1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
|
//===- EmulateWideInt.cpp - Wide integer operation emulation ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/Transforms/Passes.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Transforms/WideIntEmulationConverter.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Func/Transforms/FuncConversions.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/APInt.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
namespace mlir::arith {
#define GEN_PASS_DEF_ARITHEMULATEWIDEINT
#include "mlir/Dialect/Arith/Transforms/Passes.h.inc"
} // namespace mlir::arith
using namespace mlir;
//===----------------------------------------------------------------------===//
// Common Helper Functions
//===----------------------------------------------------------------------===//
/// Returns N bottom and N top bits from `value`, where N = `newBitWidth`.
/// Treats `value` as a 2*N bits-wide integer.
/// The bottom bits are returned in the first pair element, while the top bits
/// in the second one.
static std::pair<APInt, APInt> getHalves(const APInt &value,
unsigned newBitWidth) {
APInt low = value.extractBits(newBitWidth, 0);
APInt high = value.extractBits(newBitWidth, newBitWidth);
return {std::move(low), std::move(high)};
}
/// Returns the type with the last (innermost) dimension reduced to x1.
/// Scalarizes 1D vector inputs to match how we extract/insert vector values,
/// e.g.:
/// - vector<3x2xi16> --> vector<3x1xi16>
/// - vector<2xi16> --> i16
static Type reduceInnermostDim(VectorType type) {
if (type.getShape().size() == 1)
return type.getElementType();
auto newShape = to_vector(type.getShape());
newShape.back() = 1;
return VectorType::get(newShape, type.getElementType());
}
/// Returns a constant of integer of vector type filled with (repeated) `value`.
static Value createScalarOrSplatConstant(ConversionPatternRewriter &rewriter,
Location loc, Type type,
const APInt &value) {
TypedAttr attr;
if (auto intTy = dyn_cast<IntegerType>(type)) {
attr = rewriter.getIntegerAttr(type, value);
} else {
auto vecTy = cast<VectorType>(type);
attr = SplatElementsAttr::get(vecTy, value);
}
return rewriter.create<arith::ConstantOp>(loc, attr);
}
/// Returns a constant of integer of vector type filled with (repeated) `value`.
static Value createScalarOrSplatConstant(ConversionPatternRewriter &rewriter,
Location loc, Type type,
int64_t value) {
unsigned elementBitWidth = 0;
if (auto intTy = dyn_cast<IntegerType>(type))
elementBitWidth = intTy.getWidth();
else
elementBitWidth = cast<VectorType>(type).getElementTypeBitWidth();
return createScalarOrSplatConstant(rewriter, loc, type,
APInt(elementBitWidth, value));
}
/// Extracts the `input` vector slice with elements at the last dimension offset
/// by `lastOffset`. Returns a value of vector type with the last dimension
/// reduced to x1 or fully scalarized, e.g.:
/// - vector<3x2xi16> --> vector<3x1xi16>
/// - vector<2xi16> --> i16
static Value extractLastDimSlice(ConversionPatternRewriter &rewriter,
Location loc, Value input,
int64_t lastOffset) {
ArrayRef<int64_t> shape = cast<VectorType>(input.getType()).getShape();
assert(lastOffset < shape.back() && "Offset out of bounds");
// Scalarize the result in case of 1D vectors.
if (shape.size() == 1)
return rewriter.create<vector::ExtractOp>(loc, input, lastOffset);
SmallVector<int64_t> offsets(shape.size(), 0);
offsets.back() = lastOffset;
auto sizes = llvm::to_vector(shape);
sizes.back() = 1;
SmallVector<int64_t> strides(shape.size(), 1);
return rewriter.create<vector::ExtractStridedSliceOp>(loc, input, offsets,
sizes, strides);
}
/// Extracts two vector slices from the `input` whose type is `vector<...x2T>`,
/// with the first element at offset 0 and the second element at offset 1.
static std::pair<Value, Value>
extractLastDimHalves(ConversionPatternRewriter &rewriter, Location loc,
Value input) {
return {extractLastDimSlice(rewriter, loc, input, 0),
extractLastDimSlice(rewriter, loc, input, 1)};
}
// Performs a vector shape cast to drop the trailing x1 dimension. If the
// `input` is a scalar, this is a noop.
static Value dropTrailingX1Dim(ConversionPatternRewriter &rewriter,
Location loc, Value input) {
auto vecTy = dyn_cast<VectorType>(input.getType());
if (!vecTy)
return input;
// Shape cast to drop the last x1 dimension.
ArrayRef<int64_t> shape = vecTy.getShape();
assert(shape.size() >= 2 && "Expected vector with at list two dims");
assert(shape.back() == 1 && "Expected the last vector dim to be x1");
auto newVecTy = VectorType::get(shape.drop_back(), vecTy.getElementType());
return rewriter.create<vector::ShapeCastOp>(loc, newVecTy, input);
}
/// Performs a vector shape cast to append an x1 dimension. If the
/// `input` is a scalar, this is a noop.
static Value appendX1Dim(ConversionPatternRewriter &rewriter, Location loc,
Value input) {
auto vecTy = dyn_cast<VectorType>(input.getType());
if (!vecTy)
return input;
// Add a trailing x1 dim.
auto newShape = llvm::to_vector(vecTy.getShape());
newShape.push_back(1);
auto newTy = VectorType::get(newShape, vecTy.getElementType());
return rewriter.create<vector::ShapeCastOp>(loc, newTy, input);
}
/// Inserts the `source` vector slice into the `dest` vector at offset
/// `lastOffset` in the last dimension. `source` can be a scalar when `dest` is
/// a 1D vector.
