1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -passes=instcombine -S | FileCheck %s
target datalayout = "n8:16:32:64"
; Eliminating the casts in this testcase (by narrowing the AND operation)
; allows instcombine to realize the function always returns false.
define i1 @test1(i32 %A, i32 %B) {
; CHECK-LABEL: @test1(
; CHECK-NEXT: ret i1 false
;
%C1 = icmp slt i32 %A, %B
%ELIM1 = zext i1 %C1 to i32
%C2 = icmp sgt i32 %A, %B
%ELIM2 = zext i1 %C2 to i32
%C3 = and i32 %ELIM1, %ELIM2
%ELIM3 = trunc i32 %C3 to i1
ret i1 %ELIM3
}
; The next 6 (3 logic ops * (scalar+vector)) tests show potential cases for narrowing a bitwise logic op.
define i32 @shrink_xor(i64 %a) {
; CHECK-LABEL: @shrink_xor(
; CHECK-NEXT: [[TMP1:%.*]] = trunc i64 [[A:%.*]] to i32
; CHECK-NEXT: [[TRUNC:%.*]] = xor i32 [[TMP1]], 1
; CHECK-NEXT: ret i32 [[TRUNC]]
;
%xor = xor i64 %a, 1
%trunc = trunc i64 %xor to i32
ret i32 %trunc
}
; Vectors (with splat constants) should get the same transform.
define <2 x i32> @shrink_xor_vec(<2 x i64> %a) {
; CHECK-LABEL: @shrink_xor_vec(
; CHECK-NEXT: [[TMP1:%.*]] = trunc <2 x i64> [[A:%.*]] to <2 x i32>
; CHECK-NEXT: [[TRUNC:%.*]] = xor <2 x i32> [[TMP1]], <i32 2, i32 2>
; CHECK-NEXT: ret <2 x i32> [[TRUNC]]
;
%xor = xor <2 x i64> %a, <i64 2, i64 2>
%trunc = trunc <2 x i64> %xor to <2 x i32>
ret <2 x i32> %trunc
}
; Source and dest types are not in the datalayout.
define i3 @shrink_or(i6 %a) {
; CHECK-LABEL: @shrink_or(
; CHECK-NEXT: [[TMP1:%.*]] = trunc i6 [[A:%.*]] to i3
; CHECK-NEXT: [[TRUNC:%.*]] = or i3 [[TMP1]], 1
; CHECK-NEXT: ret i3 [[TRUNC]]
;
%or = or i6 %a, 33
%trunc = trunc i6 %or to i3
ret i3 %trunc
}
; Vectors (with non-splat constants) should get the same transform.
define <2 x i8> @shrink_or_vec(<2 x i16> %a) {
; CHECK-LABEL: @shrink_or_vec(
; CHECK-NEXT: [[TMP1:%.*]] = trunc <2 x i16> [[A:%.*]] to <2 x i8>
; CHECK-NEXT: [[TRUNC:%.*]] = or <2 x i8> [[TMP1]], <i8 -1, i8 0>
; CHECK-NEXT: ret <2 x i8> [[TRUNC]]
;
%or = or <2 x i16> %a, <i16 -1, i16 256>
%trunc = trunc <2 x i16> %or to <2 x i8>
ret <2 x i8> %trunc
}
; We discriminate against weird types.
define i31 @shrink_and(i64 %a) {
; CHECK-LABEL: @shrink_and(
; CHECK-NEXT: [[AND:%.*]] = and i64 [[A:%.*]], 42
; CHECK-NEXT: [[TRUNC:%.*]] = trunc i64 [[AND]] to i31
; CHECK-NEXT: ret i31 [[TRUNC]]
;
%and = and i64 %a, 42
%trunc = trunc i64 %and to i31
ret i31 %trunc
}
; Chop the top of the constant(s) if needed.
define <2 x i32> @shrink_and_vec(<2 x i33> %a) {
; CHECK-LABEL: @shrink_and_vec(
; CHECK-NEXT: [[TMP1:%.*]] = trunc <2 x i33> [[A:%.*]] to <2 x i32>
; CHECK-NEXT: [[TRUNC:%.*]] = and <2 x i32> [[TMP1]], <i32 0, i32 6>
; CHECK-NEXT: ret <2 x i32> [[TRUNC]]
;
%and = and <2 x i33> %a, <i33 4294967296, i33 6>
%trunc = trunc <2 x i33> %and to <2 x i32>
ret <2 x i32> %trunc
}
; FIXME:
; This is based on an 'any_of' loop construct.
; By narrowing the phi and logic op, we simplify away the zext and the final icmp.
