1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -march=amdgcn -mcpu=tahiti -verify-machineinstrs < %s | FileCheck -enable-var-scope -check-prefix=SI %s
;
; Most SALU instructions ignore control flow, so we need to make sure
; they don't overwrite values from other blocks.
; If the branch decision is made based on a value in an SGPR then all
; threads will execute the same code paths, so we don't need to worry
; about instructions in different blocks overwriting each other.
define amdgpu_kernel void @sgpr_if_else_salu_br(ptr addrspace(1) %out, i32 %a, i32 %b, i32 %c, i32 %d, i32 %e) {
; SI-LABEL: sgpr_if_else_salu_br:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0xb
; SI-NEXT: s_load_dword s2, s[0:1], 0xf
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_cmp_lg_u32 s4, 0
; SI-NEXT: s_cbranch_scc0 .LBB0_4
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_add_i32 s7, s7, s2
; SI-NEXT: s_cbranch_execnz .LBB0_3
; SI-NEXT: .LBB0_2: ; %if
; SI-NEXT: s_sub_i32 s7, s5, s6
; SI-NEXT: .LBB0_3: ; %endif
; SI-NEXT: s_load_dwordx2 s[0:1], s[0:1], 0x9
; SI-NEXT: s_add_i32 s4, s7, s4
; SI-NEXT: s_mov_b32 s3, 0xf000
; SI-NEXT: s_mov_b32 s2, -1
; SI-NEXT: v_mov_b32_e32 v0, s4
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: buffer_store_dword v0, off, s[0:3], 0
; SI-NEXT: s_endpgm
; SI-NEXT: .LBB0_4:
; SI-NEXT: ; implicit-def: $sgpr7
; SI-NEXT: s_branch .LBB0_2
entry:
%0 = icmp eq i32 %a, 0
br i1 %0, label %if, label %else
if:
%1 = sub i32 %b, %c
br label %endif
else:
%2 = add i32 %d, %e
br label %endif
endif:
%3 = phi i32 [%1, %if], [%2, %else]
%4 = add i32 %3, %a
store i32 %4, ptr addrspace(1) %out
ret void
}
define amdgpu_kernel void @sgpr_if_else_salu_br_opt(ptr addrspace(1) %out, [8 x i32], i32 %a, [8 x i32], i32 %b, [8 x i32], i32 %c, [8 x i32], i32 %d, [8 x i32], i32 %e) {
; SI-LABEL: sgpr_if_else_salu_br_opt:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dword s4, s[0:1], 0x13
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_cmp_lg_u32 s4, 0
; SI-NEXT: s_cbranch_scc0 .LBB1_4
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_load_dword s2, s[0:1], 0x2e
; SI-NEXT: s_load_dword s3, s[0:1], 0x37
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_add_i32 s5, s2, s3
; SI-NEXT: s_cbranch_execnz .LBB1_3
; SI-NEXT: .LBB1_2: ; %if
; SI-NEXT: s_load_dword s2, s[0:1], 0x1c
; SI-NEXT: s_load_dword s3, s[0:1], 0x25
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_add_i32 s5, s2, s3
; SI-NEXT: .LBB1_3: ; %endif
; SI-NEXT: s_load_dwordx2 s[0:1], s[0:1], 0x9
; SI-NEXT: s_add_i32 s4, s5, s4
; SI-NEXT: s_mov_b32 s3, 0xf000
; SI-NEXT: s_mov_b32 s2, -1
; SI-NEXT: v_mov_b32_e32 v0, s4
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: buffer_store_dword v0, off, s[0:3], 0
; SI-NEXT: s_endpgm
; SI-NEXT: .LBB1_4:
; SI-NEXT: ; implicit-def: $sgpr5
; SI-NEXT: s_branch .LBB1_2
entry:
%cmp0 = icmp eq i32 %a, 0
br i1 %cmp0, label %if, label %else
if:
%add0 = add i32 %b, %c
br label %endif
else:
%add1 = add i32 %d, %e
br label %endif
endif:
%phi = phi i32 [%add0, %if], [%add1, %else]
%add2 = add i32 %phi, %a
store i32 %add2, ptr addrspace(1) %out
ret void
}
; The two S_ADD instructions should write to different registers, since
; different threads will take different control flow paths.