static Value insertLastDimSlice(ConversionPatternRewriter &rewriter,
Location loc, Value source, Value dest,
int64_t lastOffset) {
ArrayRef<int64_t> shape = cast<VectorType>(dest.getType()).getShape();
assert(lastOffset < shape.back() && "Offset out of bounds");
// Handle scalar source.
if (isa<IntegerType>(source.getType()))
return rewriter.create<vector::InsertOp>(loc, source, dest, lastOffset);
SmallVector<int64_t> offsets(shape.size(), 0);
offsets.back() = lastOffset;
SmallVector<int64_t> strides(shape.size(), 1);
return rewriter.create<vector::InsertStridedSliceOp>(loc, source, dest,
offsets, strides);
}
/// Constructs a new vector of type `resultType` by creating a series of
/// insertions of `resultComponents`, each at the next offset of the last vector
/// dimension.
/// When all `resultComponents` are scalars, the result type is `vector<NxT>`;
/// when `resultComponents` are `vector<...x1xT>`s, the result type is
/// `vector<...xNxT>`, where `N` is the number of `resultComponents`.
static Value constructResultVector(ConversionPatternRewriter &rewriter,
Location loc, VectorType resultType,
ValueRange resultComponents) {
llvm::ArrayRef<int64_t> resultShape = resultType.getShape();
(void)resultShape;
assert(!resultShape.empty() && "Result expected to have dimensions");
assert(resultShape.back() == static_cast<int64_t>(resultComponents.size()) &&
"Wrong number of result components");
Value resultVec = createScalarOrSplatConstant(rewriter, loc, resultType, 0);
for (auto [i, component] : llvm::enumerate(resultComponents))
resultVec = insertLastDimSlice(rewriter, loc, component, resultVec, i);
return resultVec;
}
namespace {
//===----------------------------------------------------------------------===//
// ConvertConstant
//===----------------------------------------------------------------------===//
struct ConvertConstant final : OpConversionPattern<arith::ConstantOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(arith::ConstantOp op, OpAdaptor,
ConversionPatternRewriter &rewriter) const override {
Type oldType = op.getType();
auto newType = getTypeConverter()->convertType<VectorType>(oldType);
if (!newType)
return rewriter.notifyMatchFailure(
op, llvm::formatv("unsupported type: {0}", op.getType()));
unsigned newBitWidth = newType.getElementTypeBitWidth();
Attribute oldValue = op.getValueAttr();
if (auto intAttr = dyn_cast<IntegerAttr>(oldValue)) {
auto [low, high] = getHalves(intAttr.getValue(), newBitWidth);
auto newAttr = DenseElementsAttr::get(newType, {low, high});
rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, newAttr);
return success();
}
if (auto splatAttr = dyn_cast<SplatElementsAttr>(oldValue)) {
auto [low, high] =
getHalves(splatAttr.getSplatValue<APInt>(), newBitWidth);
int64_t numSplatElems = splatAttr.getNumElements();
SmallVector<APInt> values;
values.reserve(numSplatElems * 2);
for (int64_t i = 0; i < numSplatElems; ++i) {
values.push_back(low);
values.push_back(high);
}
auto attr = DenseElementsAttr::get(newType, values);
rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, attr);
return success();
}
if (auto elemsAttr = dyn_cast<DenseElementsAttr>(oldValue)) {
int64_t numElems = elemsAttr.getNumElements();
SmallVector<APInt> values;
values.reserve(numElems * 2);
for (const APInt &origVal : elemsAttr.getValues<APInt>()) {
auto [low, high] = getHalves(origVal, newBitWidth);
values.push_back(std::move(low));
values.push_back(std::move(high));
}
auto attr = DenseElementsAttr::get(newType, values);
rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, attr);
return success();
}
return rewriter.notifyMatchFailure(op.getLoc(),
"unhandled constant attribute");
}
};
//===----------------------------------------------------------------------===//
// ConvertAddI
//===----------------------------------------------------------------------===//
struct ConvertAddI final : OpConversionPattern<arith::AddIOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(arith::AddIOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto newTy = getTypeConverter()->convertType<VectorType>(op.getType());
if (!newTy)
return rewriter.notifyMatchFailure(
loc, llvm::formatv("unsupported type: {0}", op.getType()));
Type newElemTy = reduceInnermostDim(newTy);
auto [lhsElem0, lhsElem1] =
extractLastDimHalves(rewriter, loc, adaptor.getLhs());
auto [rhsElem0, rhsElem1] =
extractLastDimHalves(rewriter, loc, adaptor.getRhs());
auto lowSum =
rewriter.create<arith::AddUIExtendedOp>(loc, lhsElem0, rhsElem0);
Value overflowVal =
rewriter.create<arith::ExtUIOp>(loc, newElemTy, lowSum.getOverflow());
Value high0 = rewriter.create<arith::AddIOp>(loc, overflowVal, lhsElem1);
Value high = rewriter.create<arith::AddIOp>(loc, high0, rhsElem1);
Value resultVec =
constructResultVector(rewriter, loc, newTy, {lowSum.getSum(), high});
rewriter.replaceOp(op, resultVec);
return success();
}
};
//===----------------------------------------------------------------------===//
// ConvertBitwiseBinary
//===----------------------------------------------------------------------===//
/// Conversion pattern template for bitwise binary ops, e.g., `arith.andi`.
