1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
|
//===- IntNarrowing.cpp - Integer bitwidth reduction optimizations --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/Transforms/Passes.h"
#include "mlir/Analysis/Presburger/IntegerRelation.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Transforms/Transforms.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypeInterfaces.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/ValueBoundsOpInterface.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include <cassert>
#include <cstdint>
namespace mlir::arith {
#define GEN_PASS_DEF_ARITHINTNARROWING
#include "mlir/Dialect/Arith/Transforms/Passes.h.inc"
} // namespace mlir::arith
namespace mlir::arith {
namespace {
//===----------------------------------------------------------------------===//
// Common Helpers
//===----------------------------------------------------------------------===//
/// The base for integer bitwidth narrowing patterns.
template <typename SourceOp>
struct NarrowingPattern : OpRewritePattern<SourceOp> {
NarrowingPattern(MLIRContext *ctx, const ArithIntNarrowingOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<SourceOp>(ctx, benefit),
supportedBitwidths(options.bitwidthsSupported.begin(),
options.bitwidthsSupported.end()) {
assert(!supportedBitwidths.empty() && "Invalid options");
assert(!llvm::is_contained(supportedBitwidths, 0) && "Invalid bitwidth");
llvm::sort(supportedBitwidths);
}
FailureOr<unsigned>
getNarrowestCompatibleBitwidth(unsigned bitsRequired) const {
for (unsigned candidate : supportedBitwidths)
if (candidate >= bitsRequired)
return candidate;
return failure();
}
/// Returns the narrowest supported type that fits `bitsRequired`.
FailureOr<Type> getNarrowType(unsigned bitsRequired, Type origTy) const {
assert(origTy);
FailureOr<unsigned> bestBitwidth =
getNarrowestCompatibleBitwidth(bitsRequired);
if (failed(bestBitwidth))
return failure();
Type elemTy = getElementTypeOrSelf(origTy);
if (!isa<IntegerType>(elemTy))
return failure();
auto newElemTy = IntegerType::get(origTy.getContext(), *bestBitwidth);
if (newElemTy == elemTy)
return failure();
if (origTy == elemTy)
return newElemTy;
if (auto shapedTy = dyn_cast<ShapedType>(origTy))
if (auto elemTy = dyn_cast<IntegerType>(shapedTy.getElementType()))
return shapedTy.clone(shapedTy.getShape(), newElemTy);
return failure();
}
private:
// Supported integer bitwidths in the ascending order.
llvm::SmallVector<unsigned, 6> supportedBitwidths;
};
/// Returns the integer bitwidth required to represent `type`.
FailureOr<unsigned> calculateBitsRequired(Type type) {
assert(type);
if (auto intTy = dyn_cast<IntegerType>(getElementTypeOrSelf(type)))
return intTy.getWidth();
return failure();
}
enum class ExtensionKind { Sign, Zero };
/// Wrapper around `arith::ExtSIOp` and `arith::ExtUIOp` ops that abstracts away
/// the exact op type. Exposes helper functions to query the types, operands,
/// and the result. This is so that we can handle both extension kinds without
/// needing to use templates or branching.
class ExtensionOp {
public:
/// Attemps to create a new extension op from `op`. Returns an extension op
/// wrapper when `op` is either `arith.extsi` or `arith.extui`, and failure
/// otherwise.
static FailureOr<ExtensionOp> from(Operation *op) {
if (auto sext = dyn_cast_or_null<arith::ExtSIOp>(op))
return ExtensionOp{op, ExtensionKind::Sign};
if (auto zext = dyn_cast_or_null<arith::ExtUIOp>(op))
return ExtensionOp{op, ExtensionKind::Zero};
return failure();
}
ExtensionOp(const ExtensionOp &) = default;
ExtensionOp &operator=(const ExtensionOp &) = default;
/// Creates a new extension op of the same kind.
