %index.next = add nuw nsw i64 %index, 8
  %ec = icmp eq i64 %index.next, %n.vec
  br i1 %ec, label %exit, label %loop

exit:
  ret void
}

define void @guard_pessimizes_analysis_step2(i1 %c, i32 %N) {
; CHECK-LABEL: 'guard_pessimizes_analysis_step2'
; CHECK-NEXT:  Classifying expressions for: @guard_pessimizes_analysis_step2
; CHECK-NEXT:    %N.ext = zext i32 %N to i64
; CHECK-NEXT:    --> (zext i32 %N to i64) U: [0,4294967296) S: [0,4294967296)
; CHECK-NEXT:    %init = phi i64 [ 2, %entry ], [ 4, %bb1 ]
; CHECK-NEXT:    --> %init U: [2,5) S: [2,5)
; CHECK-NEXT:    %iv = phi i64 [ %iv.next, %loop ], [ %init, %loop.ph ]
; CHECK-NEXT:    --> {%init,+,2}<nuw><nsw><%loop> U: [2,17) S: [2,17) Exits: ((2 * ((14 + (-1 * %init)<nsw>)<nsw> /u 2))<nuw><nsw> + %init) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %iv.next = add i64 %iv, 2
; CHECK-NEXT:    --> {(2 + %init)<nuw><nsw>,+,2}<nuw><nsw><%loop> U: [4,19) S: [4,19) Exits: (2 + (2 * ((14 + (-1 * %init)<nsw>)<nsw> /u 2))<nuw><nsw> + %init) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @guard_pessimizes_analysis_step2
; CHECK-NEXT:  Loop %loop: backedge-taken count is ((14 + (-1 * %init)<nsw>)<nsw> /u 2)
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 6
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((14 + (-1 * %init)<nsw>)<nsw> /u 2)
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is ((14 + (-1 * %init)<nsw>)<nsw> /u 2)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %N.ext = zext i32 %N to i64
  br i1 %c, label %bb1, label %guard

bb1:
  br label %guard

guard:
  %init = phi i64 [ 2, %entry ], [ 4, %bb1 ]
  %c.1 = icmp ult i64 %init, %N.ext
  br i1 %c.1, label %loop.ph, label %exit

loop.ph:
  br label %loop

loop:
  %iv = phi i64 [ %iv.next, %loop ], [ %init, %loop.ph ]
  %iv.next = add i64 %iv, 2
  %exitcond = icmp eq i64 %iv.next, 16
  br i1 %exitcond, label %exit, label %loop

exit:
  ret void
}

define i32 @rewrite_sext_slt_narrow_check(i32 %N, ptr %arr) {
; CHECK-LABEL: 'rewrite_sext_slt_narrow_check'
; CHECK-NEXT:  Classifying expressions for: @rewrite_sext_slt_narrow_check
; CHECK-NEXT:    %smin = call i32 @llvm.smax.i32(i32 %N, i32 4)
; CHECK-NEXT:    --> (4 smax %N) U: [4,-2147483648) S: [4,-2147483648)
; CHECK-NEXT:    %ext = sext i32 %smin to i64
; CHECK-NEXT:    --> (zext i32 (4 smax %N) to i64) U: [4,2147483648) S: [4,2147483648)
; CHECK-NEXT:    %n.vec = and i64 %ext, 28
; CHECK-NEXT:    --> (4 * (zext i3 (trunc i64 ((zext i32 (4 smax %N) to i64) /u 4) to i3) to i64))<nuw><nsw> U: [0,29) S: [0,29)
; CHECK-NEXT:    %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
; CHECK-NEXT:    --> {0,+,4}<nuw><nsw><%loop> U: [0,13) S: [0,13) Exits: (4 * ((-4 + (4 * (zext i3 (trunc i64 ((zext i32 (4 smax %N) to i64) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %gep = getelementptr inbounds i32, ptr %arr, i64 %index
; CHECK-NEXT:    --> {%arr,+,16}<nuw><%loop> U: full-set S: full-set Exits: ((16 * ((-4 + (4 * (zext i3 (trunc i64 ((zext i32 (4 smax %N) to i64) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)) + %arr) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %index.next = add nuw i64 %index, 4
; CHECK-NEXT:    --> {4,+,4}<nuw><nsw><%loop> U: [4,17) S: [4,17) Exits: (4 + (4 * ((-4 + (4 * (zext i3 (trunc i64 ((zext i32 (4 smax %N) to i64) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @rewrite_sext_slt_narrow_check
; CHECK-NEXT:  Loop %loop: backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((zext i32 (4 smax %N) to i64) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 3
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((zext i32 (4 smax %N) to i64) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((zext i32 (4 smax %N) to i64) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %smin = call i32 @llvm.smax.i32(i32 %N, i32 4)
  %ext = sext i32 %smin to i64
  %min.iters.check = icmp slt i32 %smin, 17
  br i1 %min.iters.check, label %loop.ph, label %exit