template <typename BinaryOp>
struct ConvertBitwiseBinary final : OpConversionPattern<BinaryOp> {
using OpConversionPattern<BinaryOp>::OpConversionPattern;
using OpAdaptor = typename OpConversionPattern<BinaryOp>::OpAdaptor;
LogicalResult
matchAndRewrite(BinaryOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto newTy = this->getTypeConverter()->template convertType<VectorType>(
op.getType());
if (!newTy)
return rewriter.notifyMatchFailure(
loc, llvm::formatv("unsupported type: {0}", op.getType()));
auto [lhsElem0, lhsElem1] =
extractLastDimHalves(rewriter, loc, adaptor.getLhs());
auto [rhsElem0, rhsElem1] =
extractLastDimHalves(rewriter, loc, adaptor.getRhs());
Value resElem0 = rewriter.create<BinaryOp>(loc, lhsElem0, rhsElem0);
Value resElem1 = rewriter.create<BinaryOp>(loc, lhsElem1, rhsElem1);
Value resultVec =
constructResultVector(rewriter, loc, newTy, {resElem0, resElem1});
rewriter.replaceOp(op, resultVec);
return success();
}
};
//===----------------------------------------------------------------------===//
// ConvertCmpI
//===----------------------------------------------------------------------===//
/// Returns the matching unsigned version of the given predicate `pred`, or the
/// same predicate if `pred` is not a signed.
static arith::CmpIPredicate toUnsignedPredicate(arith::CmpIPredicate pred) {
using P = arith::CmpIPredicate;
switch (pred) {
case P::sge:
return P::uge;
case P::sgt:
return P::ugt;
case P::sle:
return P::ule;
case P::slt:
return P::ult;
default:
return pred;
}
}
struct ConvertCmpI final : OpConversionPattern<arith::CmpIOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(arith::CmpIOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto inputTy =
getTypeConverter()->convertType<VectorType>(op.getLhs().getType());
if (!inputTy)
return rewriter.notifyMatchFailure(
loc, llvm::formatv("unsupported type: {0}", op.getType()));
arith::CmpIPredicate highPred = adaptor.getPredicate();
arith::CmpIPredicate lowPred = toUnsignedPredicate(highPred);
auto [lhsElem0, lhsElem1] =
extractLastDimHalves(rewriter, loc, adaptor.getLhs());
auto [rhsElem0, rhsElem1] =
extractLastDimHalves(rewriter, loc, adaptor.getRhs());
Value lowCmp =
rewriter.create<arith::CmpIOp>(loc, lowPred, lhsElem0, rhsElem0);
Value highCmp =
rewriter.create<arith::CmpIOp>(loc, highPred, lhsElem1, rhsElem1);
Value cmpResult{};
switch (highPred) {
case arith::CmpIPredicate::eq: {
cmpResult = rewriter.create<arith::AndIOp>(loc, lowCmp, highCmp);
break;
}
case arith::CmpIPredicate::ne: {
cmpResult = rewriter.create<arith::OrIOp>(loc, lowCmp, highCmp);
break;
}
default: {
// Handle inequality checks.
Value highEq = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, lhsElem1, rhsElem1);
cmpResult =
rewriter.create<arith::SelectOp>(loc, highEq, lowCmp, highCmp);
break;
}
}
assert(cmpResult && "Unhandled case");
rewriter.replaceOp(op, dropTrailingX1Dim(rewriter, loc, cmpResult));
return success();
}
};
//===----------------------------------------------------------------------===//
// ConvertMulI
//===----------------------------------------------------------------------===//
struct ConvertMulI final : OpConversionPattern<arith::MulIOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(arith::MulIOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto newTy = getTypeConverter()->convertType<VectorType>(op.getType());
if (!newTy)
return rewriter.notifyMatchFailure(
loc, llvm::formatv("unsupported type: {0}", op.getType()));
auto [lhsElem0, lhsElem1] =
extractLastDimHalves(rewriter, loc, adaptor.getLhs());
auto [rhsElem0, rhsElem1] =
extractLastDimHalves(rewriter, loc, adaptor.getRhs());
// The multiplication algorithm used is the standard (long) multiplication.
// Multiplying two i2N integers produces (at most) an i4N result, but
// because the calculation of top i2N is not necessary, we omit it.
auto mulLowLow =
rewriter.create<arith::MulUIExtendedOp>(loc, lhsElem0, rhsElem0);
Value mulLowHi = rewriter.create<arith::MulIOp>(loc, lhsElem0, rhsElem1);
Value mulHiLow = rewriter.create<arith::MulIOp>(loc, lhsElem1, rhsElem0);
Value resLow = mulLowLow.getLow();
Value resHi =
rewriter.create<arith::AddIOp>(loc, mulLowLow.getHigh(), mulLowHi);
resHi = rewriter.create<arith::AddIOp>(loc, resHi, mulHiLow);
Value resultVec =
constructResultVector(rewriter, loc, newTy, {resLow, resHi});
rewriter.replaceOp(op, resultVec);
return success();
}
};
//===----------------------------------------------------------------------===//
// ConvertExtSI
//===----------------------------------------------------------------------===//
struct ConvertExtSI final : OpConversionPattern<arith::ExtSIOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(arith::ExtSIOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto newTy = getTypeConverter()->convertType<VectorType>(op.getType());
if (!newTy)
return rewriter.notifyMatchFailure(
loc, llvm::formatv("unsupported type: {0}", op.getType()));
Type newResultComponentTy = reduceInnermostDim(newTy);
// Sign-extend the input value to determine the low half of the result.
