File: AMDGPUDialect.cpp

package info (click to toggle)
llvm-toolchain-17 1%3A17.0.6-22
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,799,624 kB
  • sloc: cpp: 6,428,607; ansic: 1,383,196; asm: 793,408; python: 223,504; objc: 75,364; f90: 60,502; lisp: 33,869; pascal: 15,282; sh: 9,684; perl: 7,453; ml: 4,937; awk: 3,523; makefile: 2,889; javascript: 2,149; xml: 888; fortran: 619; cs: 573
file content (320 lines) | stat: -rw-r--r-- 11,031 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
//===- AMDGPUDialect.cpp - MLIR AMDGPU dialect implementation --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AMDGPU dialect and its operations.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/AMDGPU/IR/AMDGPUDialect.h"

#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "llvm/ADT/TypeSwitch.h"

#include <limits>
#include <optional>

using namespace mlir;
using namespace mlir::amdgpu;

#include "mlir/Dialect/AMDGPU/IR/AMDGPUDialect.cpp.inc"

void AMDGPUDialect::initialize() {
  addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/AMDGPU/IR/AMDGPU.cpp.inc"
      >();
  addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/AMDGPU/IR/AMDGPUAttributes.cpp.inc"
      >();
}

//===----------------------------------------------------------------------===//
// RawBuffer*Op
//===----------------------------------------------------------------------===//
template <typename T>
static LogicalResult verifyRawBufferOp(T &op) {
  MemRefType bufferType = llvm::cast<MemRefType>(op.getMemref().getType());
  Attribute memorySpace = bufferType.getMemorySpace();
  bool isGlobal = false;
  if (!memorySpace)
    isGlobal = true;
  else if (auto intMemorySpace = llvm::dyn_cast<IntegerAttr>(memorySpace))
    isGlobal = intMemorySpace.getInt() == 0 || intMemorySpace.getInt() == 1;
  else if (auto gpuMemorySpace =
               llvm::dyn_cast<gpu::AddressSpaceAttr>(memorySpace))
    isGlobal = gpuMemorySpace.getValue() == gpu::AddressSpace::Global;

  if (!isGlobal)
    return op.emitOpError(
        "Buffer ops must operate on a memref in global memory");
  if (!bufferType.hasRank())
    return op.emitOpError(
        "Cannot meaningfully buffer_store to an unranked memref");
  if (static_cast<int64_t>(op.getIndices().size()) != bufferType.getRank())
    return op.emitOpError("Expected " + Twine(bufferType.getRank()) +
                          " indices to memref");
  return success();
}

LogicalResult RawBufferLoadOp::verify() { return verifyRawBufferOp(*this); }

LogicalResult RawBufferStoreOp::verify() { return verifyRawBufferOp(*this); }

LogicalResult RawBufferAtomicFaddOp::verify() {
  return verifyRawBufferOp(*this);
}

LogicalResult RawBufferAtomicFmaxOp::verify() {
  return verifyRawBufferOp(*this);
}

LogicalResult RawBufferAtomicSmaxOp::verify() {
  return verifyRawBufferOp(*this);
}

LogicalResult RawBufferAtomicUminOp::verify() {
  return verifyRawBufferOp(*this);
}

LogicalResult RawBufferAtomicCmpswapOp::verify() {
  return verifyRawBufferOp(*this);
}

static std::optional<uint32_t> getConstantUint32(Value v) {
  APInt cst;
  if (!v.getType().isInteger(32))
    return std::nullopt;
  if (matchPattern(v, m_ConstantInt(&cst)))
    return cst.getZExtValue();
  return std::nullopt;
}

