1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
//===- ExpandOps.cpp - Pass to legalize Arith ops for LLVM lowering --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/Transforms/Passes.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Transforms/DialectConversion.h"
namespace mlir {
namespace arith {
#define GEN_PASS_DEF_ARITHEXPANDOPS
#include "mlir/Dialect/Arith/Transforms/Passes.h.inc"
} // namespace arith
} // namespace mlir
using namespace mlir;
/// Create an integer or index constant.
static Value createConst(Location loc, Type type, int value,
PatternRewriter &rewriter) {
auto attr = rewriter.getIntegerAttr(getElementTypeOrSelf(type), value);
if (auto shapedTy = dyn_cast<ShapedType>(type)) {
return rewriter.create<arith::ConstantOp>(
loc, DenseElementsAttr::get(shapedTy, attr));
}
return rewriter.create<arith::ConstantOp>(loc, attr);
}
namespace {
/// Expands CeilDivUIOp (n, m) into
/// n == 0 ? 0 : ((n-1) / m) + 1
struct CeilDivUIOpConverter : public OpRewritePattern<arith::CeilDivUIOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(arith::CeilDivUIOp op,
PatternRewriter &rewriter) const final {
Location loc = op.getLoc();
Value a = op.getLhs();
Value b = op.getRhs();
Value zero = createConst(loc, a.getType(), 0, rewriter);
Value compare =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, a, zero);
Value one = createConst(loc, a.getType(), 1, rewriter);
Value minusOne = rewriter.create<arith::SubIOp>(loc, a, one);
Value quotient = rewriter.create<arith::DivUIOp>(loc, minusOne, b);
Value plusOne = rewriter.create<arith::AddIOp>(loc, quotient, one);
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, compare, zero, plusOne);
return success();
}
};
/// Expands CeilDivSIOp (n, m) into
/// 1) x = (m > 0) ? -1 : 1
/// 2) (n*m>0) ? ((n+x) / m) + 1 : - (-n / m)
struct CeilDivSIOpConverter : public OpRewritePattern<arith::CeilDivSIOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(arith::CeilDivSIOp op,
PatternRewriter &rewriter) const final {
Location loc = op.getLoc();
Type type = op.getType();
Value a = op.getLhs();
Value b = op.getRhs();
Value plusOne = createConst(loc, type, 1, rewriter);
Value zero = createConst(loc, type, 0, rewriter);
Value minusOne = createConst(loc, type, -1, rewriter);
// Compute x = (b>0) ? -1 : 1.
Value compare =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, b, zero);
Value x = rewriter.create<arith::SelectOp>(loc, compare, minusOne, plusOne);
// Compute positive res: 1 + ((x+a)/b).
Value xPlusA = rewriter.create<arith::AddIOp>(loc, x, a);
Value xPlusADivB = rewriter.create<arith::DivSIOp>(loc, xPlusA, b);
Value posRes = rewriter.create<arith::AddIOp>(loc, plusOne, xPlusADivB);
// Compute negative res: - ((-a)/b).
Value minusA = rewriter.create<arith::SubIOp>(loc, zero, a);
Value minusADivB = rewriter.create<arith::DivSIOp>(loc, minusA, b);
Value negRes = rewriter.create<arith::SubIOp>(loc, zero, minusADivB);
// Result is (a*b>0) ? pos result : neg result.
// Note, we want to avoid using a*b because of possible overflow.
// The case that matters are a>0, a==0, a<0, b>0 and b<0. We do
// not particuliarly care if a*b<0 is true or false when b is zero
// as this will result in an illegal divide. So `a*b<0` can be reformulated
// as `(a<0 && b<0) || (a>0 && b>0)' or `(a<0 && b<0) || (a>0 && b>=0)'.
// We pick the first expression here.
Value aNeg =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, a, zero);
Value aPos =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, a, zero);
Value bNeg =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, b, zero);
Value bPos =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, b, zero);
Value firstTerm = rewriter.create<arith::AndIOp>(loc, aNeg, bNeg);
Value secondTerm = rewriter.create<arith::AndIOp>(loc, aPos, bPos);
Value compareRes =
rewriter.create<arith::OrIOp>(loc, firstTerm, secondTerm);
// Perform substitution and return success.
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, compareRes, posRes,
negRes);
return success();
}
};
/// Expands FloorDivSIOp (n, m) into
/// 1) x = (m<0) ? 1 : -1
/// 2) return (n*m<0) ? - ((-n+x) / m) -1 : n / m
struct FloorDivSIOpConverter : public OpRewritePattern<arith::FloorDivSIOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(arith::FloorDivSIOp op,
PatternRewriter &rewriter) const final {
Location loc = op.getLoc();
Type type = op.getType();
Value a = op.getLhs();
Value b = op.getRhs();
Value plusOne = createConst(loc, type, 1, rewriter);
Value zero = createConst(loc, type, 0, rewriter);
Value minusOne = createConst(loc, type, -1, rewriter);
// Compute x = (b<0) ? 1 : -1.
