1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
//===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/Transforms/BufferizableOpInterfaceImpl.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/Transforms/BufferUtils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Operation.h"
using namespace mlir;
using namespace mlir::bufferization;
namespace {
/// Bufferization of arith.constant. Replace with memref.get_global.
struct ConstantOpInterface
: public BufferizableOpInterface::ExternalModel<ConstantOpInterface,
arith::ConstantOp> {
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto constantOp = cast<arith::ConstantOp>(op);
Attribute memorySpace;
if (options.defaultMemorySpace.has_value())
memorySpace = *options.defaultMemorySpace;
else
return constantOp->emitError("could not infer memory space");
// Only ranked tensors are supported.
if (!isa<RankedTensorType>(constantOp.getType()))
return failure();
// Only constants inside a module are supported.
auto moduleOp = constantOp->getParentOfType<ModuleOp>();
if (!moduleOp)
return failure();
// Create global memory segment and replace tensor with memref pointing to
// that memory segment.
FailureOr<memref::GlobalOp> globalOp =
getGlobalFor(constantOp, options.bufferAlignment, memorySpace);
if (failed(globalOp))
return failure();
memref::GlobalOp globalMemref = *globalOp;
replaceOpWithNewBufferizedOp<memref::GetGlobalOp>(
rewriter, op, globalMemref.getType(), globalMemref.getName());
return success();
}
bool isWritable(Operation *op, Value value,
const AnalysisState &state) const {
// Memory locations returned by memref::GetGlobalOp may not be written to.
assert(isa<OpResult>(value));
return false;
}
};
struct IndexCastOpInterface
: public BufferizableOpInterface::ExternalModel<IndexCastOpInterface,
arith::IndexCastOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {{op->getResult(0), BufferRelation::Equivalent}};
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto castOp = cast<arith::IndexCastOp>(op);
auto resultTensorType = cast<TensorType>(castOp.getType());
FailureOr<Value> source = getBuffer(rewriter, castOp.getIn(), options);
if (failed(source))
return failure();
auto sourceType = cast<BaseMemRefType>(source->getType());
// Result type should have same layout and address space as the source type.
BaseMemRefType resultType;
if (auto rankedMemRefType = dyn_cast<MemRefType>(sourceType)) {
resultType = MemRefType::get(
rankedMemRefType.getShape(), resultTensorType.getElementType(),
rankedMemRefType.getLayout(), rankedMemRefType.getMemorySpace());
} else {
auto unrankedMemrefType = cast<UnrankedMemRefType>(sourceType);
resultType = UnrankedMemRefType::get(resultTensorType.getElementType(),
unrankedMemrefType.getMemorySpace());
}
replaceOpWithNewBufferizedOp<arith::IndexCastOp>(rewriter, op, resultType,
*source);
return success();
}
};
/// Bufferization of arith.select. Just replace the operands.
struct SelectOpInterface
: public BufferizableOpInterface::ExternalModel<SelectOpInterface,
arith::SelectOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {{op->getOpResult(0) /*result*/, BufferRelation::Equivalent,
/*isDefinite=*/false}};
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto selectOp = cast<arith::SelectOp>(op);
Location loc = selectOp.getLoc();
// TODO: It would be more efficient to copy the result of the `select` op
// instead of its OpOperands. In the worst case, 2 copies are inserted at
// the moment (one for each tensor). When copying the op result, only one
// copy would be needed.
FailureOr<Value> maybeTrueBuffer =
getBuffer(rewriter, selectOp.getTrueValue(), options);
FailureOr<Value> maybeFalseBuffer =
getBuffer(rewriter, selectOp.getFalseValue(), options);
if (failed(maybeTrueBuffer) || failed(maybeFalseBuffer))
return failure();
Value trueBuffer = *maybeTrueBuffer;
Value falseBuffer = *maybeFalseBuffer;
// The "true" and the "false" operands must have the same type. If the
// buffers have different types, they differ only in their layout map. Cast
// both of them to the most dynamic MemRef type.
if (trueBuffer.getType() != falseBuffer.getType()) {
auto targetType =
bufferization::getBufferType(selectOp.getResult(), options);
if (failed(targetType))
return failure();
if (trueBuffer.getType() != *targetType)
trueBuffer =
rewriter.create<memref::CastOp>(loc, *targetType, trueBuffer);
if (falseBuffer.getType() != *targetType)
falseBuffer =
rewriter.create<memref::CastOp>(loc, *targetType, falseBuffer);
}
replaceOpWithNewBufferizedOp<arith::SelectOp>(
rewriter, op, selectOp.getCondition(), trueBuffer, falseBuffer);
return success();
}
FailureOr<BaseMemRefType>
getBufferType(Operation *op, Value value, const BufferizationOptions &options,
const DenseMap<Value, BaseMemRefType> &fixedTypes) const {
auto selectOp = cast<arith::SelectOp>(op);
assert(value == selectOp.getResult() && "invalid value");
auto trueType = bufferization::getBufferType(selectOp.getTrueValue(),
options, fixedTypes);
auto falseType = bufferization::getBufferType(selectOp.getFalseValue(),
options, fixedTypes);
if (failed(trueType) || failed(falseType))
return failure();
if (*trueType == *falseType)
return *trueType;
if (trueType->getMemorySpace() != falseType->getMemorySpace())
return op->emitError("inconsistent memory space on true/false operands");
// If the buffers have different types, they differ only in their layout
// map.
auto memrefType = llvm::cast<MemRefType>(*trueType);
return getMemRefTypeWithFullyDynamicLayout(
RankedTensorType::get(memrefType.getShape(),
memrefType.getElementType()),
memrefType.getMemorySpace());
}
};
} // namespace
void mlir::arith::registerBufferizableOpInterfaceExternalModels(
DialectRegistry ®istry) {
registry.addExtension(+[](MLIRContext *ctx, ArithDialect *dialect) {
ConstantOp::attachInterface<ConstantOpInterface>(*ctx);
IndexCastOp::attachInterface<IndexCastOpInterface>(*ctx);
SelectOp::attachInterface<SelectOpInterface>(*ctx);
});
}
|