Operation *recreate(PatternRewriter &rewriter, Location loc, Type newType,
Value in) {
if (kind == ExtensionKind::Sign)
return rewriter.create<arith::ExtSIOp>(loc, newType, in);
return rewriter.create<arith::ExtUIOp>(loc, newType, in);
}
/// Replaces `toReplace` with a new extension op of the same kind.
void recreateAndReplace(PatternRewriter &rewriter, Operation *toReplace,
Value in) {
assert(toReplace->getNumResults() == 1);
Type newType = toReplace->getResult(0).getType();
Operation *newOp = recreate(rewriter, toReplace->getLoc(), newType, in);
rewriter.replaceOp(toReplace, newOp->getResult(0));
}
ExtensionKind getKind() { return kind; }
Value getResult() { return op->getResult(0); }
Value getIn() { return op->getOperand(0); }
Type getType() { return getResult().getType(); }
Type getElementType() { return getElementTypeOrSelf(getType()); }
Type getInType() { return getIn().getType(); }
Type getInElementType() { return getElementTypeOrSelf(getInType()); }
private:
ExtensionOp(Operation *op, ExtensionKind kind) : op(op), kind(kind) {
assert(op);
assert((isa<arith::ExtSIOp, arith::ExtUIOp>(op)) && "Not an extension op");
}
Operation *op = nullptr;
ExtensionKind kind = {};
};
/// Returns the integer bitwidth required to represent `value`.
unsigned calculateBitsRequired(const APInt &value,
ExtensionKind lookThroughExtension) {
// For unsigned values, we only need the active bits. As a special case, zero
// requires one bit.
if (lookThroughExtension == ExtensionKind::Zero)
return std::max(value.getActiveBits(), 1u);
// If a signed value is nonnegative, we need one extra bit for the sign.
if (value.isNonNegative())
return value.getActiveBits() + 1;
// For the signed min, we need all the bits.
if (value.isMinSignedValue())
return value.getBitWidth();
// For negative values, we need all the non-sign bits and one extra bit for
// the sign.
return value.getBitWidth() - value.getNumSignBits() + 1;
}
/// Returns the integer bitwidth required to represent `value`.
/// Looks through either sign- or zero-extension as specified by
/// `lookThroughExtension`.
FailureOr<unsigned> calculateBitsRequired(Value value,
ExtensionKind lookThroughExtension) {
// Handle constants.
if (TypedAttr attr; matchPattern(value, m_Constant(&attr))) {
if (auto intAttr = dyn_cast<IntegerAttr>(attr))
return calculateBitsRequired(intAttr.getValue(), lookThroughExtension);
if (auto elemsAttr = dyn_cast<DenseElementsAttr>(attr)) {
if (elemsAttr.getElementType().isIntOrIndex()) {
if (elemsAttr.isSplat())
return calculateBitsRequired(elemsAttr.getSplatValue<APInt>(),
lookThroughExtension);
unsigned maxBits = 1;
for (const APInt &elemValue : elemsAttr.getValues<APInt>())
maxBits = std::max(
maxBits, calculateBitsRequired(elemValue, lookThroughExtension));
return maxBits;
}
}
}
if (lookThroughExtension == ExtensionKind::Sign) {
if (auto sext = value.getDefiningOp<arith::ExtSIOp>())
return calculateBitsRequired(sext.getIn().getType());
} else if (lookThroughExtension == ExtensionKind::Zero) {
if (auto zext = value.getDefiningOp<arith::ExtUIOp>())
return calculateBitsRequired(zext.getIn().getType());
}
// If nothing else worked, return the type requirements for this element type.
return calculateBitsRequired(value.getType());
}
/// Base pattern for arith binary ops.
/// Example:
/// ```
/// %lhs = arith.extsi %a : i8 to i32
/// %rhs = arith.extsi %b : i8 to i32
/// %r = arith.addi %lhs, %rhs : i32
/// ==>
/// %lhs = arith.extsi %a : i8 to i16
/// %rhs = arith.extsi %b : i8 to i16
/// %add = arith.addi %lhs, %rhs : i16
/// %r = arith.extsi %add : i16 to i32
/// ```
template <typename BinaryOp>
struct BinaryOpNarrowingPattern : NarrowingPattern<BinaryOp> {
using NarrowingPattern<BinaryOp>::NarrowingPattern;
/// Returns the number of bits required to represent the full result, assuming
/// that both operands are `operandBits`-wide. Derived classes must implement
/// this, taking into account `BinaryOp` semantics.
virtual unsigned getResultBitsProduced(unsigned operandBits) const = 0;
/// Customization point for patterns that should only apply with
/// zero/sign-extension ops as arguments.
virtual bool isSupported(ExtensionOp) const { return true; }
LogicalResult matchAndRewrite(BinaryOp op,
PatternRewriter &rewriter) const final {
Type origTy = op.getType();
FailureOr<unsigned> resultBits = calculateBitsRequired(origTy);
if (failed(resultBits))
return failure();
// For the optimization to apply, we expect the lhs to be an extension op,
// and for the rhs to either be the same extension op or a constant.