template <typename OpType>
static bool staticallyOutOfBounds(OpType op) {
  if (!op.getBoundsCheck())
    return false;
  MemRefType bufferType = op.getMemref().getType();
  if (!bufferType.hasStaticShape())
    return false;
  int64_t offset;
  SmallVector<int64_t> strides;
  if (failed(getStridesAndOffset(bufferType, strides, offset)))
    return false;
  int64_t result = offset + op.getIndexOffset().value_or(0);
  if (op.getSgprOffset()) {
    std::optional<uint32_t> sgprOffset = getConstantUint32(op.getSgprOffset());
    if (!sgprOffset)
      return false;
    result += *sgprOffset;
  }
  if (strides.size() != op.getIndices().size())
    return false;
  int64_t indexVal = 0;
  for (auto pair : llvm::zip(strides, op.getIndices())) {
    int64_t stride = std::get<0>(pair);
    Value idx = std::get<1>(pair);
    std::optional<uint32_t> idxVal = getConstantUint32(idx);
    if (!idxVal)
      return false;
    indexVal += stride * *idxVal;
  }
  result += indexVal;
  if (result > std::numeric_limits<uint32_t>::max())
    // Overflow means don't drop
    return false;
  return result >= bufferType.getNumElements();
}

namespace {
template <typename OpType>
struct RemoveStaticallyOobBufferLoads final : public OpRewritePattern<OpType> {
  using OpRewritePattern<OpType>::OpRewritePattern;

  LogicalResult matchAndRewrite(OpType op, PatternRewriter &rw) const override {
    if (!staticallyOutOfBounds(op))
      return failure();
    Type loadType = op.getResult().getType();
    rw.replaceOpWithNewOp<arith::ConstantOp>(op, loadType,
                                             rw.getZeroAttr(loadType));
    return success();
  }
};

template <typename OpType>
struct RemoveStaticallyOobBufferWrites final : public OpRewritePattern<OpType> {
  using OpRewritePattern<OpType>::OpRewritePattern;

  LogicalResult matchAndRewrite(OpType op, PatternRewriter &rw) const override {
    if (!staticallyOutOfBounds(op))
      return failure();

    rw.eraseOp(op);
    return success();
  }
};
} // end namespace

void RawBufferLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                                  MLIRContext *context) {
  results.add<RemoveStaticallyOobBufferLoads<RawBufferLoadOp>>(context);
}

void RawBufferStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                                   MLIRContext *context) {
  results.add<RemoveStaticallyOobBufferWrites<RawBufferStoreOp>>(context);
}

void RawBufferAtomicFaddOp::getCanonicalizationPatterns(
    RewritePatternSet &results, MLIRContext *context) {
  results.add<RemoveStaticallyOobBufferWrites<RawBufferAtomicFaddOp>>(context);
}

void RawBufferAtomicFmaxOp::getCanonicalizationPatterns(
    RewritePatternSet &results, MLIRContext *context) {
  results.add<RemoveStaticallyOobBufferWrites<RawBufferAtomicFmaxOp>>(context);
}

void RawBufferAtomicSmaxOp::getCanonicalizationPatterns(
    RewritePatternSet &results, MLIRContext *context) {
  results.add<RemoveStaticallyOobBufferWrites<RawBufferAtomicSmaxOp>>(context);
}

void RawBufferAtomicUminOp::getCanonicalizationPatterns(
    RewritePatternSet &results, MLIRContext *context) {
  results.add<RemoveStaticallyOobBufferWrites<RawBufferAtomicUminOp>>(context);
}

void RawBufferAtomicCmpswapOp::getCanonicalizationPatterns(
    RewritePatternSet &results, MLIRContext *context) {
  results.add<RemoveStaticallyOobBufferLoads<RawBufferAtomicCmpswapOp>>(
      context);
}

//===----------------------------------------------------------------------===//
// WMMAOp
//===----------------------------------------------------------------------===//
LogicalResult WMMAOp::verify() {
  Type sourceAType = getSourceA().getType();
  Type destType = getDestC().getType();

  VectorType sourceVectorAType = sourceAType.dyn_cast<VectorType>();
  VectorType destVectorType = destType.dyn_cast<VectorType>();