define i1 @searchArray1(i32 %needle, ptr %haystack) {
; CHECK-LABEL: @searchArray1(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[INDVAR:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INDVAR_NEXT:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[FOUND:%.*]] = phi i8 [ 0, [[ENTRY]] ], [ [[OR:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[TMP0:%.*]] = sext i32 [[INDVAR]] to i64
; CHECK-NEXT: [[IDX:%.*]] = getelementptr i32, ptr [[HAYSTACK:%.*]], i64 [[TMP0]]
; CHECK-NEXT: [[LD:%.*]] = load i32, ptr [[IDX]], align 4
; CHECK-NEXT: [[CMP1:%.*]] = icmp eq i32 [[LD]], [[NEEDLE:%.*]]
; CHECK-NEXT: [[ZEXT:%.*]] = zext i1 [[CMP1]] to i8
; CHECK-NEXT: [[OR]] = or i8 [[FOUND]], [[ZEXT]]
; CHECK-NEXT: [[INDVAR_NEXT]] = add i32 [[INDVAR]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i32 [[INDVAR_NEXT]], 1000
; CHECK-NEXT: br i1 [[EXITCOND]], label [[EXIT:%.*]], label [[LOOP]]
; CHECK: exit:
; CHECK-NEXT: [[TOBOOL:%.*]] = icmp ne i8 [[OR]], 0
; CHECK-NEXT: ret i1 [[TOBOOL]]
;
entry:
br label %loop
loop:
%indvar = phi i32 [ 0, %entry ], [ %indvar.next, %loop ]
%found = phi i8 [ 0, %entry ], [ %or, %loop ]
%idx = getelementptr i32, ptr %haystack, i32 %indvar
%ld = load i32, ptr %idx
%cmp1 = icmp eq i32 %ld, %needle
%zext = zext i1 %cmp1 to i8
%or = or i8 %found, %zext
%indvar.next = add i32 %indvar, 1
%exitcond = icmp eq i32 %indvar.next, 1000
br i1 %exitcond, label %exit, label %loop
exit:
%tobool = icmp ne i8 %or, 0
ret i1 %tobool
}
; FIXME:
; This is based on an 'all_of' loop construct.
; By narrowing the phi and logic op, we simplify away the zext and the final icmp.
define i1 @searchArray2(i32 %hay, ptr %haystack) {
; CHECK-LABEL: @searchArray2(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[INDVAR:%.*]] = phi i64 [ 0, [[ENTRY:%.*]] ], [ [[INDVAR_NEXT:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[FOUND:%.*]] = phi i8 [ 1, [[ENTRY]] ], [ [[AND:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[IDX:%.*]] = getelementptr i32, ptr [[HAYSTACK:%.*]], i64 [[INDVAR]]
; CHECK-NEXT: [[LD:%.*]] = load i32, ptr [[IDX]], align 4
; CHECK-NEXT: [[CMP1:%.*]] = icmp eq i32 [[LD]], [[HAY:%.*]]
; CHECK-NEXT: [[ZEXT:%.*]] = zext i1 [[CMP1]] to i8
; CHECK-NEXT: [[AND]] = and i8 [[FOUND]], [[ZEXT]]
; CHECK-NEXT: [[INDVAR_NEXT]] = add i64 [[INDVAR]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[INDVAR_NEXT]], 1000
; CHECK-NEXT: br i1 [[EXITCOND]], label [[EXIT:%.*]], label [[LOOP]]
; CHECK: exit:
; CHECK-NEXT: [[TOBOOL:%.*]] = icmp ne i8 [[AND]], 0
; CHECK-NEXT: ret i1 [[TOBOOL]]
;
entry:
br label %loop
loop:
%indvar = phi i64 [ 0, %entry ], [ %indvar.next, %loop ]
%found = phi i8 [ 1, %entry ], [ %and, %loop ]
%idx = getelementptr i32, ptr %haystack, i64 %indvar
%ld = load i32, ptr %idx
%cmp1 = icmp eq i32 %ld, %hay
%zext = zext i1 %cmp1 to i8
%and = and i8 %found, %zext
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, 1000
br i1 %exitcond, label %exit, label %loop
exit:
%tobool = icmp ne i8 %and, 0
ret i1 %tobool
}
; FIXME:
; Narrowing should work with an 'xor' and is not limited to bool types.
define i32 @shrinkLogicAndPhi1(i8 %x, i1 %cond) {
; CHECK-LABEL: @shrinkLogicAndPhi1(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[COND:%.*]], label [[IF:%.*]], label [[ENDIF:%.*]]
; CHECK: if:
; CHECK-NEXT: br label [[ENDIF]]
; CHECK: endif:
; CHECK-NEXT: [[PHI:%.*]] = phi i32 [ 21, [[ENTRY:%.*]] ], [ 33, [[IF]] ]
; CHECK-NEXT: [[ZEXT:%.*]] = zext i8 [[X:%.*]] to i32
; CHECK-NEXT: [[LOGIC:%.*]] = xor i32 [[PHI]], [[ZEXT]]
; CHECK-NEXT: ret i32 [[LOGIC]]
;
entry:
br i1 %cond, label %if, label %endif
if:
br label %endif
endif:
%phi = phi i32 [ 21, %entry], [ 33, %if ]
%zext = zext i8 %x to i32
%logic = xor i32 %phi, %zext
ret i32 %logic
}
; FIXME:
; Narrowing should work with an 'xor' and is not limited to bool types.
; Test that commuting the xor operands does not inhibit optimization.
define i32 @shrinkLogicAndPhi2(i8 %x, i1 %cond) {
; CHECK-LABEL: @shrinkLogicAndPhi2(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[COND:%.*]], label [[IF:%.*]], label [[ENDIF:%.*]]
; CHECK: if:
; CHECK-NEXT: br label [[ENDIF]]
; CHECK: endif:
; CHECK-NEXT: [[PHI:%.*]] = phi i32 [ 21, [[ENTRY:%.*]] ], [ 33, [[IF]] ]
; CHECK-NEXT: [[ZEXT:%.*]] = zext i8 [[X:%.*]] to i32
; CHECK-NEXT: [[LOGIC:%.*]] = xor i32 [[PHI]], [[ZEXT]]
; CHECK-NEXT: ret i32 [[LOGIC]]
;
entry:
br i1 %cond, label %if, label %endif
if:
br label %endif
endif:
%phi = phi i32 [ 21, %entry], [ 33, %if ]
%zext = zext i8 %x to i32
%logic = xor i32 %zext, %phi
ret i32 %logic
}
|