FailureOr<ExtensionOp> ext = ExtensionOp::from(op.getLhs().getDefiningOp());
if (failed(ext) || !isSupported(*ext))
return failure();
FailureOr<unsigned> lhsBitsRequired =
calculateBitsRequired(ext->getIn(), ext->getKind());
if (failed(lhsBitsRequired) || *lhsBitsRequired >= *resultBits)
return failure();
FailureOr<unsigned> rhsBitsRequired =
calculateBitsRequired(op.getRhs(), ext->getKind());
if (failed(rhsBitsRequired) || *rhsBitsRequired >= *resultBits)
return failure();
// Negotiate a common bit requirements for both lhs and rhs, accounting for
// the result requiring more bits than the operands.
unsigned commonBitsRequired =
getResultBitsProduced(std::max(*lhsBitsRequired, *rhsBitsRequired));
FailureOr<Type> narrowTy = this->getNarrowType(commonBitsRequired, origTy);
if (failed(narrowTy) || calculateBitsRequired(*narrowTy) >= *resultBits)
return failure();
Location loc = op.getLoc();
Value newLhs =
rewriter.createOrFold<arith::TruncIOp>(loc, *narrowTy, op.getLhs());
Value newRhs =
rewriter.createOrFold<arith::TruncIOp>(loc, *narrowTy, op.getRhs());
Value newAdd = rewriter.create<BinaryOp>(loc, newLhs, newRhs);
ext->recreateAndReplace(rewriter, op, newAdd);
return success();
}
};
//===----------------------------------------------------------------------===//
// AddIOp Pattern
//===----------------------------------------------------------------------===//
struct AddIPattern final : BinaryOpNarrowingPattern<arith::AddIOp> {
using BinaryOpNarrowingPattern::BinaryOpNarrowingPattern;
// Addition may require one extra bit for the result.
// Example: `UINT8_MAX + 1 == 255 + 1 == 256`.
unsigned getResultBitsProduced(unsigned operandBits) const override {
return operandBits + 1;
}
};
//===----------------------------------------------------------------------===//
// SubIOp Pattern
//===----------------------------------------------------------------------===//
struct SubIPattern final : BinaryOpNarrowingPattern<arith::SubIOp> {
using BinaryOpNarrowingPattern::BinaryOpNarrowingPattern;
// This optimization only applies to signed arguments.
bool isSupported(ExtensionOp ext) const override {
return ext.getKind() == ExtensionKind::Sign;
}
// Subtraction may require one extra bit for the result.
// Example: `INT8_MAX - (-1) == 127 - (-1) == 128`.
unsigned getResultBitsProduced(unsigned operandBits) const override {
return operandBits + 1;
}
};
//===----------------------------------------------------------------------===//
// MulIOp Pattern
//===----------------------------------------------------------------------===//
struct MulIPattern final : BinaryOpNarrowingPattern<arith::MulIOp> {
using BinaryOpNarrowingPattern::BinaryOpNarrowingPattern;
// Multiplication may require up double the operand bits.
// Example: `UNT8_MAX * UINT8_MAX == 255 * 255 == 65025`.
unsigned getResultBitsProduced(unsigned operandBits) const override {
return 2 * operandBits;
}
};
//===----------------------------------------------------------------------===//
// DivSIOp Pattern
//===----------------------------------------------------------------------===//
struct DivSIPattern final : BinaryOpNarrowingPattern<arith::DivSIOp> {
using BinaryOpNarrowingPattern::BinaryOpNarrowingPattern;
// This optimization only applies to signed arguments.
bool isSupported(ExtensionOp ext) const override {
return ext.getKind() == ExtensionKind::Sign;
}
// Unlike multiplication, signed division requires only one more result bit.
