1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
; RUN: opt "-passes=print<scalar-evolution>" -disable-output < %s 2>&1 | FileCheck %s
;
; This checks if the min and max expressions are properly recognized by
; ScalarEvolution even though they the ICmpInst and SelectInst have different
; types.
;
; #define max(a, b) (a > b ? a : b)
; #define min(a, b) (a < b ? a : b)
;
; void f(int *A, int N) {
; for (int i = 0; i < N; i++) {
; A[max(0, i - 3)] = Aptr 2;
; }
; }
;
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
define void @f(ptr %A, i32 %N) {
; CHECK-LABEL: 'f'
; CHECK-NEXT: Classifying expressions for: @f
; CHECK-NEXT: %i.0 = phi i32 [ 0, %bb ], [ %tmp23, %bb2 ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%bb1> U: [0,-2147483648) S: [0,-2147483648) Exits: (0 smax %N) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %i.0.1 = sext i32 %i.0 to i64
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%bb1> U: [0,2147483648) S: [0,2147483648) Exits: (zext i32 (0 smax %N) to i64) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %tmp3 = add nuw nsw i32 %i.0, 3
; CHECK-NEXT: --> {3,+,1}<nuw><%bb1> U: [3,-2147483645) S: [3,-2147483645) Exits: (3 + (0 smax %N))<nuw> LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %tmp5 = sext i32 %tmp3 to i64
; CHECK-NEXT: --> (sext i32 {3,+,1}<nuw><%bb1> to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: (sext i32 (3 + (0 smax %N))<nuw> to i64) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %tmp6 = sext i32 %N to i64
; CHECK-NEXT: --> (sext i32 %N to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: (sext i32 %N to i64) LoopDispositions: { %bb1: Invariant }
; CHECK-NEXT: %tmp9 = select i1 %tmp4, i64 %tmp5, i64 %tmp6
; CHECK-NEXT: --> ((sext i32 {3,+,1}<nuw><%bb1> to i64) smin (sext i32 %N to i64)) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: ((sext i32 (3 + (0 smax %N))<nuw> to i64) smin (sext i32 %N to i64)) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %tmp11 = getelementptr inbounds i32, ptr %A, i64 %tmp9
; CHECK-NEXT: --> ((4 * ((sext i32 {3,+,1}<nuw><%bb1> to i64) smin (sext i32 %N to i64)))<nsw> + %A) U: full-set S: full-set Exits: ((4 * ((sext i32 (3 + (0 smax %N))<nuw> to i64) smin (sext i32 %N to i64)))<nsw> + %A) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %tmp12 = load i32, ptr %tmp11, align 4
; CHECK-NEXT: --> %tmp12 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb1: Variant }
; CHECK-NEXT: %tmp13 = shl nsw i32 %tmp12, 1
; CHECK-NEXT: --> (2 * %tmp12) U: [0,-1) S: [-2147483648,2147483647) Exits: <<Unknown>> LoopDispositions: { %bb1: Variant }
; CHECK-NEXT: %tmp17 = add nsw i64 %i.0.1, -3
; CHECK-NEXT: --> {-3,+,1}<nsw><%bb1> U: [-3,2147483645) S: [-3,2147483645) Exits: (-3 + (zext i32 (0 smax %N) to i64))<nsw> LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %tmp19 = select i1 %tmp14, i64 0, i64 %tmp17
; CHECK-NEXT: --> (-3 + (3 smax {0,+,1}<nuw><nsw><%bb1>))<nsw> U: [0,2147483645) S: [0,2147483645) Exits: (-3 + (3 smax (zext i32 (0 smax %N) to i64)))<nsw> LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %tmp21 = getelementptr inbounds i32, ptr %A, i64 %tmp19