// Then, check if the low half is negative, and sign-extend the comparison
// result to get the high half.
Value newOperand = appendX1Dim(rewriter, loc, adaptor.getIn());
Value extended = rewriter.createOrFold<arith::ExtSIOp>(
loc, newResultComponentTy, newOperand);
Value operandZeroCst =
createScalarOrSplatConstant(rewriter, loc, newResultComponentTy, 0);
Value signBit = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::slt, extended, operandZeroCst);
Value signValue =
rewriter.create<arith::ExtSIOp>(loc, newResultComponentTy, signBit);
Value resultVec =
constructResultVector(rewriter, loc, newTy, {extended, signValue});
rewriter.replaceOp(op, resultVec);
return success();
}
};
//===----------------------------------------------------------------------===//
// ConvertExtUI
//===----------------------------------------------------------------------===//
struct ConvertExtUI final : OpConversionPattern<arith::ExtUIOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(arith::ExtUIOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto newTy = getTypeConverter()->convertType<VectorType>(op.getType());
if (!newTy)
return rewriter.notifyMatchFailure(
loc, llvm::formatv("unsupported type: {0}", op.getType()));
Type newResultComponentTy = reduceInnermostDim(newTy);
// Zero-extend the input value to determine the low half of the result.
// The high half is always zero.
Value newOperand = appendX1Dim(rewriter, loc, adaptor.getIn());
Value extended = rewriter.createOrFold<arith::ExtUIOp>(
loc, newResultComponentTy, newOperand);
Value zeroCst = createScalarOrSplatConstant(rewriter, loc, newTy, 0);
Value newRes = insertLastDimSlice(rewriter, loc, extended, zeroCst, 0);
rewriter.replaceOp(op, newRes);
return success();
}
};
//===----------------------------------------------------------------------===//
// ConvertMaxMin
//===----------------------------------------------------------------------===//
template <typename SourceOp, arith::CmpIPredicate CmpPred>
struct ConvertMaxMin final : OpConversionPattern<SourceOp> {
using OpConversionPattern<SourceOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(SourceOp op, typename SourceOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Type oldTy = op.getType();
auto newTy = dyn_cast_or_null<VectorType>(
this->getTypeConverter()->convertType(oldTy));
if (!newTy)
return rewriter.notifyMatchFailure(
loc, llvm::formatv("unsupported type: {0}", op.getType()));
// Rewrite Max*I/Min*I as compare and select over original operands. Let
// the CmpI and Select emulation patterns handle the final legalization.
Value cmp =
rewriter.create<arith::CmpIOp>(loc, CmpPred, op.getLhs(), op.getRhs());
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, cmp, op.getLhs(),
op.getRhs());
return success();
}
};
// Convert IndexCast ops
//===----------------------------------------------------------------------===//
/// Returns true iff the type is `index` or `vector<...index>`.
static bool isIndexOrIndexVector(Type type) {
if (isa<IndexType>(type))
return true;
if (auto vectorTy = dyn_cast<VectorType>(type))
if (isa<IndexType>(vectorTy.getElementType()))
return true;
return false;
}
template <typename CastOp>
struct ConvertIndexCastIntToIndex final : OpConversionPattern<CastOp> {
using OpConversionPattern<CastOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(CastOp op, typename CastOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resultType = op.getType();
if (!isIndexOrIndexVector(resultType))
return failure();
Location loc = op.getLoc();
Type inType = op.getIn().getType();
auto newInTy =
this->getTypeConverter()->template convertType<VectorType>(inType);
if (!newInTy)
return rewriter.notifyMatchFailure(
loc, llvm::formatv("unsupported type: {0}", inType));
// Discard the high half of the input truncating the original value.
Value extracted = extractLastDimSlice(rewriter, loc, adaptor.getIn(), 0);
extracted = dropTrailingX1Dim(rewriter, loc, extracted);
rewriter.replaceOpWithNewOp<CastOp>(op, resultType, extracted);
return success();
}
};
template <typename CastOp, typename ExtensionOp>
struct ConvertIndexCastIndexToInt final : OpConversionPattern<CastOp> {
using OpConversionPattern<CastOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(CastOp op, typename CastOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type inType = op.getIn().getType();
if (!isIndexOrIndexVector(inType))
return failure();
Location loc = op.getLoc();
auto *typeConverter =
this->template getTypeConverter<arith::WideIntEmulationConverter>();
Type resultType = op.getType();
auto newTy = typeConverter->template convertType<VectorType>(resultType);
if (!newTy)
return rewriter.notifyMatchFailure(
loc, llvm::formatv("unsupported type: {0}", resultType));
// Emit an index cast over the matching narrow type.
Type narrowTy =
rewriter.getIntegerType(typeConverter->getMaxTargetIntBitWidth());
if (auto vecTy = dyn_cast<VectorType>(resultType))
narrowTy = VectorType::get(vecTy.getShape(), narrowTy);
// Sign or zero-extend the result. Let the matching conversion pattern
// legalize the extension op.