// Example: `INT8_MIN / (-1) == -128 / (-1) == 128`.
unsigned getResultBitsProduced(unsigned operandBits) const override {
return operandBits + 1;
}
};
//===----------------------------------------------------------------------===//
// DivUIOp Pattern
//===----------------------------------------------------------------------===//
struct DivUIPattern final : BinaryOpNarrowingPattern<arith::DivUIOp> {
using BinaryOpNarrowingPattern::BinaryOpNarrowingPattern;
// This optimization only applies to unsigned arguments.
bool isSupported(ExtensionOp ext) const override {
return ext.getKind() == ExtensionKind::Zero;
}
// Unsigned division does not require any extra result bits.
unsigned getResultBitsProduced(unsigned operandBits) const override {
return operandBits;
}
};
//===----------------------------------------------------------------------===//
// Min/Max Patterns
//===----------------------------------------------------------------------===//
template <typename MinMaxOp, ExtensionKind Kind>
struct MinMaxPattern final : BinaryOpNarrowingPattern<MinMaxOp> {
using BinaryOpNarrowingPattern<MinMaxOp>::BinaryOpNarrowingPattern;
bool isSupported(ExtensionOp ext) const override {
return ext.getKind() == Kind;
}
// Min/max returns one of the arguments and does not require any extra result
// bits.
unsigned getResultBitsProduced(unsigned operandBits) const override {
return operandBits;
}
};
using MaxSIPattern = MinMaxPattern<arith::MaxSIOp, ExtensionKind::Sign>;
using MaxUIPattern = MinMaxPattern<arith::MaxUIOp, ExtensionKind::Zero>;
using MinSIPattern = MinMaxPattern<arith::MinSIOp, ExtensionKind::Sign>;
using MinUIPattern = MinMaxPattern<arith::MinUIOp, ExtensionKind::Zero>;
//===----------------------------------------------------------------------===//
// *IToFPOp Patterns
//===----------------------------------------------------------------------===//
template <typename IToFPOp, ExtensionKind Extension>
struct IToFPPattern final : NarrowingPattern<IToFPOp> {
using NarrowingPattern<IToFPOp>::NarrowingPattern;
LogicalResult matchAndRewrite(IToFPOp op,
PatternRewriter &rewriter) const override {
FailureOr<unsigned> narrowestWidth =
calculateBitsRequired(op.getIn(), Extension);
if (failed(narrowestWidth))
return failure();
FailureOr<Type> narrowTy =
this->getNarrowType(*narrowestWidth, op.getIn().getType());
if (failed(narrowTy))
return failure();
Value newIn = rewriter.createOrFold<arith::TruncIOp>(op.getLoc(), *narrowTy,
op.getIn());
rewriter.replaceOpWithNewOp<IToFPOp>(op, op.getType(), newIn);
return success();
}
};
using SIToFPPattern = IToFPPattern<arith::SIToFPOp, ExtensionKind::Sign>;
using UIToFPPattern = IToFPPattern<arith::UIToFPOp, ExtensionKind::Zero>;
//===----------------------------------------------------------------------===//
// Index Cast Patterns
//===----------------------------------------------------------------------===//
// These rely on the `ValueBounds` interface for index values. For example, we
// can often statically tell index value bounds of loop induction variables.
template <typename CastOp, ExtensionKind Kind>
struct IndexCastPattern final : NarrowingPattern<CastOp> {
using NarrowingPattern<CastOp>::NarrowingPattern;
LogicalResult matchAndRewrite(CastOp op,
PatternRewriter &rewriter) const override {
Value in = op.getIn();
// We only support scalar index -> integer casts.
if (!isa<IndexType>(in.getType()))
return failure();
// Check the lower bound in both the signed and unsigned cast case. We
// conservatively assume that even unsigned casts may be performed on
// negative indices.