Value compare =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, b, zero);
Value x = rewriter.create<arith::SelectOp>(loc, compare, plusOne, minusOne);
// Compute negative res: -1 - ((x-a)/b).
Value xMinusA = rewriter.create<arith::SubIOp>(loc, x, a);
Value xMinusADivB = rewriter.create<arith::DivSIOp>(loc, xMinusA, b);
Value negRes = rewriter.create<arith::SubIOp>(loc, minusOne, xMinusADivB);
// Compute positive res: a/b.
Value posRes = rewriter.create<arith::DivSIOp>(loc, a, b);
// Result is (a*b<0) ? negative result : positive result.
// Note, we want to avoid using a*b because of possible overflow.
// The case that matters are a>0, a==0, a<0, b>0 and b<0. We do
// not particuliarly care if a*b<0 is true or false when b is zero
// as this will result in an illegal divide. So `a*b<0` can be reformulated
// as `(a>0 && b<0) || (a>0 && b<0)' or `(a>0 && b<0) || (a>0 && b<=0)'.
// We pick the first expression here.
Value aNeg =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, a, zero);
Value aPos =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, a, zero);
Value bNeg =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, b, zero);
Value bPos =
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, b, zero);
Value firstTerm = rewriter.create<arith::AndIOp>(loc, aNeg, bPos);
Value secondTerm = rewriter.create<arith::AndIOp>(loc, aPos, bNeg);
Value compareRes =
rewriter.create<arith::OrIOp>(loc, firstTerm, secondTerm);
// Perform substitution and return success.
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, compareRes, negRes,
posRes);
return success();
}
};
template <typename OpTy, arith::CmpFPredicate pred>
struct MaxMinFOpConverter : public OpRewritePattern<OpTy> {
public:
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op,
PatternRewriter &rewriter) const final {
Value lhs = op.getLhs();
Value rhs = op.getRhs();
Location loc = op.getLoc();
// If any operand is NaN, 'cmp' will be true (and 'select' returns 'lhs').
static_assert(pred == arith::CmpFPredicate::UGT ||
pred == arith::CmpFPredicate::ULT,
"pred must be either UGT or ULT");
Value cmp = rewriter.create<arith::CmpFOp>(loc, pred, lhs, rhs);
Value select = rewriter.create<arith::SelectOp>(loc, cmp, lhs, rhs);
// Handle the case where rhs is NaN: 'isNaN(rhs) ? rhs : select'.
Value isNaN = rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UNO,
rhs, rhs);
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, isNaN, rhs, select);
return success();
}
};
struct BFloat16ExtFOpConverter : public OpRewritePattern<arith::ExtFOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(arith::ExtFOp op,
PatternRewriter &rewriter) const final {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto operand = op.getOperand();
Type operandTy = operand.getType();
Type resultTy = op.getType();
Type operandETy = getElementTypeOrSelf(operandTy);
Type resultETy = getElementTypeOrSelf(resultTy);
if (!operandETy.isBF16() || !resultETy.isF32()) {
return rewriter.notifyMatchFailure(op, "not a ext of bf16 to f32.");
}
Type i16Ty = b.getI16Type();
Type i32Ty = b.getI32Type();
if (auto shapedTy = dyn_cast<ShapedType>(operandTy)) {
i16Ty = shapedTy.clone(i16Ty);
i32Ty = shapedTy.clone(i32Ty);
}
Value bitcast = b.create<arith::BitcastOp>(i16Ty, operand);
Value exti = b.create<arith::ExtUIOp>(i32Ty, bitcast);
Value c16 = createConst(op.getLoc(), i32Ty, 16, rewriter);
Value shl = b.create<arith::ShLIOp>(exti, c16);
Value result = b.create<arith::BitcastOp>(resultTy, shl);
rewriter.replaceOp(op, result);
return success();
}
};
struct BFloat16TruncFOpConverter : public OpRewritePattern<arith::TruncFOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(arith::TruncFOp op,
PatternRewriter &rewriter) const final {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto operand = op.getOperand();
Type operandTy = operand.getType();
Type resultTy = op.getType();
Type operandETy = getElementTypeOrSelf(operandTy);
Type resultETy = getElementTypeOrSelf(resultTy);
if (!operandETy.isF32() || !resultETy.isBF16()) {
return rewriter.notifyMatchFailure(op, "not a trunc of f32 to bf16.");
}
Type i1Ty = b.getI1Type();
Type i16Ty = b.getI16Type();
Type i32Ty = b.getI32Type();
Type f32Ty = b.getF32Type();
if (auto shapedTy = dyn_cast<ShapedType>(operandTy)) {
i1Ty = shapedTy.clone(i1Ty);
i16Ty = shapedTy.clone(i16Ty);
i32Ty = shapedTy.clone(i32Ty);
f32Ty = shapedTy.clone(f32Ty);
}
Value bitcast = b.create<arith::BitcastOp>(i32Ty, operand);
Value c23 = createConst(op.getLoc(), i32Ty, 23, rewriter);
Value c31 = createConst(op.getLoc(), i32Ty, 31, rewriter);
Value c23Mask = createConst(op.getLoc(), i32Ty, (1 << 23) - 1, rewriter);
Value expMask =
createConst(op.getLoc(), i32Ty, ((1 << 8) - 1) << 23, rewriter);
Value expMax =
createConst(op.getLoc(), i32Ty, ((1 << 8) - 2) << 23, rewriter);
// Grab the sign bit.