Value underlyingVal =
rewriter.create<CastOp>(loc, narrowTy, adaptor.getIn());
rewriter.replaceOpWithNewOp<ExtensionOp>(op, resultType, underlyingVal);
return success();
}
};
//===----------------------------------------------------------------------===//
// ConvertSelect
//===----------------------------------------------------------------------===//
struct ConvertSelect final : OpConversionPattern<arith::SelectOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(arith::SelectOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto newTy = getTypeConverter()->convertType<VectorType>(op.getType());
if (!newTy)
return rewriter.notifyMatchFailure(
loc, llvm::formatv("unsupported type: {0}", op.getType()));
auto [trueElem0, trueElem1] =
extractLastDimHalves(rewriter, loc, adaptor.getTrueValue());
auto [falseElem0, falseElem1] =
extractLastDimHalves(rewriter, loc, adaptor.getFalseValue());
Value cond = appendX1Dim(rewriter, loc, adaptor.getCondition());
Value resElem0 =
rewriter.create<arith::SelectOp>(loc, cond, trueElem0, falseElem0);
Value resElem1 =
rewriter.create<arith::SelectOp>(loc, cond, trueElem1, falseElem1);
Value resultVec =
constructResultVector(rewriter, loc, newTy, {resElem0, resElem1});
rewriter.replaceOp(op, resultVec);
return success();
}
};
//===----------------------------------------------------------------------===//
// ConvertShLI
//===----------------------------------------------------------------------===//
struct ConvertShLI final : OpConversionPattern<arith::ShLIOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(arith::ShLIOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Type oldTy = op.getType();
auto newTy = getTypeConverter()->convertType<VectorType>(oldTy);
if (!newTy)
return rewriter.notifyMatchFailure(
loc, llvm::formatv("unsupported type: {0}", op.getType()));
Type newOperandTy = reduceInnermostDim(newTy);
// `oldBitWidth` == `2 * newBitWidth`
unsigned newBitWidth = newTy.getElementTypeBitWidth();
auto [lhsElem0, lhsElem1] =
extractLastDimHalves(rewriter, loc, adaptor.getLhs());
Value rhsElem0 = extractLastDimSlice(rewriter, loc, adaptor.getRhs(), 0);
// Assume that the shift amount is < 2 * newBitWidth. Calculate the low and
// high halves of the results separately:
// 1. low := LHS.low shli RHS
//
// 2. high := a or b or c, where:
// a) Bits from LHS.high, shifted by the RHS.
// b) Bits from LHS.low, shifted right. These come into play when
// RHS < newBitWidth, e.g.:
// [0000][llll] shli 3 --> [0lll][l000]
// ^
// |
// [llll] shrui (4 - 3)
// c) Bits from LHS.low, shifted left. These matter when
// RHS > newBitWidth, e.g.:
// [0000][llll] shli 7 --> [l000][0000]
// ^
// |
// [llll] shli (7 - 4)
//
// Because shifts by values >= newBitWidth are undefined, we ignore the high
// half of RHS, and introduce 'bounds checks' to account for
// RHS.low > newBitWidth.
//
// TODO: Explore possible optimizations.
Value zeroCst = createScalarOrSplatConstant(rewriter, loc, newOperandTy, 0);
Value elemBitWidth =
createScalarOrSplatConstant(rewriter, loc, newOperandTy, newBitWidth);
Value illegalElemShift = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::uge, rhsElem0, elemBitWidth);
Value shiftedElem0 =
rewriter.create<arith::ShLIOp>(loc, lhsElem0, rhsElem0);
Value resElem0 = rewriter.create<arith::SelectOp>(loc, illegalElemShift,
zeroCst, shiftedElem0);
Value cappedShiftAmount = rewriter.create<arith::SelectOp>(
loc, illegalElemShift, elemBitWidth, rhsElem0);
Value rightShiftAmount =
rewriter.create<arith::SubIOp>(loc, elemBitWidth, cappedShiftAmount);
Value shiftedRight =
rewriter.create<arith::ShRUIOp>(loc, lhsElem0, rightShiftAmount);
Value overshotShiftAmount =
rewriter.create<arith::SubIOp>(loc, rhsElem0, elemBitWidth);
Value shiftedLeft =
rewriter.create<arith::ShLIOp>(loc, lhsElem0, overshotShiftAmount);
Value shiftedElem1 =
rewriter.create<arith::ShLIOp>(loc, lhsElem1, rhsElem0);
Value resElem1High = rewriter.create<arith::SelectOp>(
loc, illegalElemShift, zeroCst, shiftedElem1);
Value resElem1Low = rewriter.create<arith::SelectOp>(
loc, illegalElemShift, shiftedLeft, shiftedRight);
Value resElem1 =
rewriter.create<arith::OrIOp>(loc, resElem1Low, resElem1High);
Value resultVec =
constructResultVector(rewriter, loc, newTy, {resElem0, resElem1});
rewriter.replaceOp(op, resultVec);
return success();
}
};
//===----------------------------------------------------------------------===//
// ConvertShRUI
//===----------------------------------------------------------------------===//
struct ConvertShRUI final : OpConversionPattern<arith::ShRUIOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(arith::ShRUIOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Type oldTy = op.getType();
auto newTy = getTypeConverter()->convertType<VectorType>(oldTy);
if (!newTy)
return rewriter.notifyMatchFailure(
loc, llvm::formatv("unsupported type: {0}", op.getType()));
Type newOperandTy = reduceInnermostDim(newTy);
// `oldBitWidth` == `2 * newBitWidth`
unsigned newBitWidth = newTy.getElementTypeBitWidth();
auto [lhsElem0, lhsElem1] =
extractLastDimHalves(rewriter, loc, adaptor.getLhs());
Value rhsElem0 = extractLastDimSlice(rewriter, loc, adaptor.getRhs(), 0);
// Assume that the shift amount is < 2 * newBitWidth. Calculate the low and
// high halves of the results separately:
// 1. low := a or b or c, where:
// a) Bits from LHS.low, shifted by the RHS.