FailureOr<int64_t> lb = ValueBoundsConstraintSet::computeConstantBound(
presburger::BoundType::LB, in);
if (failed(lb))
return failure();
FailureOr<int64_t> ub = ValueBoundsConstraintSet::computeConstantBound(
presburger::BoundType::UB, in, /*dim=*/std::nullopt,
/*stopCondition=*/nullptr, /*closedUB=*/true);
if (failed(ub))
return failure();
assert(*lb <= *ub && "Invalid bounds");
unsigned lbBitsRequired = calculateBitsRequired(APInt(64, *lb), Kind);
unsigned ubBitsRequired = calculateBitsRequired(APInt(64, *ub), Kind);
unsigned bitsRequired = std::max(lbBitsRequired, ubBitsRequired);
IntegerType resultTy = cast<IntegerType>(op.getType());
if (resultTy.getWidth() <= bitsRequired)
return failure();
FailureOr<Type> narrowTy = this->getNarrowType(bitsRequired, resultTy);
if (failed(narrowTy))
return failure();
Value newCast = rewriter.create<CastOp>(op.getLoc(), *narrowTy, op.getIn());
if (Kind == ExtensionKind::Sign)
rewriter.replaceOpWithNewOp<arith::ExtSIOp>(op, resultTy, newCast);
else
rewriter.replaceOpWithNewOp<arith::ExtUIOp>(op, resultTy, newCast);
return success();
}
};
using IndexCastSIPattern =
IndexCastPattern<arith::IndexCastOp, ExtensionKind::Sign>;
using IndexCastUIPattern =
IndexCastPattern<arith::IndexCastUIOp, ExtensionKind::Zero>;
//===----------------------------------------------------------------------===//
// Patterns to Commute Extension Ops
//===----------------------------------------------------------------------===//
struct ExtensionOverBroadcast final : NarrowingPattern<vector::BroadcastOp> {
using NarrowingPattern::NarrowingPattern;
LogicalResult matchAndRewrite(vector::BroadcastOp op,
PatternRewriter &rewriter) const override {
FailureOr<ExtensionOp> ext =
ExtensionOp::from(op.getSource().getDefiningOp());
if (failed(ext))
return failure();
VectorType origTy = op.getResultVectorType();
VectorType newTy =
origTy.cloneWith(origTy.getShape(), ext->getInElementType());
Value newBroadcast =
rewriter.create<vector::BroadcastOp>(op.getLoc(), newTy, ext->getIn());
ext->recreateAndReplace(rewriter, op, newBroadcast);
return success();
}
};
struct ExtensionOverExtract final : NarrowingPattern<vector::ExtractOp> {
using NarrowingPattern::NarrowingPattern;
LogicalResult matchAndRewrite(vector::ExtractOp op,
PatternRewriter &rewriter) const override {
FailureOr<ExtensionOp> ext =
ExtensionOp::from(op.getVector().getDefiningOp());
if (failed(ext))
return failure();
Value newExtract = rewriter.create<vector::ExtractOp>(
op.getLoc(), ext->getIn(), op.getPosition());
ext->recreateAndReplace(rewriter, op, newExtract);
return success();
}
};
struct ExtensionOverExtractElement final
: NarrowingPattern<vector::ExtractElementOp> {
using NarrowingPattern::NarrowingPattern;
LogicalResult matchAndRewrite(vector::ExtractElementOp op,
PatternRewriter &rewriter) const override {
FailureOr<ExtensionOp> ext =
ExtensionOp::from(op.getVector().getDefiningOp());
if (failed(ext))
return failure();
Value newExtract = rewriter.create<vector::ExtractElementOp>(
op.getLoc(), ext->getIn(), op.getPosition());
ext->recreateAndReplace(rewriter, op, newExtract);
return success();
}
};
struct ExtensionOverExtractStridedSlice final
: NarrowingPattern<vector::ExtractStridedSliceOp> {
using NarrowingPattern::NarrowingPattern;
LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp op,
PatternRewriter &rewriter) const override {
FailureOr<ExtensionOp> ext =
ExtensionOp::from(op.getVector().getDefiningOp());
if (failed(ext))
return failure();
VectorType origTy = op.getType();
VectorType extractTy =
origTy.cloneWith(origTy.getShape(), ext->getInElementType());
Value newExtract = rewriter.create<vector::ExtractStridedSliceOp>(
op.getLoc(), extractTy, ext->getIn(), op.getOffsets(), op.getSizes(),
op.getStrides());
ext->recreateAndReplace(rewriter, op, newExtract);
return success();
}
};
/// Base pattern for `vector.insert` narrowing patterns.
