1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
; Test insertions of 32-bit constants into one half of an i64.
;
; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s
; Prefer LHI over IILF for signed 16-bit constants.
define i64 @f1(i64 %a) {
; CHECK-LABEL: f1:
; CHECK-NOT: ni
; CHECK: lhi %r2, 1
; CHECK: br %r14
%and = and i64 %a, 18446744069414584320
%or = or i64 %and, 1
ret i64 %or
}
; Check the high end of the LHI range.
define i64 @f2(i64 %a) {
; CHECK-LABEL: f2:
; CHECK-NOT: ni
; CHECK: lhi %r2, 32767
; CHECK: br %r14
%and = and i64 %a, 18446744069414584320
%or = or i64 %and, 32767
ret i64 %or
}
; Check the next value up, which should use IILF instead.
define i64 @f3(i64 %a) {
; CHECK-LABEL: f3:
; CHECK-NOT: ni
; CHECK: iilf %r2, 32768
; CHECK: br %r14
%and = and i64 %a, 18446744069414584320
%or = or i64 %and, 32768
ret i64 %or
}
; Check a value in which the lower 16 bits are clear.
define i64 @f4(i64 %a) {
; CHECK-LABEL: f4:
; CHECK-NOT: ni
; CHECK: iilf %r2, 65536
; CHECK: br %r14
%and = and i64 %a, 18446744069414584320
%or = or i64 %and, 65536
ret i64 %or
}
; Check the highest useful IILF value (-0x8001).
define i64 @f5(i64 %a) {
; CHECK-LABEL: f5:
; CHECK-NOT: ni
; CHECK: iilf %r2, 4294934527
; CHECK: br %r14
%and = and i64 %a, 18446744069414584320
%or = or i64 %and, 4294934527
ret i64 %or
}
; Check the next value up, which should use LHI instead.
define i64 @f6(i64 %a) {
; CHECK-LABEL: f6:
; CHECK-NOT: ni
; CHECK: lhi %r2, -32768
; CHECK: br %r14
%and = and i64 %a, 18446744069414584320
%or = or i64 %and, 4294934528
ret i64 %or
}
; Check the highest useful LHI value. (We use OILF for -1 instead, although
; LHI might be better there too.)
define i64 @f7(i64 %a) {
; CHECK-LABEL: f7:
; CHECK-NOT: ni
; CHECK: lhi %r2, -2
; CHECK: br %r14
%and = and i64 %a, 18446744069414584320
%or = or i64 %and, 4294967294
ret i64 %or
}
; Check that SRLG is still used if some of the high bits are known to be 0
; (and so might be removed from the mask).
define i64 @f8(i64 %a) {
; CHECK-LABEL: f8:
; CHECK: srlg %r2, %r2, 1
; CHECK-NEXT: iilf %r2, 32768
; CHECK: br %r14
%shifted = lshr i64 %a, 1
%and = and i64 %shifted, 18446744069414584320
%or = or i64 %and, 32768
ret i64 %or
}
; Repeat f8 with addition, which is known to be equivalent to OR in this case.
define i64 @f9(i64 %a) {
; CHECK-LABEL: f9:
; CHECK: srlg %r2, %r2, 1
; CHECK-NEXT: iilf %r2, 32768
; CHECK: br %r14
%shifted = lshr i64 %a, 1
%and = and i64 %shifted, 18446744069414584320
%or = add i64 %and, 32768
ret i64 %or
}
; Repeat f8 with already-zero bits removed from the mask.
define i64 @f10(i64 %a) {
; CHECK-LABEL: f10:
; CHECK: srlg %r2, %r2, 1
; CHECK-NEXT: iilf %r2, 32768
; CHECK: br %r14
%shifted = lshr i64 %a, 1
%and = and i64 %shifted, 9223372032559808512
%or = or i64 %and, 32768
ret i64 %or
}
; Repeat f10 with addition, which is known to be equivalent to OR in this case.
define i64 @f11(i64 %a) {
; CHECK-LABEL: f11:
; CHECK: srlg %r2, %r2, 1
; CHECK-NEXT: iilf %r2, 32768
; CHECK: br %r14
%shifted = lshr i64 %a, 1
%and = and i64 %shifted, 9223372032559808512
%or = add i64 %and, 32768
ret i64 %or
}
; Check the lowest useful IIHF value.
define i64 @f12(i64 %a) {
; CHECK-LABEL: f12:
; CHECK-NOT: ni
; CHECK: iihf %r2, 1
; CHECK: br %r14
%and = and i64 %a, 4294967295
%or = or i64 %and, 4294967296
ret i64 %or
}
; Check a value in which the lower 16 bits are clear.
define i64 @f13(i64 %a) {
; CHECK-LABEL: f13:
; CHECK-NOT: ni
; CHECK: iihf %r2, 2147483648
; CHECK: br %r14
%and = and i64 %a, 4294967295
%or = or i64 %and, 9223372036854775808
ret i64 %or
}
; Check the highest useful IIHF value (0xfffffffe).
define i64 @f14(i64 %a) {
; CHECK-LABEL: f14:
; CHECK-NOT: ni
; CHECK: iihf %r2, 4294967294
; CHECK: br %r14
%and = and i64 %a, 4294967295
%or = or i64 %and, 18446744065119617024
ret i64 %or
}
; Check a case in which some of the low 32 bits are known to be clear,
; and so could be removed from the AND mask.
define i64 @f15(i64 %a) {
; CHECK-LABEL: f15:
; CHECK: sllg %r2, %r2, 1
; CHECK-NEXT: iihf %r2, 1
; CHECK: br %r14
%shifted = shl i64 %a, 1
%and = and i64 %shifted, 4294967295
%or = or i64 %and, 4294967296
ret i64 %or
}
; Repeat f15 with the zero bits explicitly removed from the mask.
define i64 @f16(i64 %a) {
; CHECK-LABEL: f16:
; CHECK: sllg %r2, %r2, 1
; CHECK-NEXT: iihf %r2, 1
; CHECK: br %r14
%shifted = shl i64 %a, 1
%and = and i64 %shifted, 4294967294
%or = or i64 %and, 4294967296
ret i64 %or
}
; Check concatenation of two i32s.
define i64 @f17(i32 %a) {
; CHECK-LABEL: f17:
; CHECK: msr %r2, %r2
; CHECK-NEXT: iihf %r2, 1
; CHECK: br %r14
%mul = mul i32 %a, %a
%ext = zext i32 %mul to i64
%or = or i64 %ext, 4294967296
ret i64 %or
}
; Repeat f17 with the operands reversed.
define i64 @f18(i32 %a) {
; CHECK-LABEL: f18:
; CHECK: msr %r2, %r2
; CHECK-NEXT: iihf %r2, 1
; CHECK: br %r14
%mul = mul i32 %a, %a
%ext = zext i32 %mul to i64
%or = or i64 4294967296, %ext
ret i64 %or
}
; The truncation here isn't free; we need an explicit zero extension.
define i64 @f19(i32 %a) {
; CHECK-LABEL: f19:
; CHECK: llgcr %r2, %r2
; CHECK: oihl %r2, 1
; CHECK: br %r14
%trunc = trunc i32 %a to i8
%ext = zext i8 %trunc to i64
%or = or i64 %ext, 4294967296
ret i64 %or
}
|