1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-linux-gnu | FileCheck %s
; fold (shl (zext (lshr (A, X))), X) -> (zext (shl (lshr (A, X)), X))
; Canolicalize the sequence shl/zext/lshr performing the zeroextend
; as the last instruction of the sequence.
; This will help DAGCombiner to identify and then fold the sequence
; of shifts into a single AND.
; This transformation is profitable if the shift amounts are the same
; and if there is only one use of the zext.
define i16 @fun1(i8 zeroext %v) {
; CHECK-LABEL: fun1:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl %edi, %eax
; CHECK-NEXT: andl $-16, %eax
; CHECK-NEXT: # kill: def $ax killed $ax killed $eax
; CHECK-NEXT: retq
entry:
%shr = lshr i8 %v, 4
%ext = zext i8 %shr to i16
%shl = shl i16 %ext, 4
ret i16 %shl
}
define i32 @fun2(i8 zeroext %v) {
; CHECK-LABEL: fun2:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl %edi, %eax
; CHECK-NEXT: andl $-16, %eax
; CHECK-NEXT: retq
entry:
%shr = lshr i8 %v, 4
%ext = zext i8 %shr to i32
%shl = shl i32 %ext, 4
ret i32 %shl
}
define i32 @fun3(i16 zeroext %v) {
; CHECK-LABEL: fun3:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl %edi, %eax
; CHECK-NEXT: andl $-16, %eax
; CHECK-NEXT: retq
entry:
%shr = lshr i16 %v, 4
%ext = zext i16 %shr to i32
%shl = shl i32 %ext, 4
ret i32 %shl
}
define i64 @fun4(i8 zeroext %v) {
; CHECK-LABEL: fun4:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl %edi, %eax
; CHECK-NEXT: andl $-16, %eax
; CHECK-NEXT: retq
entry:
%shr = lshr i8 %v, 4
%ext = zext i8 %shr to i64
%shl = shl i64 %ext, 4
ret i64 %shl
}
define i64 @fun5(i16 zeroext %v) {
; CHECK-LABEL: fun5:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl %edi, %eax
; CHECK-NEXT: andl $-16, %eax
; CHECK-NEXT: retq
entry:
%shr = lshr i16 %v, 4
%ext = zext i16 %shr to i64
%shl = shl i64 %ext, 4
ret i64 %shl
}
define i64 @fun6(i32 zeroext %v) {
; CHECK-LABEL: fun6:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl %edi, %eax
; CHECK-NEXT: andl $-16, %eax
; CHECK-NEXT: retq
entry:
%shr = lshr i32 %v, 4
%ext = zext i32 %shr to i64
%shl = shl i64 %ext, 4
ret i64 %shl
}
; Don't fold the pattern if we use arithmetic shifts.
define i64 @fun7(i8 zeroext %v) {
; CHECK-LABEL: fun7:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: sarb $4, %dil
; CHECK-NEXT: movzbl %dil, %eax
; CHECK-NEXT: shlq $4, %rax
; CHECK-NEXT: retq
entry:
%shr = ashr i8 %v, 4
%ext = zext i8 %shr to i64
%shl = shl i64 %ext, 4
ret i64 %shl
}
define i64 @fun8(i16 zeroext %v) {
; CHECK-LABEL: fun8:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movswl %di, %eax
; CHECK-NEXT: shrl $4, %eax
; CHECK-NEXT: movzwl %ax, %eax
; CHECK-NEXT: shlq $4, %rax
; CHECK-NEXT: retq
entry:
%shr = ashr i16 %v, 4
%ext = zext i16 %shr to i64
%shl = shl i64 %ext, 4
ret i64 %shl
}
define i64 @fun9(i32 zeroext %v) {
; CHECK-LABEL: fun9:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl %edi, %eax
; CHECK-NEXT: sarl $4, %eax
; CHECK-NEXT: shlq $4, %rax
; CHECK-NEXT: retq
entry:
%shr = ashr i32 %v, 4
%ext = zext i32 %shr to i64
%shl = shl i64 %ext, 4
ret i64 %shl
}
; Don't fold the pattern if there is more than one use of the
; operand in input to the shift left.
define i64 @fun10(i8 zeroext %v) {
; CHECK-LABEL: fun10:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: shrb $4, %dil
; CHECK-NEXT: movzbl %dil, %ecx
; CHECK-NEXT: movq %rcx, %rax
; CHECK-NEXT: shlq $4, %rax
; CHECK-NEXT: orq %rcx, %rax
; CHECK-NEXT: retq
entry:
%shr = lshr i8 %v, 4
%ext = zext i8 %shr to i64
%shl = shl i64 %ext, 4
%add = add i64 %shl, %ext
ret i64 %add
}
define i64 @fun11(i16 zeroext %v) {
; CHECK-LABEL: fun11:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: # kill: def $edi killed $edi def $rdi
; CHECK-NEXT: shrl $4, %edi
; CHECK-NEXT: movq %rdi, %rax
; CHECK-NEXT: shlq $4, %rax
; CHECK-NEXT: addq %rdi, %rax
; CHECK-NEXT: retq
entry:
%shr = lshr i16 %v, 4
%ext = zext i16 %shr to i64
%shl = shl i64 %ext, 4
%add = add i64 %shl, %ext
ret i64 %add
}
define i64 @fun12(i32 zeroext %v) {
; CHECK-LABEL: fun12:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: # kill: def $edi killed $edi def $rdi
; CHECK-NEXT: shrl $4, %edi
; CHECK-NEXT: movq %rdi, %rax
; CHECK-NEXT: shlq $4, %rax
; CHECK-NEXT: addq %rdi, %rax
; CHECK-NEXT: retq
entry:
%shr = lshr i32 %v, 4
%ext = zext i32 %shr to i64
%shl = shl i64 %ext, 4
%add = add i64 %shl, %ext
ret i64 %add
}
; PR17380
; Make sure that the combined dags are legal if we run the DAGCombiner after
; Legalization took place. The add instruction is redundant and increases by
; one the number of uses of the zext. This prevents the transformation from
; firing before dags are legalized and optimized.
; Once the add is removed, the number of uses becomes one and therefore the
; dags are canonicalized. After Legalization, we need to make sure that the
; valuetype for the shift count is legal.
; Verify also that we correctly fold the shl-shr sequence into an
; AND with bitmask.
define void @g(i32 %a) {
; CHECK-LABEL: g:
; CHECK: # %bb.0:
; CHECK-NEXT: # kill: def $edi killed $edi def $rdi
; CHECK-NEXT: andl $-4, %edi
; CHECK-NEXT: jmp f # TAILCALL
%b = lshr i32 %a, 2
%c = zext i32 %b to i64
%d = add i64 %c, 1
%e = shl i64 %c, 2
tail call void @f(i64 %e)
ret void
}
declare dso_local void @f(i64)
|