template <typename InsertionOp>
struct ExtensionOverInsertionPattern : NarrowingPattern<InsertionOp> {
using NarrowingPattern<InsertionOp>::NarrowingPattern;
/// Derived classes must provide a function to create the matching insertion
/// op based on the original op and new arguments.
virtual InsertionOp createInsertionOp(PatternRewriter &rewriter,
InsertionOp origInsert,
Value narrowValue,
Value narrowDest) const = 0;
LogicalResult matchAndRewrite(InsertionOp op,
PatternRewriter &rewriter) const final {
FailureOr<ExtensionOp> ext =
ExtensionOp::from(op.getSource().getDefiningOp());
if (failed(ext))
return failure();
FailureOr<InsertionOp> newInsert = createNarrowInsert(op, rewriter, *ext);
if (failed(newInsert))
return failure();
ext->recreateAndReplace(rewriter, op, *newInsert);
return success();
}
FailureOr<InsertionOp> createNarrowInsert(InsertionOp op,
PatternRewriter &rewriter,
ExtensionOp insValue) const {
// Calculate the operand and result bitwidths. We can only apply narrowing
// when the inserted source value and destination vector require fewer bits
// than the result. Because the source and destination may have different
// bitwidths requirements, we have to find the common narrow bitwidth that
// is greater equal to the operand bitwidth requirements and still narrower
// than the result.
FailureOr<unsigned> origBitsRequired = calculateBitsRequired(op.getType());
if (failed(origBitsRequired))
return failure();
// TODO: We could relax this check by disregarding bitwidth requirements of
// elements that we know will be replaced by the insertion.
FailureOr<unsigned> destBitsRequired =
calculateBitsRequired(op.getDest(), insValue.getKind());
if (failed(destBitsRequired) || *destBitsRequired >= *origBitsRequired)
return failure();
FailureOr<unsigned> insertedBitsRequired =
calculateBitsRequired(insValue.getIn(), insValue.getKind());
if (failed(insertedBitsRequired) ||
*insertedBitsRequired >= *origBitsRequired)
return failure();
// Find a narrower element type that satisfies the bitwidth requirements of
// both the source and the destination values.
unsigned newInsertionBits =
std::max(*destBitsRequired, *insertedBitsRequired);
FailureOr<Type> newVecTy =
this->getNarrowType(newInsertionBits, op.getType());
if (failed(newVecTy) || *newVecTy == op.getType())
return failure();
FailureOr<Type> newInsertedValueTy =
this->getNarrowType(newInsertionBits, insValue.getType());
if (failed(newInsertedValueTy))
return failure();
Location loc = op.getLoc();
Value narrowValue = rewriter.createOrFold<arith::TruncIOp>(
loc, *newInsertedValueTy, insValue.getResult());
Value narrowDest =
rewriter.createOrFold<arith::TruncIOp>(loc, *newVecTy, op.getDest());
return createInsertionOp(rewriter, op, narrowValue, narrowDest);
}
};
struct ExtensionOverInsert final
: ExtensionOverInsertionPattern<vector::InsertOp> {
using ExtensionOverInsertionPattern::ExtensionOverInsertionPattern;
vector::InsertOp createInsertionOp(PatternRewriter &rewriter,
vector::InsertOp origInsert,
Value narrowValue,
Value narrowDest) const override {
return rewriter.create<vector::InsertOp>(
origInsert.getLoc(), narrowValue, narrowDest, origInsert.getPosition());
}
};
struct ExtensionOverInsertElement final
: ExtensionOverInsertionPattern<vector::InsertElementOp> {
using ExtensionOverInsertionPattern::ExtensionOverInsertionPattern;
vector::InsertElementOp createInsertionOp(PatternRewriter &rewriter,
vector::InsertElementOp origInsert,
Value narrowValue,
Value narrowDest) const override {
return rewriter.create<vector::InsertElementOp>(
origInsert.getLoc(), narrowValue, narrowDest, origInsert.getPosition());
}
};
struct ExtensionOverInsertStridedSlice final
: ExtensionOverInsertionPattern<vector::InsertStridedSliceOp> {
using ExtensionOverInsertionPattern::ExtensionOverInsertionPattern;