; CHECK-NEXT: --> (-12 + (4 * (3 smax {0,+,1}<nuw><nsw><%bb1>))<nuw><nsw> + %A) U: full-set S: full-set Exits: (-12 + (4 * (3 smax (zext i32 (0 smax %N) to i64)))<nuw><nsw> + %A) LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %tmp23 = add nuw nsw i32 %i.0, 1
; CHECK-NEXT: --> {1,+,1}<nuw><%bb1> U: [1,-2147483647) S: [1,-2147483647) Exits: (1 + (0 smax %N))<nuw> LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: Determining loop execution counts for: @f
; CHECK-NEXT: Loop %bb1: backedge-taken count is (0 smax %N)
; CHECK-NEXT: Loop %bb1: constant max backedge-taken count is 2147483647
; CHECK-NEXT: Loop %bb1: symbolic max backedge-taken count is (0 smax %N)
; CHECK-NEXT: Loop %bb1: Predicated backedge-taken count is (0 smax %N)
; CHECK-NEXT: Predicates:
; CHECK: Loop %bb1: Trip multiple is 1
;
bb:
br label %bb1
bb1: ; preds = %bb2, %bb
%i.0 = phi i32 [ 0, %bb ], [ %tmp23, %bb2 ]
%i.0.1 = sext i32 %i.0 to i64
%tmp = icmp slt i32 %i.0, %N
br i1 %tmp, label %bb2, label %bb24
bb2: ; preds = %bb1
%tmp3 = add nuw nsw i32 %i.0, 3
%tmp4 = icmp slt i32 %tmp3, %N
%tmp5 = sext i32 %tmp3 to i64
%tmp6 = sext i32 %N to i64
%tmp9 = select i1 %tmp4, i64 %tmp5, i64 %tmp6
; min(N, i+3)
%tmp11 = getelementptr inbounds i32, ptr %A, i64 %tmp9
%tmp12 = load i32, ptr %tmp11, align 4
%tmp13 = shl nsw i32 %tmp12, 1
%tmp14 = icmp sge i32 3, %i.0
%tmp17 = add nsw i64 %i.0.1, -3
%tmp19 = select i1 %tmp14, i64 0, i64 %tmp17
; max(0, i - 3)
%tmp21 = getelementptr inbounds i32, ptr %A, i64 %tmp19
store i32 %tmp13, ptr %tmp21, align 4
%tmp23 = add nuw nsw i32 %i.0, 1
br label %bb1
bb24: ; preds = %bb1
ret void
}
define i8 @umax_basic_eq_off1(i8 %x, i8 %y) {
; CHECK-LABEL: 'umax_basic_eq_off1'
; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_off1
; CHECK-NEXT: %lhs = add i8 %y, 1
; CHECK-NEXT: --> (1 + %y) U: full-set S: full-set
; CHECK-NEXT: %rhs = add i8 %x, %y
; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
; CHECK-NEXT: --> ((1 umax %x) + %y) U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_off1
;
%x.is.zero = icmp eq i8 %x, 0
%lhs = add i8 %y, 1
%rhs = add i8 %x, %y
%r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
ret i8 %r
}
define i8 @umax_basic_ne_off1(i8 %x, i8 %y) {
; CHECK-LABEL: 'umax_basic_ne_off1'
; CHECK-NEXT: Classifying expressions for: @umax_basic_ne_off1
; CHECK-NEXT: %lhs = add i8 %y, 1
; CHECK-NEXT: --> (1 + %y) U: full-set S: full-set
; CHECK-NEXT: %rhs = add i8 %x, %y
; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %rhs, i8 %lhs
; CHECK-NEXT: --> ((1 umax %x) + %y) U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @umax_basic_ne_off1
;
%x.is.zero = icmp ne i8 %x, 0
%lhs = add i8 %y, 1
%rhs = add i8 %x, %y
%r = select i1 %x.is.zero, i8 %rhs, i8 %lhs
ret i8 %r
}
define i8 @umax_basic_eq_off0(i8 %x, i8 %y) {
; CHECK-LABEL: 'umax_basic_eq_off0'
; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_off0
; CHECK-NEXT: %lhs = add i8 %y, 0
