1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
; RUN: opt -S -passes=deadargelim %s | FileCheck %s
; Case 0: the basic example: an entire aggregate use is returned, but it's
; actually only used in ways we can eliminate. We gain benefit from analysing
; the "use" and applying its results to all sub-values.
; CHECK-LABEL: define internal void @agguse_dead()
define internal { i32, i32 } @agguse_dead() {
ret { i32, i32 } { i32 0, i32 1 }
}
define internal { i32, i32 } @test_agguse_dead() {
%val = call { i32, i32 } @agguse_dead()
ret { i32, i32 } %val
}
; Case 1: an opaque use of the aggregate exists (in this case dead). Otherwise
; only one value is used, so function can be simplified.
; CHECK-LABEL: define internal i32 @rets_independent_if_agguse_dead()
; CHECK: [[RET:%.*]] = extractvalue { i32, i32 } { i32 0, i32 1 }, 1
; CHECK: ret i32 [[RET]]
define internal { i32, i32 } @rets_independent_if_agguse_dead() {
ret { i32, i32 } { i32 0, i32 1 }
}
define internal { i32, i32 } @test_rets_independent_if_agguse_dead(i1 %tst) {
%val = call { i32, i32 } @rets_independent_if_agguse_dead()
br i1 %tst, label %use_1, label %use_aggregate
use_1:
; This use can be classified as applying only to ret 1.
%val0 = extractvalue { i32, i32 } %val, 1
call void @callee(i32 %val0)
ret { i32, i32 } poison
use_aggregate:
; This use is assumed to apply to both 0 and 1.
ret { i32, i32 } %val
}
; Case 2: an opaque use of the aggregate exists (in this case *live*). Other
; uses shouldn't matter.
; CHECK-LABEL: define internal { i32, i32 } @rets_live_agguse()
; CHECK: ret { i32, i32 } { i32 0, i32 1 }
define internal { i32, i32 } @rets_live_agguse() {
ret { i32, i32} { i32 0, i32 1 }
}
define { i32, i32 } @test_rets_live_aggues(i1 %tst) {
%val = call { i32, i32 } @rets_live_agguse()
br i1 %tst, label %use_1, label %use_aggregate
use_1:
; This use can be classified as applying only to ret 1.
%val0 = extractvalue { i32, i32 } %val, 1
call void @callee(i32 %val0)
ret { i32, i32 } poison
use_aggregate:
; This use is assumed to apply to both 0 and 1.
ret { i32, i32 } %val
}
declare void @callee(i32)
; Case 3: the insertvalue meant %in was live if ret-slot-1 was, but we were only
; tracking multiple ret-slots for struct types. So %in was eliminated
; incorrectly.
; CHECK-LABEL: define internal [2 x i32] @array_rets_have_multiple_slots(i32 %in)
define internal [2 x i32] @array_rets_have_multiple_slots(i32 %in) {
%ret = insertvalue [2 x i32] poison, i32 %in, 1
ret [2 x i32] %ret
}
define [2 x i32] @test_array_rets_have_multiple_slots() {
%res = call [2 x i32] @array_rets_have_multiple_slots(i32 42)
ret [2 x i32] %res
}
; Case 4: we can remove some retvals from the array. It's nice to produce an
; array again having done so (rather than converting it to a struct).
; CHECK-LABEL: define internal [2 x i32] @can_shrink_arrays()
; CHECK: [[VAL0:%.*]] = extractvalue [3 x i32] [i32 42, i32 43, i32 44], 0
; CHECK: [[RESTMP:%.*]] = insertvalue [2 x i32] poison, i32 [[VAL0]], 0
; CHECK: [[VAL2:%.*]] = extractvalue [3 x i32] [i32 42, i32 43, i32 44], 2
; CHECK: [[RES:%.*]] = insertvalue [2 x i32] [[RESTMP]], i32 [[VAL2]], 1
; CHECK: ret [2 x i32] [[RES]]
; CHECK-LABEL: define void @test_can_shrink_arrays()
define internal [3 x i32] @can_shrink_arrays() {
ret [3 x i32] [i32 42, i32 43, i32 44]
}
define void @test_can_shrink_arrays() {
%res = call [3 x i32] @can_shrink_arrays()
%res.0 = extractvalue [3 x i32] %res, 0
call void @callee(i32 %res.0)
%res.2 = extractvalue [3 x i32] %res, 2
call void @callee(i32 %res.2)
ret void
}
; Case 5: %in gets passed directly to the return. It should mark be marked as
; used if *any* of the return values are, not just if value 0 is.
; CHECK-LABEL: define internal i32 @ret_applies_to_all({ i32, i32 } %in)
; CHECK: [[RET:%.*]] = extractvalue { i32, i32 } %in, 1
; CHECK: ret i32 [[RET]]
define internal {i32, i32} @ret_applies_to_all({i32, i32} %in) {
ret {i32, i32} %in
}
define i32 @test_ret_applies_to_all() {
%val = call {i32, i32} @ret_applies_to_all({i32, i32} {i32 42, i32 43})
%ret = extractvalue {i32, i32} %val, 1
ret i32 %ret
}
; Case 6: When considering @mid, the return instruciton has sub-value 0
; unconditionally live, but 1 only conditionally live. Since at that level we're
; applying the results to the whole of %res, this means %res is live and cannot
; be reduced. There is scope for further optimisation here (though not visible
; in this test-case).
; CHECK-LABEL: define internal { ptr, i32 } @inner()
define internal {ptr, i32} @mid() {
%res = call {ptr, i32} @inner()
%intval = extractvalue {ptr, i32} %res, 1
%tst = icmp eq i32 %intval, 42
br i1 %tst, label %true, label %true
true:
ret {ptr, i32} %res
}
define internal {ptr, i32} @inner() {
ret {ptr, i32} {ptr null, i32 42}
}
define internal i8 @outer() {
%res = call {ptr, i32} @mid()
%resptr = extractvalue {ptr, i32} %res, 0
%val = load i8, ptr %resptr
ret i8 %val
}
define internal { i32 } @agg_ret() {
entry:
unreachable
}
; CHECK-LABEL: define void @PR24906
; CHECK: %[[invoke:.*]] = invoke i32 @agg_ret()
; CHECK: %[[oldret:.*]] = insertvalue { i32 } poison, i32 %[[invoke]], 0
; CHECK: phi { i32 } [ %[[oldret]],
define void @PR24906() personality ptr poison {
entry:
%tmp2 = invoke { i32 } @agg_ret()
to label %bb3 unwind label %bb4
bb3:
%tmp3 = phi { i32 } [ %tmp2, %entry ]
unreachable
bb4:
%tmp4 = landingpad { ptr, i32 }
cleanup
unreachable
}
|