  Type sourceAElemType = sourceVectorAType.getElementType();
  Type destElemType = destVectorType.getElementType();

  bool isDestFloat =
      (destElemType.isF32() || destElemType.isF16() || destElemType.isBF16());
  bool isSrcFloat = (sourceAElemType.isF16() || sourceAElemType.isBF16());

  if (isDestFloat && !isSrcFloat) {
    return emitOpError("Expected float sources with float destination");
  }

  if (!isDestFloat && isSrcFloat) {
    return emitOpError("Expected int sources with int destination");
  }

  return success();
}

//===----------------------------------------------------------------------===//
// MFMAOp
//===----------------------------------------------------------------------===//
LogicalResult MFMAOp::verify() {
  constexpr uint32_t waveSize = 64;
  Builder b(getContext());

  Type sourceType = getSourceA().getType();
  Type destType = getDestC().getType();

  Type sourceElem = sourceType, destElem = destType;
  uint32_t sourceLen = 1, destLen = 1;
  if (auto sourceVector = llvm::dyn_cast<VectorType>(sourceType)) {
    sourceLen = sourceVector.getNumElements();
    sourceElem = sourceVector.getElementType();
  }
  if (auto destVector = llvm::dyn_cast<VectorType>(destType)) {
    destLen = destVector.getNumElements();
    destElem = destVector.getElementType();
  }

  Type sourceBType = getSourceB().getType();
  if (sourceElem.isFloat8E5M2FNUZ() || sourceElem.isFloat8E4M3FNUZ()) {
    int64_t sourceBLen = 1;
    Type sourceBElem = sourceBType;
    if (auto sourceBVector = llvm::dyn_cast<VectorType>(sourceBType)) {
      sourceBLen = sourceBVector.getNumElements();
      sourceBElem = sourceBVector.getElementType();
    }
    if (!sourceBElem.isFloat8E5M2FNUZ() && !sourceBElem.isFloat8E4M3FNUZ())
      return emitOpError("expected both source operands to have f8 elements");
    if (sourceLen != sourceBLen)
      return emitOpError(
          "expected both f8 source vectors to have the same length");
  } else {
    if (sourceType != sourceBType)
      return emitOpError(
          "expected both non-f8 source operand types to match exactly");
  }
  // Normalize the wider integer types the compiler expects to i8
  if (sourceElem.isInteger(32)) {
    sourceLen *= 4;
    sourceElem = b.getI8Type();
  }
  if (sourceElem.isInteger(64)) {
    sourceLen *= 8;
    sourceElem = b.getI8Type();
  }

  int64_t numSourceElems = (getM() * getK() * getBlocks()) / waveSize;
  if (sourceLen != numSourceElems)
    return emitOpError("expected " + Twine(numSourceElems) +
                       " source values for this operation but got " +
                       Twine(sourceLen));

  int64_t numDestElems = (getM() * getN() * getBlocks()) / waveSize;
  if (destLen != numDestElems)
    return emitOpError("expected " + Twine(numDestElems) +
                       " result values for this operation but got " +
                       Twine(destLen));

  if (destElem.isF64() && getBlgp() != MFMAPermB::none)
    return emitOpError(
        "double-precision ops do not support permuting lanes of B");
  if (destElem.isF64() && getCbsz() != 0)
    return emitOpError(
        "double-precision ops do not support permuting lanes of A");
  if (getAbid() >= (1u << getCbsz()))
    return emitOpError(
        "block ID for permuting A (abid) must be below 2 ** cbsz");

  if ((getNegateA() || getNegateB() || getNegateC()) && !destElem.isF64())
    return emitOpError(
        "negation flags only available for double-precision operations");

  return success();
}

#include "mlir/Dialect/AMDGPU/IR/AMDGPUEnums.cpp.inc"

#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/AMDGPU/IR/AMDGPUAttributes.cpp.inc"

#define GET_OP_CLASSES
#include "mlir/Dialect/AMDGPU/IR/AMDGPU.cpp.inc"