; CHECK-NEXT: --> %y U: full-set S: full-set
; CHECK-NEXT: %rhs = add i8 %x, %y
; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_off0
;
%x.is.zero = icmp eq i8 %x, 0
%lhs = add i8 %y, 0
%rhs = add i8 %x, %y
%r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
ret i8 %r
}
define i8 @umax_basic_eq_off2(i8 %x, i8 %y) {
; CHECK-LABEL: 'umax_basic_eq_off2'
; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_off2
; CHECK-NEXT: %lhs = add i8 %y, 2
; CHECK-NEXT: --> (2 + %y) U: full-set S: full-set
; CHECK-NEXT: %rhs = add i8 %x, %y
; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
; CHECK-NEXT: --> %r U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_off2
;
%x.is.zero = icmp eq i8 %x, 0
%lhs = add i8 %y, 2
%rhs = add i8 %x, %y
%r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
ret i8 %r
}
define i8 @umax_basic_eq_var_off(i8 %x, i8 %y, i8 %c) {
; CHECK-LABEL: 'umax_basic_eq_var_off'
; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_var_off
; CHECK-NEXT: %lhs = add i8 %y, %c
; CHECK-NEXT: --> (%y + %c) U: full-set S: full-set
; CHECK-NEXT: %rhs = add i8 %x, %y
; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
; CHECK-NEXT: --> %r U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_var_off
;
%x.is.zero = icmp eq i8 %x, 0
%lhs = add i8 %y, %c
%rhs = add i8 %x, %y
%r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
ret i8 %r
}
define i8 @umax_basic_eq_narrow(i4 %x.narrow, i8 %y) {
; CHECK-LABEL: 'umax_basic_eq_narrow'
; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_narrow
; CHECK-NEXT: %x = zext i4 %x.narrow to i8
; CHECK-NEXT: --> (zext i4 %x.narrow to i8) U: [0,16) S: [0,16)
; CHECK-NEXT: %lhs = add i8 %y, 1
; CHECK-NEXT: --> (1 + %y) U: full-set S: full-set
; CHECK-NEXT: %rhs = add i8 %x, %y
; CHECK-NEXT: --> ((zext i4 %x.narrow to i8) + %y) U: full-set S: full-set
; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
; CHECK-NEXT: --> ((1 umax (zext i4 %x.narrow to i8)) + %y) U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_narrow
;
%x = zext i4 %x.narrow to i8
%x.is.zero = icmp eq i4 %x.narrow, 0
%lhs = add i8 %y, 1
%rhs = add i8 %x, %y
%r = select i1 %x.is.zero, i8 %lhs, i8 %rhs
ret i8 %r
}
define i8 @umax_basic_ne_narrow(i4 %x.narrow, i8 %y) {
; CHECK-LABEL: 'umax_basic_ne_narrow'
; CHECK-NEXT: Classifying expressions for: @umax_basic_ne_narrow
; CHECK-NEXT: %x = zext i4 %x.narrow to i8
; CHECK-NEXT: --> (zext i4 %x.narrow to i8) U: [0,16) S: [0,16)
; CHECK-NEXT: %lhs = add i8 %y, 1
; CHECK-NEXT: --> (1 + %y) U: full-set S: full-set
; CHECK-NEXT: %rhs = add i8 %x, %y
; CHECK-NEXT: --> ((zext i4 %x.narrow to i8) + %y) U: full-set S: full-set
; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %rhs, i8 %lhs
; CHECK-NEXT: --> ((1 umax (zext i4 %x.narrow to i8)) + %y) U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @umax_basic_ne_narrow
;
%x = zext i4 %x.narrow to i8
%x.is.zero = icmp ne i4 %x.narrow, 0
%lhs = add i8 %y, 1
%rhs = add i8 %x, %y
%r = select i1 %x.is.zero, i8 %rhs, i8 %lhs
ret i8 %r
}
|