// b) Bits from LHS.high, shifted left. These matter when
// RHS < newBitWidth, e.g.:
// [hhhh][0000] shrui 3 --> [000h][hhh0]
// ^
// |
// [hhhh] shli (4 - 1)
// c) Bits from LHS.high, shifted right. These come into play when
// RHS > newBitWidth, e.g.:
// [hhhh][0000] shrui 7 --> [0000][000h]
// ^
// |
// [hhhh] shrui (7 - 4)
//
// 2. high := LHS.high shrui RHS
//
// Because shifts by values >= newBitWidth are undefined, we ignore the high
// half of RHS, and introduce 'bounds checks' to account for
// RHS.low > newBitWidth.
//
// TODO: Explore possible optimizations.
Value zeroCst = createScalarOrSplatConstant(rewriter, loc, newOperandTy, 0);
Value elemBitWidth =
createScalarOrSplatConstant(rewriter, loc, newOperandTy, newBitWidth);
Value illegalElemShift = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::uge, rhsElem0, elemBitWidth);
Value shiftedElem0 =
rewriter.create<arith::ShRUIOp>(loc, lhsElem0, rhsElem0);
Value resElem0Low = rewriter.create<arith::SelectOp>(loc, illegalElemShift,
zeroCst, shiftedElem0);
Value shiftedElem1 =
rewriter.create<arith::ShRUIOp>(loc, lhsElem1, rhsElem0);
Value resElem1 = rewriter.create<arith::SelectOp>(loc, illegalElemShift,
zeroCst, shiftedElem1);
Value cappedShiftAmount = rewriter.create<arith::SelectOp>(
loc, illegalElemShift, elemBitWidth, rhsElem0);
Value leftShiftAmount =
rewriter.create<arith::SubIOp>(loc, elemBitWidth, cappedShiftAmount);
Value shiftedLeft =
rewriter.create<arith::ShLIOp>(loc, lhsElem1, leftShiftAmount);
Value overshotShiftAmount =
rewriter.create<arith::SubIOp>(loc, rhsElem0, elemBitWidth);
Value shiftedRight =
rewriter.create<arith::ShRUIOp>(loc, lhsElem1, overshotShiftAmount);
Value resElem0High = rewriter.create<arith::SelectOp>(
loc, illegalElemShift, shiftedRight, shiftedLeft);
Value resElem0 =
rewriter.create<arith::OrIOp>(loc, resElem0Low, resElem0High);
Value resultVec =
constructResultVector(rewriter, loc, newTy, {resElem0, resElem1});
rewriter.replaceOp(op, resultVec);
return success();
}
};
//===----------------------------------------------------------------------===//
// ConvertShRSI
//===----------------------------------------------------------------------===//
struct ConvertShRSI final : OpConversionPattern<arith::ShRSIOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(arith::ShRSIOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Type oldTy = op.getType();
auto newTy = getTypeConverter()->convertType<VectorType>(oldTy);
if (!newTy)
return rewriter.notifyMatchFailure(
loc, llvm::formatv("unsupported type: {0}", op.getType()));
Value lhsElem1 = extractLastDimSlice(rewriter, loc, adaptor.getLhs(), 1);
Value rhsElem0 = extractLastDimSlice(rewriter, loc, adaptor.getRhs(), 0);
Type narrowTy = rhsElem0.getType();
int64_t origBitwidth = newTy.getElementTypeBitWidth() * 2;
// Rewrite this as an bitwise or of `arith.shrui` and sign extension bits.
// Perform as many ops over the narrow integer type as possible and let the
// other emulation patterns convert the rest.
Value elemZero = createScalarOrSplatConstant(rewriter, loc, narrowTy, 0);
Value signBit = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::slt, lhsElem1, elemZero);
signBit = dropTrailingX1Dim(rewriter, loc, signBit);
// Create a bit pattern of either all ones or all zeros. Then shift it left
// to calculate the sign extension bits created by shifting the original
// sign bit right.
Value allSign = rewriter.create<arith::ExtSIOp>(loc, oldTy, signBit);
Value maxShift =
createScalarOrSplatConstant(rewriter, loc, narrowTy, origBitwidth);
Value numNonSignExtBits =
rewriter.create<arith::SubIOp>(loc, maxShift, rhsElem0);
numNonSignExtBits = dropTrailingX1Dim(rewriter, loc, numNonSignExtBits);
numNonSignExtBits =
rewriter.create<arith::ExtUIOp>(loc, oldTy, numNonSignExtBits);
Value signBits =
rewriter.create<arith::ShLIOp>(loc, allSign, numNonSignExtBits);
// Use original arguments to create the right shift.
Value shrui =
rewriter.create<arith::ShRUIOp>(loc, op.getLhs(), op.getRhs());
Value shrsi = rewriter.create<arith::OrIOp>(loc, shrui, signBits);
// Handle shifting by zero. This is necessary when the `signBits` shift is
// invalid.
