1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
//===- EmulateAtomics.cpp - Emulate unsupported AMDGPU atomics ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/AMDGPU/Transforms/Passes.h"
#include "mlir/Dialect/AMDGPU/IR/AMDGPUDialect.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlow.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
namespace mlir::amdgpu {
#define GEN_PASS_DEF_AMDGPUEMULATEATOMICSPASS
#include "mlir/Dialect/AMDGPU/Transforms/Passes.h.inc"
} // namespace mlir::amdgpu
using namespace mlir;
using namespace mlir::amdgpu;
namespace {
struct AmdgpuEmulateAtomicsPass
: public amdgpu::impl::AmdgpuEmulateAtomicsPassBase<
AmdgpuEmulateAtomicsPass> {
using AmdgpuEmulateAtomicsPassBase<
AmdgpuEmulateAtomicsPass>::AmdgpuEmulateAtomicsPassBase;
void runOnOperation() override;
};
template <typename AtomicOp, typename ArithOp>
struct RawBufferAtomicByCasPattern : public OpConversionPattern<AtomicOp> {
using OpConversionPattern<AtomicOp>::OpConversionPattern;
using Adaptor = typename AtomicOp::Adaptor;
LogicalResult
matchAndRewrite(AtomicOp atomicOp, Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
namespace {
enum class DataArgAction : unsigned char {
Duplicate,
Drop,
};
} // namespace
// Fix up the fact that, when we're migrating from a general bugffer atomic
// to a load or to a CAS, the number of openrands, and thus the number of
// entries needed in operandSegmentSizes, needs to change. We use this method
// because we'd like to preserve unknown attributes on the atomic instead of
// discarding them.
static void patchOperandSegmentSizes(ArrayRef<NamedAttribute> attrs,
SmallVectorImpl<NamedAttribute> &newAttrs,
DataArgAction action) {
newAttrs.reserve(attrs.size());
for (NamedAttribute attr : attrs) {
if (attr.getName().getValue() != "operandSegmentSizes") {
newAttrs.push_back(attr);
continue;
}
auto segmentAttr = cast<DenseI32ArrayAttr>(attr.getValue());
MLIRContext *context = segmentAttr.getContext();
DenseI32ArrayAttr newSegments;
switch (action) {
case DataArgAction::Drop:
newSegments = DenseI32ArrayAttr::get(
context, segmentAttr.asArrayRef().drop_front());
break;
case DataArgAction::Duplicate: {
SmallVector<int32_t> newVals;
ArrayRef<int32_t> oldVals = segmentAttr.asArrayRef();
newVals.push_back(oldVals[0]);
newVals.append(oldVals.begin(), oldVals.end());
newSegments = DenseI32ArrayAttr::get(context, newVals);
break;
}
}
newAttrs.push_back(NamedAttribute(attr.getName(), newSegments));
}
}
template <typename AtomicOp, typename ArithOp>
LogicalResult RawBufferAtomicByCasPattern<AtomicOp, ArithOp>::matchAndRewrite(
AtomicOp atomicOp, Adaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = atomicOp.getLoc();
ArrayRef<NamedAttribute> origAttrs = atomicOp->getAttrs();
ValueRange operands = adaptor.getOperands();
Value data = operands.take_front()[0];
ValueRange invariantArgs = operands.drop_front();
Type dataType = data.getType();
SmallVector<NamedAttribute> loadAttrs;
patchOperandSegmentSizes(origAttrs, loadAttrs, DataArgAction::Drop);
Value initialLoad =
rewriter.create<RawBufferLoadOp>(loc, dataType, invariantArgs, loadAttrs);
Block *currentBlock = rewriter.getInsertionBlock();
Block *afterAtomic =
rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint());
Block *loopBlock = rewriter.createBlock(afterAtomic, {dataType}, {loc});
rewriter.setInsertionPointToEnd(currentBlock);
rewriter.create<cf::BranchOp>(loc, loopBlock, initialLoad);
rewriter.setInsertionPointToEnd(loopBlock);
Value prevLoad = loopBlock->getArgument(0);
Value operated = rewriter.create<ArithOp>(loc, data, prevLoad);
SmallVector<NamedAttribute> cmpswapAttrs;
patchOperandSegmentSizes(origAttrs, cmpswapAttrs, DataArgAction::Duplicate);
SmallVector<Value> cmpswapArgs = {operated, prevLoad};
cmpswapArgs.append(invariantArgs.begin(), invariantArgs.end());
Value atomicRes = rewriter.create<RawBufferAtomicCmpswapOp>(
loc, dataType, cmpswapArgs, cmpswapAttrs);
// We care about exact bitwise equality here, so do some bitcasts.
// These will fold away during lowering to the ROCDL dialect, where
// an int->float bitcast is introduced to account for the fact that cmpswap
// only takes integer arguments.
Value prevLoadForCompare = prevLoad;
Value atomicResForCompare = atomicRes;
if (auto floatDataTy = dyn_cast<FloatType>(dataType)) {
Type equivInt = rewriter.getIntegerType(floatDataTy.getWidth());
prevLoadForCompare =
rewriter.create<arith::BitcastOp>(loc, equivInt, prevLoad);
atomicResForCompare =
rewriter.create<arith::BitcastOp>(loc, equivInt, atomicRes);
}
Value canLeave = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, atomicResForCompare, prevLoadForCompare);
rewriter.create<cf::CondBranchOp>(loc, canLeave, afterAtomic, ValueRange{},
loopBlock, atomicRes);
rewriter.eraseOp(atomicOp);
return success();
}
void mlir::amdgpu::populateAmdgpuEmulateAtomicsPatterns(
ConversionTarget &target, RewritePatternSet &patterns, Chipset chipset) {
// gfx10 has no atomic adds.
if (chipset.majorVersion == 10 || chipset.majorVersion < 9 ||
(chipset.majorVersion == 9 && chipset.minorVersion < 0x08)) {
target.addIllegalOp<RawBufferAtomicFaddOp>();
}
// gfx9 has no to a very limited support for floating-point min and max.
if (chipset.majorVersion == 9) {
if (chipset.minorVersion >= 0x0a) {
// gfx90a supports f64 max (and min, but we don't have a min wrapper right
// now) but all other types need to be emulated.
target.addDynamicallyLegalOp<RawBufferAtomicFmaxOp>(
[](RawBufferAtomicFmaxOp op) -> bool {
return op.getValue().getType().isF64();
});
} else {
target.addIllegalOp<RawBufferAtomicFmaxOp>();
}
}
patterns
.add<RawBufferAtomicByCasPattern<RawBufferAtomicFaddOp, arith::AddFOp>,
RawBufferAtomicByCasPattern<RawBufferAtomicFmaxOp, arith::MaxFOp>>(
patterns.getContext());
}
void AmdgpuEmulateAtomicsPass::runOnOperation() {
Operation *op = getOperation();
FailureOr<Chipset> maybeChipset = Chipset::parse(chipset);
if (failed(maybeChipset)) {
emitError(op->getLoc(), "Invalid chipset name: " + chipset);
return signalPassFailure();
}
MLIRContext &ctx = getContext();
ConversionTarget target(ctx);
RewritePatternSet patterns(&ctx);
target.markUnknownOpDynamicallyLegal(
[](Operation *op) -> bool { return true; });
populateAmdgpuEmulateAtomicsPatterns(target, patterns, *maybeChipset);
if (failed(applyPartialConversion(op, target, std::move(patterns))))
return signalPassFailure();
}
|