define amdgpu_kernel void @sgpr_if_else_valu_br(ptr addrspace(1) %out, float %a, i32 %b, i32 %c, i32 %d, i32 %e) {
; SI-LABEL: sgpr_if_else_valu_br:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0xc
; SI-NEXT: v_cvt_f32_u32_e32 v0, v0
; SI-NEXT: ; implicit-def: $sgpr8
; SI-NEXT: v_cmp_lg_f32_e32 vcc, 0, v0
; SI-NEXT: s_and_saveexec_b64 s[2:3], vcc
; SI-NEXT: s_xor_b64 s[2:3], exec, s[2:3]
; SI-NEXT: s_cbranch_execz .LBB2_2
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_add_i32 s8, s6, s7
; SI-NEXT: .LBB2_2: ; %Flow
; SI-NEXT: s_or_saveexec_b64 s[2:3], s[2:3]
; SI-NEXT: v_mov_b32_e32 v0, s8
; SI-NEXT: s_xor_b64 exec, exec, s[2:3]
; SI-NEXT: s_cbranch_execz .LBB2_4
; SI-NEXT: ; %bb.3: ; %if
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_add_i32 s4, s4, s5
; SI-NEXT: v_mov_b32_e32 v0, s4
; SI-NEXT: .LBB2_4: ; %endif
; SI-NEXT: s_or_b64 exec, exec, s[2:3]
; SI-NEXT: s_load_dwordx2 s[0:1], s[0:1], 0x9
; SI-NEXT: s_mov_b32 s3, 0xf000
; SI-NEXT: s_mov_b32 s2, -1
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: buffer_store_dword v0, off, s[0:3], 0
; SI-NEXT: s_endpgm
entry:
%tid = call i32 @llvm.amdgcn.workitem.id.x() #0
%tid_f = uitofp i32 %tid to float
%tmp1 = fcmp ueq float %tid_f, 0.0
br i1 %tmp1, label %if, label %else
if:
%tmp2 = add i32 %b, %c
br label %endif
else:
%tmp3 = add i32 %d, %e
br label %endif
endif:
%tmp4 = phi i32 [%tmp2, %if], [%tmp3, %else]
store i32 %tmp4, ptr addrspace(1) %out
ret void
}
define amdgpu_kernel void @sgpr_if_else_valu_cmp_phi_br(ptr addrspace(1) %out, ptr addrspace(1) %a, ptr addrspace(1) %b) {
; SI-LABEL: sgpr_if_else_valu_cmp_phi_br:
; SI: ; %bb.0: ; %entry
; SI-NEXT: s_load_dwordx4 s[4:7], s[0:1], 0x9
; SI-NEXT: s_load_dwordx2 s[0:1], s[0:1], 0xd
; SI-NEXT: s_mov_b32 s2, 0
; SI-NEXT: v_cmp_ne_u32_e32 vcc, 0, v0
; SI-NEXT: v_lshlrev_b32_e32 v0, 2, v0
; SI-NEXT: ; implicit-def: $sgpr8_sgpr9
; SI-NEXT: s_and_saveexec_b64 s[10:11], vcc
; SI-NEXT: s_xor_b64 s[10:11], exec, s[10:11]
; SI-NEXT: s_cbranch_execz .LBB3_2
; SI-NEXT: ; %bb.1: ; %else
; SI-NEXT: s_mov_b32 s3, 0xf000
; SI-NEXT: v_mov_b32_e32 v1, 0
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: buffer_load_dword v0, v[0:1], s[0:3], 0 addr64
; SI-NEXT: s_waitcnt vmcnt(0)
; SI-NEXT: v_cmp_gt_i32_e32 vcc, 0, v0
; SI-NEXT: s_and_b64 s[8:9], vcc, exec
; SI-NEXT: ; implicit-def: $vgpr0
; SI-NEXT: .LBB3_2: ; %Flow
; SI-NEXT: s_waitcnt lgkmcnt(0)
; SI-NEXT: s_andn2_saveexec_b64 s[0:1], s[10:11]
; SI-NEXT: s_cbranch_execz .LBB3_4
; SI-NEXT: ; %bb.3: ; %if
; SI-NEXT: s_mov_b32 s15, 0xf000
; SI-NEXT: s_mov_b32 s14, 0
; SI-NEXT: s_mov_b64 s[12:13], s[6:7]
; SI-NEXT: v_mov_b32_e32 v1, 0
; SI-NEXT: buffer_load_dword v0, v[0:1], s[12:15], 0 addr64
; SI-NEXT: s_andn2_b64 s[2:3], s[8:9], exec
; SI-NEXT: s_waitcnt vmcnt(0)
; SI-NEXT: v_cmp_eq_u32_e32 vcc, 0, v0
; SI-NEXT: s_and_b64 s[6:7], vcc, exec
; SI-NEXT: s_or_b64 s[8:9], s[2:3], s[6:7]
; SI-NEXT: .LBB3_4: ; %endif
; SI-NEXT: s_or_b64 exec, exec, s[0:1]
; SI-NEXT: s_mov_b32 s7, 0xf000
; SI-NEXT: s_mov_b32 s6, -1
; SI-NEXT: v_cndmask_b32_e64 v0, 0, -1, s[8:9]
; SI-NEXT: buffer_store_dword v0, off, s[4:7], 0
; SI-NEXT: s_endpgm
entry:
%tid = call i32 @llvm.amdgcn.workitem.id.x() #0
%tmp1 = icmp eq i32 %tid, 0
br i1 %tmp1, label %if, label %else
if:
%gep.if = getelementptr i32, ptr addrspace(1) %a, i32 %tid
%a.val = load i32, ptr addrspace(1) %gep.if
%cmp.if = icmp eq i32 %a.val, 0
br label %endif
else:
%gep.else = getelementptr i32, ptr addrspace(1) %b, i32 %tid
%b.val = load i32, ptr addrspace(1) %gep.else
%cmp.else = icmp slt i32 %b.val, 0
br label %endif
endif:
%tmp4 = phi i1 [%cmp.if, %if], [%cmp.else, %else]
%ext = sext i1 %tmp4 to i32
store i32 %ext, ptr addrspace(1) %out
ret void
}
declare i32 @llvm.amdgcn.workitem.id.x() #0
attributes #0 = { readnone }
|