Value isNoop = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
rhsElem0, elemZero);
isNoop = dropTrailingX1Dim(rewriter, loc, isNoop);
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, isNoop, op.getLhs(),
shrsi);
return success();
}
};
//===----------------------------------------------------------------------===//
// ConvertSIToFP
//===----------------------------------------------------------------------===//
struct ConvertSIToFP final : OpConversionPattern<arith::SIToFPOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(arith::SIToFPOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value in = op.getIn();
Type oldTy = in.getType();
auto newTy = getTypeConverter()->convertType<VectorType>(oldTy);
if (!newTy)
return rewriter.notifyMatchFailure(
loc, llvm::formatv("unsupported type: {0}", oldTy));
unsigned oldBitWidth = getElementTypeOrSelf(oldTy).getIntOrFloatBitWidth();
Value zeroCst = createScalarOrSplatConstant(rewriter, loc, oldTy, 0);
Value oneCst = createScalarOrSplatConstant(rewriter, loc, oldTy, 1);
Value allOnesCst = createScalarOrSplatConstant(
rewriter, loc, oldTy, APInt::getAllOnes(oldBitWidth));
// To avoid operating on very large unsigned numbers, perform the
// conversion on the absolute value. Then, decide whether to negate the
// result or not based on that sign bit. We assume two's complement and
// implement negation by flipping all bits and adding 1.
// Note that this relies on the the other conversion patterns to legalize
// created ops and narrow the bit widths.
Value isNeg = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt,
in, zeroCst);
Value bitwiseNeg = rewriter.create<arith::XOrIOp>(loc, in, allOnesCst);
Value neg = rewriter.create<arith::AddIOp>(loc, bitwiseNeg, oneCst);
Value abs = rewriter.create<arith::SelectOp>(loc, isNeg, neg, in);
Value absResult = rewriter.create<arith::UIToFPOp>(loc, op.getType(), abs);
Value negResult = rewriter.create<arith::NegFOp>(loc, absResult);
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, isNeg, negResult,
absResult);
return success();
}
};
//===----------------------------------------------------------------------===//
// ConvertUIToFP
//===----------------------------------------------------------------------===//
struct ConvertUIToFP final : OpConversionPattern<arith::UIToFPOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(arith::UIToFPOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Type oldTy = op.getIn().getType();
auto newTy = getTypeConverter()->convertType<VectorType>(oldTy);
if (!newTy)
return rewriter.notifyMatchFailure(
loc, llvm::formatv("unsupported type: {0}", oldTy));
unsigned newBitWidth = newTy.getElementTypeBitWidth();
auto [low, hi] = extractLastDimHalves(rewriter, loc, adaptor.getIn());
Value lowInt = dropTrailingX1Dim(rewriter, loc, low);
Value hiInt = dropTrailingX1Dim(rewriter, loc, hi);
Value zeroCst =
createScalarOrSplatConstant(rewriter, loc, hiInt.getType(), 0);
// The final result has the following form:
// if (hi == 0) return uitofp(low)
// else return uitofp(low) + uitofp(hi) * 2^BW
//
// where `BW` is the bitwidth of the narrowed integer type. We emit a
// select to make it easier to fold-away the `hi` part calculation when it
// is known to be zero.
//
// Note 1: The emulation is precise only for input values that have exact
// integer representation in the result floating point type, and may lead
// loss of precision otherwise.
//
// Note 2: We do not strictly need the `hi == 0`, case, but it makes
// constant folding easier.
Value hiEqZero = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, hiInt, zeroCst);
Type resultTy = op.getType();
Type resultElemTy = getElementTypeOrSelf(resultTy);
Value lowFp = rewriter.create<arith::UIToFPOp>(loc, resultTy, lowInt);
Value hiFp = rewriter.create<arith::UIToFPOp>(loc, resultTy, hiInt);
int64_t pow2Int = int64_t(1) << newBitWidth;
TypedAttr pow2Attr =
rewriter.getFloatAttr(resultElemTy, static_cast<double>(pow2Int));
if (auto vecTy = dyn_cast<VectorType>(resultTy))
pow2Attr = SplatElementsAttr::get(vecTy, pow2Attr);
Value pow2Val = rewriter.create<arith::ConstantOp>(loc, resultTy, pow2Attr);
Value hiVal = rewriter.create<arith::MulFOp>(loc, hiFp, pow2Val);
Value result = rewriter.create<arith::AddFOp>(loc, lowFp, hiVal);
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, hiEqZero, lowFp, result);
return success();
}
};
//===----------------------------------------------------------------------===//
// ConvertTruncI
//===----------------------------------------------------------------------===//
struct ConvertTruncI final : OpConversionPattern<arith::TruncIOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(arith::TruncIOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// Check if the result type is legal for this target. Currently, we do not
// support truncation to types wider than supported by the target.
if (!getTypeConverter()->isLegal(op.getType()))
return rewriter.notifyMatchFailure(
loc, llvm::formatv("unsupported truncation result type: {0}",
op.getType()));
// Discard the high half of the input. Truncate the low half, if
// necessary.
