1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
; RUN: llc -mtriple x86_64-apple-macosx -mcpu=corei7-avx -combiner-stress-load-slicing < %s -o - | FileCheck %s --check-prefix=STRESS
; RUN: llc -mtriple x86_64-apple-macosx -mcpu=corei7-avx < %s -o - | FileCheck %s --check-prefix=REGULAR
;
; <rdar://problem/14477220>
%class.Complex = type { float, float }
; Check that independent slices leads to independent loads then the slices leads to
; different register file.
;
; The layout is:
; LSB 0 1 2 3 | 4 5 6 7 MSB
; Low High
; The base address points to 0 and is 8-bytes aligned.
; Low slice starts at 0 (base) and is 8-bytes aligned.
; High slice starts at 4 (base + 4-bytes) and is 4-bytes aligned.
;
; STRESS-LABEL: _t1:
; Load out[out_start + 8].real, this is base + 8 * 8 + 0.
; STRESS: vmovss 64([[BASE:[^(]+]]), [[OUT_Real:%xmm[0-9]+]]
; Load out[out_start + 8].imm, this is base + 8 * 8 + 4.
; STRESS-NEXT: vmovss 68([[BASE]]), [[OUT_Imm:%xmm[0-9]+]]
; Add low slice: out[out_start].real, this is base + 0.
; STRESS-NEXT: vaddss ([[BASE]]), [[OUT_Real]], [[RES_Real:%xmm[0-9]+]]
; Add high slice: out[out_start].imm, this is base + 4.
; STRESS-NEXT: vaddss 4([[BASE]]), [[OUT_Imm]], [[RES_Imm:%xmm[0-9]+]]
; Swap Imm and Real.
; STRESS-NEXT: vinsertps $16, [[RES_Imm]], [[RES_Real]], [[RES_Vec:%xmm[0-9]+]]
; Put the results back into out[out_start].
; STRESS-NEXT: vmovlps [[RES_Vec]], ([[BASE]])
;
; Same for REGULAR, we eliminate register bank copy with each slices.
; REGULAR-LABEL: _t1:
; Load out[out_start + 8].real, this is base + 8 * 8 + 0.
; REGULAR: vmovss 64([[BASE:[^)]+]]), [[OUT_Real:%xmm[0-9]+]]
; Load out[out_start + 8].imm, this is base + 8 * 8 + 4.
; REGULAR-NEXT: vmovss 68([[BASE]]), [[OUT_Imm:%xmm[0-9]+]]
; Add low slice: out[out_start].real, this is base + 0.
; REGULAR-NEXT: vaddss ([[BASE]]), [[OUT_Real]], [[RES_Real:%xmm[0-9]+]]
; Add high slice: out[out_start].imm, this is base + 4.
; REGULAR-NEXT: vaddss 4([[BASE]]), [[OUT_Imm]], [[RES_Imm:%xmm[0-9]+]]
; Swap Imm and Real.
; REGULAR-NEXT: vinsertps $16, [[RES_Imm]], [[RES_Real]], [[RES_Vec:%xmm[0-9]+]]
; Put the results back into out[out_start].
; REGULAR-NEXT: vmovlps [[RES_Vec]], ([[BASE]])
define void @t1(ptr nocapture %out, i64 %out_start) {
entry:
%arrayidx = getelementptr inbounds %class.Complex, ptr %out, i64 %out_start
%tmp1 = load i64, ptr %arrayidx, align 8
%t0.sroa.0.0.extract.trunc = trunc i64 %tmp1 to i32
%tmp2 = bitcast i32 %t0.sroa.0.0.extract.trunc to float
%t0.sroa.2.0.extract.shift = lshr i64 %tmp1, 32
%t0.sroa.2.0.extract.trunc = trunc i64 %t0.sroa.2.0.extract.shift to i32
%tmp3 = bitcast i32 %t0.sroa.2.0.extract.trunc to float
%add = add i64 %out_start, 8
%arrayidx2 = getelementptr inbounds %class.Complex, ptr %out, i64 %add
%tmp4 = load float, ptr %arrayidx2, align 4
%add.i = fadd float %tmp4, %tmp2
%retval.sroa.0.0.vec.insert.i = insertelement <2 x float> undef, float %add.i, i32 0
%r.i = getelementptr inbounds %class.Complex, ptr %arrayidx2, i64 0, i32 1
%tmp5 = load float, ptr %r.i, align 4
%add5.i = fadd float %tmp5, %tmp3
%retval.sroa.0.4.vec.insert.i = insertelement <2 x float> %retval.sroa.0.0.vec.insert.i, float %add5.i, i32 1
store <2 x float> %retval.sroa.0.4.vec.insert.i, ptr %arrayidx, align 4
ret void
}
; Function Attrs: nounwind
declare void @llvm.memcpy.p0.p0.i64(ptr nocapture, ptr nocapture readonly, i64, i1) #1
; Function Attrs: nounwind
declare void @llvm.lifetime.start.p0(i64, ptr nocapture)
; Function Attrs: nounwind
declare void @llvm.lifetime.end.p0(i64, ptr nocapture)
; Check that we do not read outside of the chunk of bits of the original loads.
;
; The 64-bits should have been split in one 32-bits and one 16-bits slices.
; The 16-bits should be zero extended to match the final type.
;
; The memory layout is:
; LSB 0 1 2 3 | 4 5 | 6 7 MSB
; Low High
; The base address points to 0 and is 8-bytes aligned.
; Low slice starts at 0 (base) and is 8-bytes aligned.
; High slice starts at 6 (base + 6-bytes) and is 2-bytes aligned.
;
; STRESS-LABEL: _t2:
; STRESS: movzwl 6([[BASE:[^)]+]]), %eax
; STRESS-NEXT: addl ([[BASE]]), %eax
; STRESS-NEXT: ret
;
; For the REGULAR heuristic, this is not profitable to slice things that are not
; next to each other in memory. Here we have a hole with bytes #4-5.
; REGULAR-LABEL: _t2:
; REGULAR: shrq $48
define i32 @t2(ptr nocapture %out, i64 %out_start) {
%arrayidx = getelementptr inbounds %class.Complex, ptr %out, i64 %out_start
%chunk64 = load i64, ptr %arrayidx, align 8
%slice32_low = trunc i64 %chunk64 to i32
%shift48 = lshr i64 %chunk64, 48
%slice32_high = trunc i64 %shift48 to i32
%res = add i32 %slice32_high, %slice32_low
ret i32 %res
}
; Check that we do not optimize overlapping slices.
;
; The 64-bits should NOT have been split in as slices are overlapping.
; First slice uses bytes numbered 0 to 3.
; Second slice uses bytes numbered 6 and 7.
; Third slice uses bytes numbered 4 to 7.
;
; STRESS-LABEL: _t3:
; STRESS: shrq $48
; STRESS: shrq $32
;
; REGULAR-LABEL: _t3:
; REGULAR: shrq $48
; REGULAR: shrq $32
define i32 @t3(ptr nocapture %out, i64 %out_start) {
%arrayidx = getelementptr inbounds %class.Complex, ptr %out, i64 %out_start
%chunk64 = load i64, ptr %arrayidx, align 8
%slice32_low = trunc i64 %chunk64 to i32
%shift48 = lshr i64 %chunk64, 48
%slice32_high = trunc i64 %shift48 to i32
%shift32 = lshr i64 %chunk64, 32
%slice32_lowhigh = trunc i64 %shift32 to i32
%tmpres = add i32 %slice32_high, %slice32_low
%res = add i32 %slice32_lowhigh, %tmpres
ret i32 %res
}
|