Value sign = b.create<arith::ShRUIOp>(bitcast, c31);
// Our mantissa rounding value depends on the sign bit and the last
// truncated bit.
Value cManRound = createConst(op.getLoc(), i32Ty, (1 << 15), rewriter);
cManRound = b.create<arith::SubIOp>(cManRound, sign);
// Grab out the mantissa and directly apply rounding.
Value man = b.create<arith::AndIOp>(bitcast, c23Mask);
Value manRound = b.create<arith::AddIOp>(man, cManRound);
// Grab the overflow bit and shift right if we overflow.
Value roundBit = b.create<arith::ShRUIOp>(manRound, c23);
Value manNew = b.create<arith::ShRUIOp>(manRound, roundBit);
// Grab the exponent and round using the mantissa's carry bit.
Value exp = b.create<arith::AndIOp>(bitcast, expMask);
Value expCarry = b.create<arith::AddIOp>(exp, manRound);
expCarry = b.create<arith::AndIOp>(expCarry, expMask);
// If the exponent is saturated, we keep the max value.
Value expCmp =
b.create<arith::CmpIOp>(arith::CmpIPredicate::uge, exp, expMax);
exp = b.create<arith::SelectOp>(expCmp, exp, expCarry);
// If the exponent is max and we rolled over, keep the old mantissa.
Value roundBitBool = b.create<arith::TruncIOp>(i1Ty, roundBit);
Value keepOldMan = b.create<arith::AndIOp>(expCmp, roundBitBool);
man = b.create<arith::SelectOp>(keepOldMan, man, manNew);
// Assemble the now rounded f32 value (as an i32).
Value rounded = b.create<arith::ShLIOp>(sign, c31);
rounded = b.create<arith::OrIOp>(rounded, exp);
rounded = b.create<arith::OrIOp>(rounded, man);
Value c16 = createConst(op.getLoc(), i32Ty, 16, rewriter);
Value shr = b.create<arith::ShRUIOp>(rounded, c16);
Value trunc = b.create<arith::TruncIOp>(i16Ty, shr);
Value result = b.create<arith::BitcastOp>(resultTy, trunc);
rewriter.replaceOp(op, result);
return success();
}
};
struct ArithExpandOpsPass
: public arith::impl::ArithExpandOpsBase<ArithExpandOpsPass> {
ArithExpandOpsPass() = default;
ArithExpandOpsPass(const arith::ArithExpandOpsOptions& options) {
this->includeBf16 = options.includeBf16;
}
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
ConversionTarget target(getContext());
arith::populateArithExpandOpsPatterns(patterns);
target.addLegalDialect<arith::ArithDialect>();
// clang-format off
target.addIllegalOp<
arith::CeilDivSIOp,
arith::CeilDivUIOp,
arith::FloorDivSIOp,
arith::MaxFOp,
arith::MinFOp
>();
if (includeBf16) {
arith::populateExpandBFloat16Patterns(patterns);
target.addDynamicallyLegalOp<arith::ExtFOp>(
[](arith::ExtFOp op) {
Type inETy = getElementTypeOrSelf(op.getOperand().getType());
Type outETy = getElementTypeOrSelf(op.getType());
return !(inETy.isBF16() && outETy.isF32());
});
target.addDynamicallyLegalOp<arith::TruncFOp>(
[](arith::TruncFOp op) {
Type inETy = getElementTypeOrSelf(op.getOperand().getType());
Type outETy = getElementTypeOrSelf(op.getType());
return !(inETy.isF32() && outETy.isBF16());
});
}
// clang-format on
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
void mlir::arith::populateCeilFloorDivExpandOpsPatterns(
RewritePatternSet &patterns) {
patterns
.add<CeilDivSIOpConverter, CeilDivUIOpConverter, FloorDivSIOpConverter>(
patterns.getContext());
}
void mlir::arith::populateExpandBFloat16Patterns(RewritePatternSet &patterns) {
patterns.add<BFloat16ExtFOpConverter, BFloat16TruncFOpConverter>(
patterns.getContext());
}
void mlir::arith::populateArithExpandOpsPatterns(RewritePatternSet &patterns) {
populateCeilFloorDivExpandOpsPatterns(patterns);
// clang-format off
patterns.add<
MaxMinFOpConverter<MaxFOp, arith::CmpFPredicate::UGT>,
MaxMinFOpConverter<MinFOp, arith::CmpFPredicate::ULT>
>(patterns.getContext());
// clang-format on
}
std::unique_ptr<Pass> mlir::arith::createArithExpandOpsPass() {
return std::make_unique<ArithExpandOpsPass>();
}
std::unique_ptr<Pass> mlir::arith::createArithExpandOpsPass(
const ArithExpandOpsOptions& options) {
return std::make_unique<ArithExpandOpsPass>(options);
}
|