Value extracted = extractLastDimSlice(rewriter, loc, adaptor.getIn(), 0);
extracted = dropTrailingX1Dim(rewriter, loc, extracted);
Value truncated =
rewriter.createOrFold<arith::TruncIOp>(loc, op.getType(), extracted);
rewriter.replaceOp(op, truncated);
return success();
}
};
//===----------------------------------------------------------------------===//
// ConvertVectorPrint
//===----------------------------------------------------------------------===//
struct ConvertVectorPrint final : OpConversionPattern<vector::PrintOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(vector::PrintOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<vector::PrintOp>(op, adaptor.getSource());
return success();
}
};
//===----------------------------------------------------------------------===//
// Pass Definition
//===----------------------------------------------------------------------===//
struct EmulateWideIntPass final
: arith::impl::ArithEmulateWideIntBase<EmulateWideIntPass> {
using ArithEmulateWideIntBase::ArithEmulateWideIntBase;
void runOnOperation() override {
if (!llvm::isPowerOf2_32(widestIntSupported) || widestIntSupported < 2) {
signalPassFailure();
return;
}
Operation *op = getOperation();
MLIRContext *ctx = op->getContext();
arith::WideIntEmulationConverter typeConverter(widestIntSupported);
ConversionTarget target(*ctx);
target.addDynamicallyLegalOp<func::FuncOp>([&typeConverter](Operation *op) {
return typeConverter.isLegal(cast<func::FuncOp>(op).getFunctionType());
});
auto opLegalCallback = [&typeConverter](Operation *op) {
return typeConverter.isLegal(op);
};
target.addDynamicallyLegalOp<func::CallOp, func::ReturnOp>(opLegalCallback);
target
.addDynamicallyLegalDialect<arith::ArithDialect, vector::VectorDialect>(
opLegalCallback);
RewritePatternSet patterns(ctx);
arith::populateArithWideIntEmulationPatterns(typeConverter, patterns);
if (failed(applyPartialConversion(op, target, std::move(patterns))))
signalPassFailure();
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Public Interface Definition
//===----------------------------------------------------------------------===//
arith::WideIntEmulationConverter::WideIntEmulationConverter(
unsigned widestIntSupportedByTarget)
: maxIntWidth(widestIntSupportedByTarget) {
assert(llvm::isPowerOf2_32(widestIntSupportedByTarget) &&
"Only power-of-two integers with are supported");
assert(widestIntSupportedByTarget >= 2 && "Integer type too narrow");
// Allow unknown types.
addConversion([](Type ty) -> std::optional<Type> { return ty; });
// Scalar case.
addConversion([this](IntegerType ty) -> std::optional<Type> {
unsigned width = ty.getWidth();
if (width <= maxIntWidth)
return ty;
// i2N --> vector<2xiN>
if (width == 2 * maxIntWidth)
return VectorType::get(2, IntegerType::get(ty.getContext(), maxIntWidth));
return std::nullopt;
});
// Vector case.
addConversion([this](VectorType ty) -> std::optional<Type> {
auto intTy = dyn_cast<IntegerType>(ty.getElementType());
if (!intTy)
return ty;
unsigned width = intTy.getWidth();
if (width <= maxIntWidth)
return ty;
// vector<...xi2N> --> vector<...x2xiN>
if (width == 2 * maxIntWidth) {
auto newShape = to_vector(ty.getShape());
newShape.push_back(2);
return VectorType::get(newShape,
IntegerType::get(ty.getContext(), maxIntWidth));
}
return std::nullopt;
});
// Function case.
addConversion([this](FunctionType ty) -> std::optional<Type> {
// Convert inputs and results, e.g.:
// (i2N, i2N) -> i2N --> (vector<2xiN>, vector<2xiN>) -> vector<2xiN>
SmallVector<Type> inputs;
if (failed(convertTypes(ty.getInputs(), inputs)))
return std::nullopt;
SmallVector<Type> results;
if (failed(convertTypes(ty.getResults(), results)))
return std::nullopt;
return FunctionType::get(ty.getContext(), inputs, results);
});
}
void arith::populateArithWideIntEmulationPatterns(
WideIntEmulationConverter &typeConverter, RewritePatternSet &patterns) {
// Populate `func.*` conversion patterns.
populateFunctionOpInterfaceTypeConversionPattern<func::FuncOp>(patterns,
typeConverter);
populateCallOpTypeConversionPattern(patterns, typeConverter);
populateReturnOpTypeConversionPattern(patterns, typeConverter);
// Populate `arith.*` conversion patterns.
patterns.add<
// Misc ops.
ConvertConstant, ConvertCmpI, ConvertSelect, ConvertVectorPrint,
// Binary ops.
ConvertAddI, ConvertMulI, ConvertShLI, ConvertShRSI, ConvertShRUI,
ConvertMaxMin<arith::MaxUIOp, arith::CmpIPredicate::ugt>,
ConvertMaxMin<arith::MaxSIOp, arith::CmpIPredicate::sgt>,
ConvertMaxMin<arith::MinUIOp, arith::CmpIPredicate::ult>,
ConvertMaxMin<arith::MinSIOp, arith::CmpIPredicate::slt>,
// Bitwise binary ops.
ConvertBitwiseBinary<arith::AndIOp>, ConvertBitwiseBinary<arith::OrIOp>,
ConvertBitwiseBinary<arith::XOrIOp>,
// Extension and truncation ops.
ConvertExtSI, ConvertExtUI, ConvertTruncI,
// Cast ops.
ConvertIndexCastIntToIndex<arith::IndexCastOp>,
ConvertIndexCastIntToIndex<arith::IndexCastUIOp>,
ConvertIndexCastIndexToInt<arith::IndexCastOp, arith::ExtSIOp>,
ConvertIndexCastIndexToInt<arith::IndexCastUIOp, arith::ExtUIOp>,
ConvertSIToFP, ConvertUIToFP>(typeConverter, patterns.getContext());
}
|