loop.ph:
  %n.vec = and i64 %ext, 28
  br label %loop

; %n.vec is [4, 16] and a multiple of 4.
loop:
  %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
  %gep = getelementptr inbounds i32, ptr %arr, i64 %index
  store i32 0, ptr %gep
  %index.next = add nuw i64 %index, 4
  %ec = icmp eq i64 %index.next, %n.vec
  br i1 %ec, label %exit, label %loop

exit:
  ret i32 0
}

define i32 @rewrite_zext_ult_narrow_check(i32 %N, ptr %arr) {
; CHECK-LABEL: 'rewrite_zext_ult_narrow_check'
; CHECK-NEXT:  Classifying expressions for: @rewrite_zext_ult_narrow_check
; CHECK-NEXT:    %umin = call i32 @llvm.umax.i32(i32 %N, i32 4)
; CHECK-NEXT:    --> (4 umax %N) U: [4,0) S: [4,0)
; CHECK-NEXT:    %ext = zext i32 %umin to i64
; CHECK-NEXT:    --> (4 umax (zext i32 %N to i64)) U: [4,4294967296) S: [4,4294967296)
; CHECK-NEXT:    %n.vec = and i64 %ext, 28
; CHECK-NEXT:    --> (4 * (zext i3 (trunc i64 ((4 umax (zext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw> U: [0,29) S: [0,29)
; CHECK-NEXT:    %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
; CHECK-NEXT:    --> {0,+,4}<nuw><nsw><%loop> U: [0,13) S: [0,13) Exits: (4 * ((-4 + (4 * (zext i3 (trunc i64 ((4 umax (zext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %gep = getelementptr inbounds i32, ptr %arr, i64 %index
; CHECK-NEXT:    --> {%arr,+,16}<nuw><%loop> U: full-set S: full-set Exits: ((16 * ((-4 + (4 * (zext i3 (trunc i64 ((4 umax (zext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)) + %arr) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %index.next = add nuw i64 %index, 4
; CHECK-NEXT:    --> {4,+,4}<nuw><nsw><%loop> U: [4,17) S: [4,17) Exits: (4 + (4 * ((-4 + (4 * (zext i3 (trunc i64 ((4 umax (zext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @rewrite_zext_ult_narrow_check
; CHECK-NEXT:  Loop %loop: backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((4 umax (zext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 3
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((4 umax (zext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((4 umax (zext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %umin = call i32 @llvm.umax.i32(i32 %N, i32 4)
  %ext = zext i32 %umin to i64
  %min.iters.check = icmp ult i32 %umin, 17
  br i1 %min.iters.check, label %loop.ph, label %exit

loop.ph:
  %n.vec = and i64 %ext, 28
  br label %loop

; %n.vec is [4, 16] and a multiple of 4.
loop:
  %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
  %gep = getelementptr inbounds i32, ptr %arr, i64 %index
  store i32 0, ptr %gep
  %index.next = add nuw i64 %index, 4
  %ec = icmp eq i64 %index.next, %n.vec
  br i1 %ec, label %exit, label %loop