vector::InsertStridedSliceOp
createInsertionOp(PatternRewriter &rewriter,
vector::InsertStridedSliceOp origInsert, Value narrowValue,
Value narrowDest) const override {
return rewriter.create<vector::InsertStridedSliceOp>(
origInsert.getLoc(), narrowValue, narrowDest, origInsert.getOffsets(),
origInsert.getStrides());
}
};
struct ExtensionOverShapeCast final : NarrowingPattern<vector::ShapeCastOp> {
using NarrowingPattern::NarrowingPattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
FailureOr<ExtensionOp> ext =
ExtensionOp::from(op.getSource().getDefiningOp());
if (failed(ext))
return failure();
VectorType origTy = op.getResultVectorType();
VectorType newTy =
origTy.cloneWith(origTy.getShape(), ext->getInElementType());
Value newCast =
rewriter.create<vector::ShapeCastOp>(op.getLoc(), newTy, ext->getIn());
ext->recreateAndReplace(rewriter, op, newCast);
return success();
}
};
struct ExtensionOverTranspose final : NarrowingPattern<vector::TransposeOp> {
using NarrowingPattern::NarrowingPattern;
LogicalResult matchAndRewrite(vector::TransposeOp op,
PatternRewriter &rewriter) const override {
FailureOr<ExtensionOp> ext =
ExtensionOp::from(op.getVector().getDefiningOp());
if (failed(ext))
return failure();
VectorType origTy = op.getResultVectorType();
VectorType newTy =
origTy.cloneWith(origTy.getShape(), ext->getInElementType());
Value newTranspose = rewriter.create<vector::TransposeOp>(
op.getLoc(), newTy, ext->getIn(), op.getTransp());
ext->recreateAndReplace(rewriter, op, newTranspose);
return success();
}
};
struct ExtensionOverFlatTranspose final
: NarrowingPattern<vector::FlatTransposeOp> {
using NarrowingPattern::NarrowingPattern;
LogicalResult matchAndRewrite(vector::FlatTransposeOp op,
PatternRewriter &rewriter) const override {
FailureOr<ExtensionOp> ext =
ExtensionOp::from(op.getMatrix().getDefiningOp());
if (failed(ext))
return failure();
VectorType origTy = op.getType();
VectorType newTy =
origTy.cloneWith(origTy.getShape(), ext->getInElementType());
Value newTranspose = rewriter.create<vector::FlatTransposeOp>(
op.getLoc(), newTy, ext->getIn(), op.getRowsAttr(),
op.getColumnsAttr());
ext->recreateAndReplace(rewriter, op, newTranspose);
return success();
}
};
//===----------------------------------------------------------------------===//
// Pass Definitions
//===----------------------------------------------------------------------===//
struct ArithIntNarrowingPass final
: impl::ArithIntNarrowingBase<ArithIntNarrowingPass> {
using ArithIntNarrowingBase::ArithIntNarrowingBase;
void runOnOperation() override {
Operation *op = getOperation();
MLIRContext *ctx = op->getContext();
RewritePatternSet patterns(ctx);
populateArithIntNarrowingPatterns(
patterns, ArithIntNarrowingOptions{bitwidthsSupported});
if (failed(applyPatternsAndFoldGreedily(op, std::move(patterns))))
signalPassFailure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Public API
//===----------------------------------------------------------------------===//
void populateArithIntNarrowingPatterns(
RewritePatternSet &patterns, const ArithIntNarrowingOptions &options) {
// Add commute patterns with a higher benefit. This is to expose more
// optimization opportunities to narrowing patterns.
patterns.add<ExtensionOverBroadcast, ExtensionOverExtract,
ExtensionOverExtractElement, ExtensionOverExtractStridedSlice,
ExtensionOverInsert, ExtensionOverInsertElement,
ExtensionOverInsertStridedSlice, ExtensionOverShapeCast,
ExtensionOverTranspose, ExtensionOverFlatTranspose>(
patterns.getContext(), options, PatternBenefit(2));
patterns.add<AddIPattern, SubIPattern, MulIPattern, DivSIPattern,
DivUIPattern, MaxSIPattern, MaxUIPattern, MinSIPattern,
MinUIPattern, SIToFPPattern, UIToFPPattern, IndexCastSIPattern,
IndexCastUIPattern>(patterns.getContext(), options);
}
} // namespace mlir::arith
|