exit:
  ret i32 0
}

define i32 @rewrite_zext_ule_narrow_check(i32 %N, ptr %arr) {
; CHECK-LABEL: 'rewrite_zext_ule_narrow_check'
; CHECK-NEXT:  Classifying expressions for: @rewrite_zext_ule_narrow_check
; CHECK-NEXT:    %umin = call i32 @llvm.umax.i32(i32 %N, i32 4)
; CHECK-NEXT:    --> (4 umax %N) U: [4,0) S: [4,0)
; CHECK-NEXT:    %ext = zext i32 %umin to i64
; CHECK-NEXT:    --> (4 umax (zext i32 %N to i64)) U: [4,4294967296) S: [4,4294967296)
; CHECK-NEXT:    %n.vec = and i64 %ext, 28
; CHECK-NEXT:    --> (4 * (zext i3 (trunc i64 ((4 umax (zext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw> U: [0,29) S: [0,29)
; CHECK-NEXT:    %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
; CHECK-NEXT:    --> {0,+,4}<nuw><nsw><%loop> U: [0,13) S: [0,13) Exits: (4 * ((-4 + (4 * (zext i3 (trunc i64 ((4 umax (zext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %gep = getelementptr inbounds i32, ptr %arr, i64 %index
; CHECK-NEXT:    --> {%arr,+,16}<nuw><%loop> U: full-set S: full-set Exits: ((16 * ((-4 + (4 * (zext i3 (trunc i64 ((4 umax (zext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)) + %arr) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %index.next = add nuw i64 %index, 4
; CHECK-NEXT:    --> {4,+,4}<nuw><nsw><%loop> U: [4,17) S: [4,17) Exits: (4 + (4 * ((-4 + (4 * (zext i3 (trunc i64 ((4 umax (zext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @rewrite_zext_ule_narrow_check
; CHECK-NEXT:  Loop %loop: backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((4 umax (zext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 3
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((4 umax (zext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((4 umax (zext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %umin = call i32 @llvm.umax.i32(i32 %N, i32 4)
  %ext = zext i32 %umin to i64
  %min.iters.check = icmp ule i32 %umin, 16
  br i1 %min.iters.check, label %loop.ph, label %exit

loop.ph:
  %n.vec = and i64 %ext, 28
  br label %loop

; %n.vec is [4, 16] and a multiple of 4.
loop:
  %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
  %gep = getelementptr inbounds i32, ptr %arr, i64 %index
  store i32 0, ptr %gep
  %index.next = add nuw i64 %index, 4
  %ec = icmp eq i64 %index.next, %n.vec
  br i1 %ec, label %exit, label %loop

exit:
  ret i32 0
}

define i32 @rewrite_zext_sle_narrow_check(i32 %N, ptr %arr) {
; CHECK-LABEL: 'rewrite_zext_sle_narrow_check'
; CHECK-NEXT:  Classifying expressions for: @rewrite_zext_sle_narrow_check
; CHECK-NEXT:    %smin = call i32 @llvm.smax.i32(i32 %N, i32 4)
; CHECK-NEXT:    --> (4 smax %N) U: [4,-2147483648) S: [4,-2147483648)
; CHECK-NEXT:    %ext = sext i32 %smin to i64
; CHECK-NEXT:    --> (zext i32 (4 smax %N) to i64) U: [4,2147483648) S: [4,2147483648)
; CHECK-NEXT:    %n.vec = and i64 %ext, 28
; CHECK-NEXT:    --> (4 * (zext i3 (trunc i64 ((zext i32 (4 smax %N) to i64) /u 4) to i3) to i64))<nuw><nsw> U: [0,29) S: [0,29)
; CHECK-NEXT:    %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
; CHECK-NEXT:    --> {0,+,4}<nuw><nsw><%loop> U: [0,13) S: [0,13) Exits: (4 * ((-4 + (4 * (zext i3 (trunc i64 ((zext i32 (4 smax %N) to i64) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %gep = getelementptr inbounds i32, ptr %arr, i64 %index
; CHECK-NEXT:    --> {%arr,+,16}<nuw><%loop> U: full-set S: full-set Exits: ((16 * ((-4 + (4 * (zext i3 (trunc i64 ((zext i32 (4 smax %N) to i64) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)) + %arr) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %index.next = add nuw i64 %index, 4
; CHECK-NEXT:    --> {4,+,4}<nuw><nsw><%loop> U: [4,17) S: [4,17) Exits: (4 + (4 * ((-4 + (4 * (zext i3 (trunc i64 ((zext i32 (4 smax %N) to i64) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @rewrite_zext_sle_narrow_check
; CHECK-NEXT:  Loop %loop: backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((zext i32 (4 smax %N) to i64) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 3
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((zext i32 (4 smax %N) to i64) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((zext i32 (4 smax %N) to i64) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %smin = call i32 @llvm.smax.i32(i32 %N, i32 4)
  %ext = sext i32 %smin to i64
  %min.iters.check = icmp sle i32 %smin, 17
  br i1 %min.iters.check, label %loop.ph, label %exit

loop.ph:
  %n.vec = and i64 %ext, 28
  br label %loop

; %n.vec is [4, 16] and a multiple of 4.
loop:
  %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
  %gep = getelementptr inbounds i32, ptr %arr, i64 %index
  store i32 0, ptr %gep
  %index.next = add nuw i64 %index, 4
  %ec = icmp eq i64 %index.next, %n.vec
  br i1 %ec, label %exit, label %loop

exit:
  ret i32 0
}

define i32 @rewrite_zext_uge_narrow_check(i32 %N, ptr %arr) {
; CHECK-LABEL: 'rewrite_zext_uge_narrow_check'
; CHECK-NEXT:  Classifying expressions for: @rewrite_zext_uge_narrow_check
; CHECK-NEXT:    %umin = call i32 @llvm.umin.i32(i32 %N, i32 16)
; CHECK-NEXT:    --> (16 umin %N) U: [0,17) S: [0,17)
; CHECK-NEXT:    %ext = zext i32 %umin to i64
; CHECK-NEXT:    --> (16 umin (zext i32 %N to i64)) U: [0,17) S: [0,17)
; CHECK-NEXT:    %n.vec = and i64 %ext, 28
; CHECK-NEXT:    --> (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw> U: [0,17) S: [0,17)
; CHECK-NEXT:    %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
; CHECK-NEXT:    --> {0,+,4}<nuw><nsw><%loop> U: [0,13) S: [0,13) Exits: (4 * ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %gep = getelementptr inbounds i32, ptr %arr, i64 %index
; CHECK-NEXT:    --> {%arr,+,16}<nuw><%loop> U: full-set S: full-set Exits: ((16 * ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4)) + %arr) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %index.next = add nuw i64 %index, 4
; CHECK-NEXT:    --> {4,+,4}<nuw><nsw><%loop> U: [4,17) S: [4,17) Exits: (4 + (4 * ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @rewrite_zext_uge_narrow_check
; CHECK-NEXT:  Loop %loop: backedge-taken count is ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 3
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %umin = call i32 @llvm.umin.i32(i32 %N, i32 16)
  %ext = zext i32 %umin to i64
  %min.iters.check = icmp uge i32 %umin, 4
  br i1 %min.iters.check, label %loop.ph, label %exit

loop.ph:
  %n.vec = and i64 %ext, 28
  br label %loop

; %n.vec is [4, 16] and a multiple of 4.
loop:
  %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
  %gep = getelementptr inbounds i32, ptr %arr, i64 %index
  store i32 0, ptr %gep
  %index.next = add nuw i64 %index, 4
  %ec = icmp eq i64 %index.next, %n.vec
  br i1 %ec, label %exit, label %loop

exit:
  ret i32 0
}

define i32 @rewrite_sext_sge_narrow_check(i32 %N, ptr %arr) {
; CHECK-LABEL: 'rewrite_sext_sge_narrow_check'
; CHECK-NEXT:  Classifying expressions for: @rewrite_sext_sge_narrow_check
; CHECK-NEXT:    %smin = call i32 @llvm.smin.i32(i32 %N, i32 16)
; CHECK-NEXT:    --> (16 smin %N) U: [-2147483648,17) S: [-2147483648,17)
; CHECK-NEXT:    %ext = sext i32 %smin to i64
; CHECK-NEXT:    --> (16 smin (sext i32 %N to i64)) U: [-2147483648,17) S: [-2147483648,17)
; CHECK-NEXT:    %n.vec = and i64 %ext, 28
; CHECK-NEXT:    --> (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw> U: [0,29) S: [0,29)
; CHECK-NEXT:    %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
; CHECK-NEXT:    --> {0,+,4}<nuw><nsw><%loop> U: [0,13) S: [0,13) Exits: (4 * ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %gep = getelementptr inbounds i32, ptr %arr, i64 %index
; CHECK-NEXT:    --> {%arr,+,16}<nuw><%loop> U: full-set S: full-set Exits: ((16 * ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)) + %arr) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %index.next = add nuw i64 %index, 4
; CHECK-NEXT:    --> {4,+,4}<nuw><nsw><%loop> U: [4,17) S: [4,17) Exits: (4 + (4 * ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @rewrite_sext_sge_narrow_check
; CHECK-NEXT:  Loop %loop: backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 3
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %smin = call i32 @llvm.smin.i32(i32 %N, i32 16)
  %ext = sext i32 %smin to i64
  %min.iters.check = icmp sge i32 %smin, 4
  br i1 %min.iters.check, label %loop.ph, label %exit

loop.ph:
  %n.vec = and i64 %ext, 28
  br label %loop

; %n.vec is [4, 16] and a multiple of 4.
loop:
  %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
  %gep = getelementptr inbounds i32, ptr %arr, i64 %index
  store i32 0, ptr %gep
  %index.next = add nuw i64 %index, 4
  %ec = icmp eq i64 %index.next, %n.vec
  br i1 %ec, label %exit, label %loop

exit:
  ret i32 0
}

define i32 @rewrite_zext_ugt_narrow_check(i32 %N, ptr %arr) {
; CHECK-LABEL: 'rewrite_zext_ugt_narrow_check'
; CHECK-NEXT:  Classifying expressions for: @rewrite_zext_ugt_narrow_check
; CHECK-NEXT:    %umin = call i32 @llvm.umin.i32(i32 %N, i32 16)
; CHECK-NEXT:    --> (16 umin %N) U: [0,17) S: [0,17)
; CHECK-NEXT:    %ext = zext i32 %umin to i64
; CHECK-NEXT:    --> (16 umin (zext i32 %N to i64)) U: [0,17) S: [0,17)
; CHECK-NEXT:    %n.vec = and i64 %ext, 28
; CHECK-NEXT:    --> (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw> U: [0,17) S: [0,17)
; CHECK-NEXT:    %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
; CHECK-NEXT:    --> {0,+,4}<nuw><nsw><%loop> U: [0,13) S: [0,13) Exits: (4 * ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %gep = getelementptr inbounds i32, ptr %arr, i64 %index
; CHECK-NEXT:    --> {%arr,+,16}<nuw><%loop> U: full-set S: full-set Exits: ((16 * ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4)) + %arr) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %index.next = add nuw i64 %index, 4
; CHECK-NEXT:    --> {4,+,4}<nuw><nsw><%loop> U: [4,17) S: [4,17) Exits: (4 + (4 * ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @rewrite_zext_ugt_narrow_check
; CHECK-NEXT:  Loop %loop: backedge-taken count is ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 3
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is ((-4 + (4 * ((16 umin (zext i32 %N to i64)) /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %umin = call i32 @llvm.umin.i32(i32 %N, i32 16)
  %ext = zext i32 %umin to i64
  %min.iters.check = icmp ugt i32 %umin, 3
  br i1 %min.iters.check, label %loop.ph, label %exit

loop.ph:
  %n.vec = and i64 %ext, 28
  br label %loop

; %n.vec is [4, 16] and a multiple of 4.
loop:
  %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
  %gep = getelementptr inbounds i32, ptr %arr, i64 %index
  store i32 0, ptr %gep
  %index.next = add nuw i64 %index, 4
  %ec = icmp eq i64 %index.next, %n.vec
  br i1 %ec, label %exit, label %loop

exit:
  ret i32 0
}

define i32 @rewrite_sext_sgt_narrow_check(i32 %N, ptr %arr) {
; CHECK-LABEL: 'rewrite_sext_sgt_narrow_check'
; CHECK-NEXT:  Classifying expressions for: @rewrite_sext_sgt_narrow_check
; CHECK-NEXT:    %smin = call i32 @llvm.smin.i32(i32 %N, i32 16)
; CHECK-NEXT:    --> (16 smin %N) U: [-2147483648,17) S: [-2147483648,17)
; CHECK-NEXT:    %ext = sext i32 %smin to i64
; CHECK-NEXT:    --> (16 smin (sext i32 %N to i64)) U: [-2147483648,17) S: [-2147483648,17)
; CHECK-NEXT:    %n.vec = and i64 %ext, 28
; CHECK-NEXT:    --> (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw> U: [0,29) S: [0,29)
; CHECK-NEXT:    %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
; CHECK-NEXT:    --> {0,+,4}<nuw><nsw><%loop> U: [0,13) S: [0,13) Exits: (4 * ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %gep = getelementptr inbounds i32, ptr %arr, i64 %index
; CHECK-NEXT:    --> {%arr,+,16}<nuw><%loop> U: full-set S: full-set Exits: ((16 * ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)) + %arr) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:    %index.next = add nuw i64 %index, 4
; CHECK-NEXT:    --> {4,+,4}<nuw><nsw><%loop> U: [4,17) S: [4,17) Exits: (4 + (4 * ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT:  Determining loop execution counts for: @rewrite_sext_sgt_narrow_check
; CHECK-NEXT:  Loop %loop: backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is 3
; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:  Loop %loop: Predicated backedge-taken count is ((-4 + (4 * (zext i3 (trunc i64 ((16 smin (sext i32 %N to i64)) /u 4) to i3) to i64))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT:   Predicates:
; CHECK:       Loop %loop: Trip multiple is 1
;
entry:
  %smin = call i32 @llvm.smin.i32(i32 %N, i32 16)
  %ext = sext i32 %smin to i64
  %min.iters.check = icmp sgt i32 %smin, 3
  br i1 %min.iters.check, label %loop.ph, label %exit

loop.ph:
  %n.vec = and i64 %ext, 28
  br label %loop

; %n.vec is [4, 16) and a multiple of 4.
loop:
  %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
  %gep = getelementptr inbounds i32, ptr %arr, i64 %index
  store i32 0, ptr %gep
  %index.next = add nuw i64 %index, 4
  %ec = icmp eq i64 %index.next, %n.vec
  br i1 %ec, label %exit, label %loop

exit:
  ret i32 0
}

declare void @use(i64)

declare i32 @llvm.umin.i32(i32, i32)
declare i64 @llvm.umin.i64(i64, i64)
declare i32 @llvm.smin.i32(i32, i32)
declare i64 @llvm.smin.i64(i64, i64)

declare i32 @llvm.umax.i32(i32, i32)
declare i32 @llvm.smax.i32(i32, i32)